首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A convenient constant reproducible aerosol has been a long-felt need for satisfactory research and development purposes in the field of Aitken nucleus studies. An account is given of a recent attempt to produce such an aerosol by radiolytic methods. It consists of the introduction of -particle sources of different activities into nucleus-free air in aerosol containers. Condensation nuclei in the Aitken size-range are produced by radiolytic reactions in the air. The concentration, size and size-distribution of the particles have been measured for sources of various activities and the results are sufficiently consistent to allow us to state that radiolytic production seems a promising approach to the problem of providing aerosols of particles lying in the lower Aitken nucleus size range.  相似文献   

2.
Helicopter measurements of solar irradiance and meteorological data within the atmospheric boundary-layer were made in Lagos during February 1979. Filter samples of aerosols were collected both during flight in February 1979 and at ground level in December 1978. Profile data on spectral aerosol optical depth were obtained and, from these, the aerosol extinction coefficient at two wavelengths (0.5 and 0.88 m) were calculated. Precipitable water was low and was contained mainly within the 750 m layer above ground, suggesting the establishment of a deep unstable boundary layer. Calculated channel energy depletions by aerosols show that, within the first 750 m of the surface, the 0·88 m might be more efficient at attenuating solar energy than 0·5 m. The lagoon (maritime) aerosol sample indicated a more monodisperse size-distribution than the dusty harmattan aerosol sample.  相似文献   

3.
It has been speculated for many years that the development of the droplet spectra in cloud is probably influenced by mixing processes. Various theoretical attempts to broaden the droplet spectra by mixing parcels with different velocity histories has shown that that particular effect is small. Similarly, very simpleuniform entrainment procedures did not lead to cloud drop size spectra which were broad enough, although by producing cloud drop size distributions with a double mode these models did substantially improve the drop size spectra of earlier adiabatic models which only exhibited a single mode.Recently a model based on entraining entities representing moving parcels of cloud air within the cloud was detailed byTelford andChai (1980). This study showed that the mixing in of dry air at cumulus turrets could lead to vertical cycling of diluted parcels, and that this cycling, with continual entrainment across the parcel boundaries, will produce much larger drops, as well as smaller drops of all sizes, in the droplet spectra. The entity entrainment concept studied there appears to apply to the observations of stratus cloud discussed in this paper.This paper presents data taken in marine stratus off the California coast which give a particularly clear example of how such droplet spectra modification occurs in practice. Both large drops, and the spread of the spectra to smaller sizes, occur in relation to other variables in such a way as to be consistent with an entity entrainment explanation, with no other obvious possibility.In a marine stratus cloud just over 200 m thick and many tens of miles in extent we find clear evidence that dry air is mixing in at cloud tops. Strong vertical motion is to be found in the cloud, large sized drops are found in cloud parcels where the mixing gives lower droplet concentrations, and there is evidence that newly formed cloud parcels are warmer and contain many more smaller droplets.The observations show that immediately following entrainment of dry air drop diameters are not reduced appreciably, but, in the same parcels, drop concentrations have been reduced by a factor of ten or more. Further down in the cloud big drops, able to start growth by coalescence, are found associated with low total droplet concentrations.Overall, it seems likely from the consideration of these observations that the formation of the large drops which lead to precipitation processes in clouds depends critically on the mixing in of dry air at cloud tops, and very little on the size of the small drops resulting from the condensation nucleus counts. As a conclusion it appears reasonable to state that if entrainment occurs at cloud tops, then big drops will be formed!  相似文献   

4.
A technique to estimate mass erosion rate of surface soil during landing of the Apollo Lunar Module (LM) and total mass ejected due to the rocket plume interaction is proposed and tested. The erosion rate is proportional to the product of the second moment of the lofted particle size distribution N(D), and third moment of the normalized soil size distribution S(D), divided by the integral of S(D)?D2/v(D), where D is particle diameter and v(D) is the vertical component of particle velocity. The second moment of N(D) is estimated by optical extinction analysis of the Apollo cockpit video. Because of the similarity between mass erosion rate of soil as measured by optical extinction and rainfall rate as measured by radar reflectivity, traditional NWS radar/rainfall correlation methodology can be applied to the lunar soil case where various S(D) models are assumed corresponding to specific lunar sites.  相似文献   

