首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Sanghyun Kim   《Journal of Hydrology》2009,374(3-4):318-328
In this study, the spatial distribution of measured soil moisture was analyzed on the platform of multivariate modeling. Soil moisture time series for two seasons were selected and used for analysis to reveal similarities and differences in soil moisture responses for a few rainfall events. The development of a soil moisture transport process that considers the representative element volume and uncertainty of soil media provides the hydrological basis for time series modeling. The systematic procedure of Box–Jenkins with noise modeling was used to delineate the final models for all monitoring points. The physical basis of mass balance and the continuity in inflow contribution, as well as statistical criteria, were used in the model selection procedure. Heuristic approaches provide the spatial distribution of selected models along the transect of a hillside. Comparative analysis for two different depths and seasons provide an understanding of the variation in soil moisture transfer processes at the hillslope scale. Differences in soil moisture models for both depths and seasons are associated with eco-hydrological processes. The relationships between distributed topographic features and modeling results were explored to configure dominant hydrological processes for each season.  相似文献   

2.
The profile characteristics and the temporal dynamics of soil moisture variation were studied at 26 locations in Da Nangou catchment (3.5 km2) in the loess area of China. Soil moisture measurements were performed biweekly at five depths in the soil profile (0–5, 10–15, 20–25, 40–45 and 70–75 cm) from May to October 1998 using Delta-T theta probe. Soil moisture profile type and temporal variation type and their relationship to topography and land use were identified by detrended canonical correspondence analysis (DCCA) and correlation analysis. The profile distribution of time-averaged soil moisture content can be classified into three types i.e. decreasing-type, waving-type and increasing-type. The profile features of soil moisture (e.g. profile gradient and profile variability) are influenced by different environmental factors. The profile type of soil moisture is only attributed to land use while profile gradient and profile variability of soil moisture is mainly related to land use and topography (e.g. landform type and slope). The temporal dynamics of layer-averaged soil moisture content is grouped into three types including three-peak type, synchro-four-peak type and lagged-four-peak type. These types are controlled by topography rather than by land use. The temporal dynamic type of soil moisture shows significant correlation with relative elevation, slope, aspect, while temporal variance displays significant relation with slope shape. The mean soil moisture is related to both the profile and dynamics features of soil moisture and is controlled by both land use and topography (e.g. aspect, position, slope and relative elevation). The spatial variability of soil moisture across landscape varies with both soil depths and temporal evolution.  相似文献   

3.
A spatial pattern of relative solutional denudation is described for a hillslope hollow and adjacent spurs at Bicknoller Combe, Somerset. The pattern was obtained from a network of micro-weight loss rock tablets emplaced in the soil. The results show that the hollow is the main locus of solutional denudation. The soil moisture distribution over the hollow indicates that it is a transmission zone for acid soil water percolating from the adjacent spurs to the saturated wedge at the base of the hollow. The wetter acid soils in the hollow are responsible for the relatively higher solutional denudation taking place in the hollow.  相似文献   

4.
Seasonal soil water dynamics were measured on a hillslope transect in the jarrah forest of southwest Western Australia over the period 1984-86 using mercury manometer tensiometers, gypsum blocks, and a neutron moisture meter. The soil water potential gradients indicated downward vertical drainage flux through winter and spring. There was generally a change to an upwards flux in early summer which was sustained through to autumn. A shallow ephemeral saturation zone was identified in and above a duricrust layer, lasting up to three days after heavy, late winter rainfall. The annual maximum to minimum unsaturated soil water storage on the hillslope was approximately 400 mm to 6 m depth and 480 mm to 15 m depth. This did not change significantly in years of substantially different winter rainfall. The magnitude of seasonal soil water storage was similar to other forested areas with deep soil profiles. The depth of observable infiltration was dependent on annual rainfall. This was consistent with the observation that groundwater levels responded to rainfall over the whole hillslope in wet years but only responded on the lower slopes in dry years. The average summer drying rate of the soil profile to 6 m depth of 3.5 mm day?1 was within the range of values reported for forests elsewhere. In late summer, following an extended drought period, the drying rate decreased downslope but increased midslope.  相似文献   

5.
Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose.In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within.It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space.  相似文献   