5.
The physical meaning of the characteristic displacement that has been observed in velocity-stepping friction experiments was investigated based on the micromechanics of asperity contact. It has been empirically found for bare rock surfaces that the magnitude of the characteristic displacement is dependent only on surface roughness and insensitive to both slip velocity and normal stress. Thus the characteristic displacement has been interpreted as the displacement required to change the population of contact points completely. Here arises a question about the physical mechanism by which the contact population changes. Because individual asperity contacts form, grow and are eliminated with displacement, there are at least two possible interpretations for the characteristic displacement: (1) it is the distance over which the contacts existing at the moment of the velocity change all fade away, being replaced by new asperity contacts, or (2) it is the distance required for a complete replacement in the real contact area that existed at the moment of the velocity change. In order to test these possibilities, theoretical models were developed based on the statistics of distributed asperity summits. A computer simulation was also performed to check the validity of the theoretical models using three-dimensional surface topography data with various surface roughnesses. The deformation was assumed to be elastic at each asperity contact. The results of both the simulation and the theoretical models show that the characteristic displacement in (1) is about three times longer than that in (2). Comparison of the results with the experimental observations obtained by others indicates that the possibility (2) is the correct interpretation. This means that the state in the rate and state variable friction law is memorized in a very confined area of real contact. Further, our results explain why the characteristic displacement is insensitive to normal stress: this comes from the fact that the microscopic properties such as the mean contact diameter are insensitive to normal stress. The approach based on the micromechanics of asperity contact is useful to investigate the underlying mechanism of various phenomena in rock friction.  相似文献   

6.
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda wavesRg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1–10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constantQ), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedoB 0=0.8–0.9 and a scattering extinction length of 17–32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. TheRg results indicate thatQ increases with depth in the upper kilometer or two of the crust, at least in New England. CodaQ appears to be equivalent to intrinsic (anelastic)Q and indicates that thisQ increases with frequency asQ=Q o f n , wheren is in the range of 0.2–0.9. The intrinsic attenuation in the crust can be explained by a high constantQ (500Q o2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence (QQ o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms.Q is low near the surface and high in the body of the crust.  相似文献   

7.
This paper examines the effects of the mixing of dry air into a cloud top from the point of view of the droplet spectra. It is shown theoretically that the resulting cycling of the air up and down in the cloud, as seems to be the essential mechanism by which cumuli have been diluted to their observed liquid water mixing ratio, can double the largest drop radius and generate cloud parcels containing drops of all sizes up to this maximum. These changes in the droplet distribution with size occur by a process which is not greatly influenced by the cloud condensation nuclei or the details of droplet growth since maritime like spectra can develop in continental type cumuli. It shows that large numbers of cloud condensation nuclei should not have much effect in inhibiting the rainforming process by reducing coalescence growth. On the contrary, the controlling parameters which determine precipitation efficiency and times seem to be those which control the mixing.  相似文献   

8.
The information content of the 7-year BUV data set has been reexamined by a comparison with a fairly large set of ground Dobson and M-83 instruments. The satellite-ground intercomparison of total ozone was done under different types of ground observation techniques (observation code) and different instrument exposure (exposure code) and for various distances of the subsatellite point from the station. Because of the existing latitudinal gradient in total ozone, at a given station the bias ground-BUV tends to be smaller when the subsatellite point is at a latitude higher than the station's latitude. Knowing the total ozone gradient at a given station, the BUV total ozone has been corrected to account for the ozone gradient and the correlation was calculated with the corresponding ground observations. These correlations seem to offer no improvement when compared with the correlations between the ground ozone and the actual BUV ozone at distances of the subsatellite point from the station within 200 km from the station used in previous studies. The seasonal variation of the BUV-ground correlation reveals information on the noise level of the measurements and the geographical distribution of the percentage mean bias: (Ground-BUV)×100/(Ground) is discussed. Both on short and on longer time scales it appears that the BUV derived recommended total ozone data set is reasonably good and possible instrumental drifts are not large. The analysis includes an extension through April 1977 of the BUV and contour-derived total ozone trends byLondon andLing (1980). Over the northern hemisphere both data sets (contour and BUV) show comparable trends over middle and high latitudes which range from –3 D.U./year to –5 D.U./year during the 7-year period April 1970–April 1977. In the southern hemisphere, however, long-term variation in total ozone cannot be determined from ground observations alone. It is concluded that for unknown reasons during the 7-year period of study, total ozone has been decreasing over most of the globe. The negative growth rates at high latitudes of the northern hemisphere are highly significant.  相似文献   