6.
Sanghyun Kim 《水文研究》2012,26(22):3434-3447
The vertical and lateral profiles of temporal variations in soil moisture are important for understanding the hydrological process along hillside transects. In this study, relationships among measured soil moistures were explored to configure the hydrological contributions of different flowpaths. All the measured soil moistures included a common stochastic structure because rainfall, the hydrometeological driver, is the main factor that determines the soil moisture response feature, and the infiltration process through the topsoil at a shallow depth is also common in all measured soil moisture histories. Therefore, the relationships between the measured series are also affected by both rainfall and topsoil infiltration. The common stochastic structure of the soil moisture series was removed via a prewhitening procedure. A systematic analysis procedure is presented to delineate the exclusive causal relationships among multiple soil moisture measurements. A monitoring system based on multiplexed time domain reflectometry was used to obtain soil moisture time series along two transects on a steep hillslope during the rainy season. The application of the proposed method for monitoring points in two adjacent locations provided 8, 12, 14, and 13, 16, 22 causal relationships for vertical, lateral in parallel, and diagonal directions, respectively, along the two transects. The point‐based contributions of the internal flowpath can be evaluated as the correlation is normalized in the context of inflow and outflow. The hydrological processes in the soil layer, vertical flow, lateral flow, downslope recharge, and return flow were quantified, and the relative importance of each hydrological component was determined to improve our understanding of the hydrological processes along the two transects of the study area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In the semi‐arid western United States, water availability plays a defining role in land use. Soil moisture, vegetation, and microtopography are key variables in the hydrologic function of these ecosystems. Previous research has not addressed the influence of site‐specific aspect, vegetation, or slope gradient on terracette soil moisture patterns in semi‐arid rangelands. Therefore, the objectives of this study were to: (1) assess the influence of terracette site aspect, vegetation cover, and slope on soil moisture; (2) conceptualize conditions at the hillslope scale given terracette morphology; and (3) estimate the extent of terracettes at a regional scale. The Simultaneous Heat and Water (SHAW) model was used to simulate soil water dynamics of terracettes given variations in site conditions. These results were coupled with time‐of‐flight laser scans to quantify terracette bench and riser percent‐area, and statewide assessments of terracette extent using digital orthoimagery and a geographical information system (GIS). Modeling results indicated site aspect had minimal influence (±0.005 m3 m?3) on terracette soil moisture. Vegetation, represented as leaf area index (LAI), had the single‐most influential effect on terracette volumetric water content (θ v) demonstrated by an inverse relationship of LAI to mean terracette hillslope θ v; and slope increases of ≥15% on northern azimuths increased mean θ v which contrasted with southern azimuths for similar slope increases. Laser scanning results indicated bench width and riser length could be estimated from mean site slope (R 2 = 0.82 risers and R 2 = 0.93 benches). Aerial orthoimagery/GIS assessments estimated >159 000 ha of terracettes throughout the State of Idaho, with >41 000 ha (~26%) occurring on lands managed as grazing allotments. These findings provide an increased understanding of rangeland hydrologic processes as influenced by cattle density, vegetation, and terracettes which can aide land managers in their selection and application of best management practices on these lands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Rill erosion is an important erosional form on agricultural soils in England, causing large losses of soil, particularly on cultivated slopes. This paper describes a rill system that developed in a small agricultural catchment in north Oxfordshire during the winter of 1992–93. The rill system comprised two components: a system of ‘feeder rills’ along the valley-side slopes, which were the result of flow concentration and erosion along wheelings, and a thalweg rill, which formed along a dry valley bottom as a result of surface runoff concentration from the feeder rills. Total volumetric soil loss from the rill system was 32·28 m3, equivalent to 3·01 m3, ha?1 for the rill catchment area, or 3·91 t ha?1. Mean discharge for the thalweg rill and feeder rills, calculated during a storm event, was 31·101s?1 and 1·171s?1, respectively. All flows were fully turbulent and supercritical. We emphasize the need for a spatially distributed approach to the study of runoff and erosion at the catchment scale.  相似文献   

9.
In many smallholder farms in sub-Saharan Africa dambos are used for grazing and crop production especially horticultural crops. Increased use of dambos especially for crop production can result in ground and surface water pollution. Ground and surface water quality along a dambo transect in Chihota, Zimbabwe, was investigated between October 2013 and February 2014. The transect was divided into; upland (control), dambo gardens (mid-slope) and the river (valley bottom). Water samples for quality assessment were collected in October 2013 (peak of dry season) and February 2014 (peak of rainy season). The collected water samples were analysed for pH, faecal coliforms, total nitrogen, electrical conductivity, total dissolved solids (TDS), and some selected nutrients (P, K, Ca, Mg, Na, Zn, and Cu). Water pH was 7.0, 6.4 and 6.1 for river water, garden and upland wells respectively. During the wet season total nitrogen (TN) concentrations were 233 mg/L for uplands, 242 mg/L for gardens and 141 mg/L for the river. During the dry season, TN concentrations were all below 20 mg/L, and were not significantly different among sampling stations along the dambo transect. Dry season faecal coliform units (fcu) were significantly different and were 37.2, 30.0 and 5.0 for upland wells, garden wells and river respectively. Wet season faecal coliforms were also significantly different and were 428.5, 258.0 and 479.4 fcu for upland wells, garden wells and river respectively. The other measured physico-chemical parameters also varied with sampling position along the transect. It was concluded that TN and fcu in sampled water varied with season and that wet season concentrations were significantly higher than dry season concentrations. High concentrations of faecal coliforms and total N during the wet season was attributed to increased water movement. Water from upland wells, garden wells and river was not suitable for human consumption according to WHO standards during both the dry and wet seasons.  相似文献   

10.
Soil moisture distribution shows highly variation both spatially and temporally. This study assesses the spatial heterogeneity of soil moisture on a hill-slope scale in the Loess Plateau in West China by using a geostatistical approach. Soil moisture was measured by time-domain reflectometry (TDR) in 313 samples. Two kinds of sampling scales were used (2 × 2 m and 20 ×20 m) at two soil layers (0-30 cm and 30-60 cm). The general characteristics of soil moisture were analyzed by a classical statistics method, and the spatial heterogeneity of soil moisture was analyzed using a geostatistical approach. The results showed that the spherical model is the best-fit model to simulate soil moisture on the experimental hill-slope. The parameters of this model indicated that the spatial dependence of soil moisture in the selected hill-slope was moderate. Even the 2 × 2 m sampling scale was too coarse to show the detailed spatial variances of soil moisture in this area. The dependent distance increased from 27.4 m to 494.16 m as the sampling scale became coarse (from 2× 2 m to 20 ×20 m). A map of soil moisture was generated by using original soil moisture data and interpolated values determined by the Kriging method. The average soil moisture (area weighted) in the different layers of soil was calculated on the basis of this map (10.94% for the 0-30 cm soil layer, 11.88% for the 30-60 cm soil layer). This average soil moisture is lower than the corresponding average effective soil moisture, which suggests that the soil moisture is not sufficient to support vegetation in this area.  相似文献   

11.
Surface soil moisture has been extensively studied for various land uses and landforms. Although many studies have reported potential factors that control surface soil moisture over space or time, the findings have not always been consistent, indicating a need for identification of the main factors. This study focused on the static controls of topographic, soil, and vegetation features on surface soil moisture in a steep natural forested headwater catchment consisting of three hillslope units of a gully area, side slope, and valley‐head slope. Using a simple correlation analysis to investigate the effects of the static factors on surface soil moisture at depths of 0–20 cm at 470 points in 13 surveys, we addressed the characteristics of surface soil moisture and its main controlling factors. The results indicated that the mean of surface soil moisture was in the decreasing order of gully area > valley‐head slope > side slope. The relationship between the mean and standard deviation of surface soil moisture showed a convex‐upward shape in the headwater catchment, a negative curvilinear shape in the gully area, and positive curvilinear shapes at the side and valley‐head slopes. At the headwater catchment and valley‐head slope, positive contributions of soil porosity and negative contributions of slope gradient and saturated hydraulic conductivity were the main controlling factors of surface soil moisture under wetter conditions, whereas positive contributions of topographic wetness index and negative contributions of vegetation density were the main controlling factors of surface soil moisture under drier conditions. At the side slope underlain by fractured bedrocks, only saturated hydraulic conductivity and vegetation density were observed to be the controlling factors. Surface soil moisture in the gully area was mainly affected by runoff rather than were static features. Thus, using hillslope units is effective for approximately estimating the hydrological behaviours of surface moisture on a larger scale, whereas dependency between the main static factors and moisture conditions is helpful for estimating the spatial distributions of surface moisture on a smaller scale.  相似文献   

12.
Small‐scale variations in surface moisture content were measured on a fine‐grained beach using a Delta‐T Theta probe. The resulting data set was used to examine the implications of small‐scale variability for estimating aeolian transport potential. Surface moisture measurements were collected on a 40 cm × 40 cm grid at 10 cm intervals, providing a total of 25 measurements for each grid data set. A total of 44 grid data sets were obtained from a representative set of beach sub‐environments. Measured moisture contents ranged from about 0% (dry) to 25% (saturated), by weight. The moisture content range within a grid data set was found to vary from less than 1% to almost 15%. The magnitude of within‐grid variability varied consistently with the mean moisture content of the grid sets, following an approximately normal distribution. Both very wet and very dry grid data sets exhibited little internal variability in moisture content, while intermediate moisture contents were associated with higher levels of variability. Thus, at intermediate moisture contents it was apparent that some portions of the beach surface could be dry enough to allow aeolian transport (i.e. moisture content is below the critical threshold), while adjacent portions are too wet for transport to occur. To examine the implications of this finding, cumulative distribution functions were calculated to model the relative proportions of beach surface area expected to be above or below specified threshold moisture levels (4%, 7%, and 14%). It was found that the implicit inclusion of small‐scale variability in surface moisture levels typically resulted in changes of less than 1% in the beach area available for transport, suggesting that this parameter can be ignored at larger spatial scales. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
T. Neta  Q. Cheng  R. L. Bello  B. Hu 《水文研究》2010,24(18):2617-2628
Assessing moisture contents of lichens and mosses using ground‐based high‐spectral resolution spectrometers offers immense opportunities for a comprehensive monitoring of peatland moisture status by satellite/airborne imagery. This study investigates the impact of various moisture conditions of common subarctic lichen and moss species upon the spectral signatures obtained. The lichens are Cladina stellaris and Cladina rangiferina, and the mosses are Dicranum elongatum and Tomenthypnum nitens. Reflectance and moisture content measurements of these species were made in a laboratory setting, while maintaining the natural moisture conditions of the samples; once the moisture and spectral measurements were complete, the samples were returned to the field and placed in their natural setting, continuously receiving moisture from precipitation and groundwater and losing water through evaporation and drainage. Changes in reflectance of the visible to shortwave infrared (SWIR) range (400–2500 nm) at various moisture contents were examined, as well as the potential of current spectral reflectance indices to evaluate the plants' moisture contents was examined. Results indicate that the SWIR region is useful in identifying variations in plants moisture conditions, while the unique spectral signatures of the lichens and mosses in the visible and near‐infrared range suggest that these species may be detected by satellite and airborne imagery. Of current spectral indices, the normalized difference infrared index (NDII) was most successful in identifying the above plants' moisture content (details are discussed in the paper). Future study should focus on the development of improved moisture content spectral indices, as well as upscaling reflectance data and spectral indices. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Seasonal soil water dynamics were measured at a fine-textured, upslope site within the jarrah forest of southwest Western Australia and compared to the results from a coarse-textured hillslope transect. Gravity drainage dominated during winter and early spring. This reversed in early summer and an upward potential gradient was observed to 7 m depth. A shallow ephemeral saturation zone was observed above a clay pan at 1.5 m depth. This saturation zone persisted through late winter and early spring, contrasting with the short-lived saturation in the duricrust on the hillslope transect. The annual maximum to minimum unsaturated soil water storage was about 530 mm, 50 mm greater than the hillslope transect and higher than most values reported elsewhere in Australia. Significant soil water content changes following winter rain were generally restricted to 6 m but at one site occurred to 9 m. These depths were significantly less than the coarser-textured hillslope transect. Soil water drying rates averaged 5 mm day?1 during extended dry periods compared to 3.5 mm day?1 on the hillslope transect. The drying rate occurred uniformly through the profile until late summer when a significant decrease in the upper 3 m was observed.  相似文献   

15.
This data note introduces a database of long-term daily total precipitation and stream discharge data for seven forested watersheds in Japan that have been continuously monitored by the Forestry and Forest Products Research Institute. Three of the watersheds started data collection in the 1930s. Forest cover across the sites ranges from cool to warm temperate regions with the latitude spanning from 31 to 44° N and annual precipitation ranging from 1200 to 3000 mm yr−1. The effects of vegetation change via clearcutting, thinning and forest fire (among other stressors) on stream discharge can be analysed from the long-term observation sites. Moreover, this multi-site dataset allows for inter- and intra-site comparisons of annual water loss (difference of annual precipitation and stream discharge). These long-term datasets can provide comprehensive insights into the effects of climate change and other stressors on forested ecosystems, not only in Japan but across a spectrum of forest types, if combined with other long-term records from other forested watersheds across the world.  相似文献   

16.
Abstract

Knowledge of the variability of soil water content (SWC) in space and time plays a key role in hydrological and climatic modelling. However, limited attention has been given to arid regions. The focus of this study was to investigate the spatio-temporal variability of surface soil (0–6 cm) water content and to identify its controlling factors in a region of the Gobi Desert (40 km2). The standard deviation of SWC decreased logarithmically as mean water content decreased, and the coefficient of variation of SWC exhibited a convex upward pattern. The spatial variability of SWC also increased with the size of the investigated area. The spatial dependence of SWC changed over time, with stronger patterns of spatial organization in drier and wetter conditions of soil wetness and stochastic patterns in moderate soil water conditions. The dominant factors regulating the variability of SWC changed from combinations of soil and topographical properties (bulk density, clay content and relative elevation) in wet conditions to combinations of soil and vegetation properties (bulk density, clay content and shrub coverage) in dry conditions. This study has important implications for the assessment of soil quality and the sustainability of land management in arid regions.  相似文献   

17.
Soil moisture is a consideration for soil conservation, agricultural production and climate modelling. This article presents a simple method for estimating soil moisture storage under water stress and storage depletion conditions. The method is driven by the common agro‐hydrologic variables of precipitation (PPT), irrigation (IRR) and evapotranspiration (ET). The proposed method is successfully tested for the 152 000 km2 floodplain region of Hai River Basin using 48 consecutive months (2003–2006) of data. Soil moisture data from global land data assimilation system/Noah land surface model are validated with ground‐truth data from 102 soil moisture monitoring sites. The validated soil moisture is used in combination with in situ groundwater data to quantify total water storage change (TWSC) in the region. The estimated storage change is in turn compared with gravity recovery and climate experiment‐derived TWSC for the study area. The soil moisture and TWSC terms show favourable agreements, with discrepancies of < 10% on the average. While there is no consistent seasonal trend in soil moisture, TWSC shows a strong seasonality. It is low in spring and high in summer. This trend corresponds with the IRR–PPT season in the study area. Change in groundwater and total water storage indicates storage depletion in the basin. Storage depletion in the region is driven mainly by groundwater IRR and ET loss. Despite the low PPT and high ET, there is narrowing seasonal trend in soil moisture. This is achieved at the expense of groundwater storage. IRR pumping has induced extensive groundwater depletion in the basin. It is therefore vital to develop cultivation strategies that aim at limiting IRR pumping and ET loss. Water management practices that not only reduce waste but also ensure high productivity and ecological sustainability could also mitigate storage depletion in the region. These measures could reduce further not only the seasonal trend in soil moisture but also that in groundwater storage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Organic matter of nine surface sediments from the Daya Bay was Soxhlet-extracted with a mixture of 2:1 (v/v) dichloromethane-methanol and separated into five fractions: non-aromatic hydrocarbons, aromatic hydrocarbons, ketones, alcohols, and fatty acids and asphaltenes, and analyzed to determine their bulk and biomarker composition. Marine autogenic input appears to be a major source of organic matter. Generally, non-aromatic hydrocarbons are the most dominant fraction of solvent-extractable organic matter (EOM) followed by the other four fractions in decreasing amounts: fatty acids and asphaltenes, ketones, alcohols and aromatic hydrocarbons. On average, both non-aromatic hydrocarbon fraction and fatty acid and asphaltene fraction account for approximately 40% of EOM. The sources of acyclic methyl ketones, alkanols and fatty acids were examined. For n-alkan-2-ones, allochthonous input is a more important source than marine autogenetic input; the reverse is true for n-fatty acids; for n-alkanols, allochthonous and autogenetic inputs seem comparable. Both n-alkan-2-ones and n-fatty acids in the surface sediments of different areas appear to be derived from common sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号