9.
The Rayleigh wave phase and group velocities in the period range of 24–39 sec, obtained from two earthquakes which occurred in northeastern brazil and which were recorded by the Brazilian seismological station RDJ (Rio de Janeiro), have been used to study crustal and upper mantle structures of the Brazilian coastal region. Three crustal and upper mantle models have been tried out to explain crustal and upper mantle structures of the region. The upper crust has not been resolved, due basically to the narrow period range of the phase and group velocities data. The phase velocity inversions have exhibited good resolutions for both lower crust and upper mantle, with shear wave velocities characteristic of these regions. The group velocity data inversions for these models have showed good results only for the lower crust. The shear wave velocities of the lower crust (3.86 and 3.89 km/sec), obtained with phase velocity inversions, are similar to that (=3.89 km/sec) found byHwang (1985) to the eastern South American region, while group velocity inversions have presented shear velocity (=3.75 km/sec) similar to that (=3.78 km/sec) found byLazcano (1972) to the Brazilian shield. It was not possible to define sharply the crust-mantle transition, but an analysis of the phase and group velocity inversions results has indicated that the total thickness of the crust should be between 30 and 39 km. The crustal and upper mantle model, obtained with phase velocity inversion, can be used as a preliminary model for the Brazilian coast.  相似文献   

10.
Experimental measurements of the absorption coefficient of atmospheric water vapour, at wavelengths between 8 and 13 m, are examined on the basis of atmospheric models describing the meteorological conditions of the observed atmospheres to obtain estimates of the foreign-broadening absorption coefficient for homogeneous paths. The results show that the variable contribution given by unresolved lines predominates on the continuum term due to wing effects of remote lines, even for rather high spectral resolutions.Associated with estimates of the self-broadening absorption coefficient, as proposed byRoberts et al. (1976), these data are applied to a wide set of atmospheric models, corresponding to various latitudes and seasons, indicating that the two components of the atmospheric absorption coefficient are closely related to the surface temperature. Because of the variable weights given by foreign- and self-broadening terms, the atmospheric absorption coefficient turns out to increase with the surface temperature with different rates at various wavelengths.  相似文献   

11.
Uncertainty Analysis for a Dynamic Phosphorus Model with Fuzzy Parameters   总被引:2,自引:0,他引:2  
A simplified method based on fuzzy set theory is presented to incorporate uncertainty of parameters into a dynamic total phosphorus model. Uncertainty may arise from difference between calibrated conditions and projected condition as well as from inconsistency of available data in the literature. The uncertainty in parameters was represented by fuzzy numbers that can be generated through various ways such as model calibration process, soft interpretation of literature data, and subjective opinions of experts. The proposed fuzzy approach decomposed fuzzy parameters into interval numbers at different level cuts, and solved for interval solutions through very simple calculation instead of solving nonlinear programming models. The interval solutions at each level cut were could be combined to obtain fuzzy solutions. This method has been applied to the phosphorus load-response model of the Triadelphia Reservoir near the Washington, DC area. Two pollution control scenarios have been simulated with fuzzy parameters. The measures of necessity and possibility have been used to analyze the potential risk of the two scenarios. The research results indicated that uncertainty is a very important factor in water quality modeling. By incorporating uncertainty into model framework, the fuzzy model identified the highly risky scenario that was considered preferable based on solutions of the deterministic model.  相似文献   

12.
Summary The author first derives the coefficient of trapping of the aerosol by a water droplet. Having determined the velocity field of the medium in the neighbourhood of the droplet and solved the equation of motion of the aerosol, he determined the critical Stokes number, Stk = 5/6, beginning with which the aerosol is trapped by inertia. The next section deals with the experiment. Using the apparatus, located at the observatory of the Institute of the Physics of the Atmosphere in Hradec Králové, the author carried out experiments which proved that there existed a critical Stokes number and also that it was possible, given sufficiently small values of St, to adopt with sufficient accuracy the trapping coefficient as = (2.5 ± 0.3) a/r, where a is the radius of the aerosol particle and r is the radius of the droplet.  相似文献   

13.
Summary Among various trial models ofP-wave travel times, there exists at least one model which best predicts the times of first arrivals from a certain region at a set of recording stations even if no attempt is made to correct the travel-time standards against known station errors and source bias. In teleseismic distance range (25°100°) and surface-focus case, the possibility of statistically establishing which of the twoP models, viz. Jeffreys-Bullen and Herrin, is more appropriate for each of the four source regions, viz. Southern Nevada, Aleutian Islands, Eastern Kazakh and Novaya Zemlya, is discussed in this paper. Data corresponding to a set of underground explosions from these regions form the basis of such an analysis. The Herrin model is found to be better applied to Aleutian Islands region while the Jeffreys-Bullen model seems more appropriate for each of the remaining three regions.As a result of the study of the travel-time models, numerical estimates of space and time corrections pertaining to the above mentioned regions, based on the most appropriate model and directly applicable to the computed source parameters, are obtained. On applying these corrections, the size of source location error ellipse and the source-time error reduce to very small representative values, viz. 4 km×6 km (area 75 km2) and ±0.2 sec respectively.  相似文献   

14.
Zusammenfassung Mit Durchsichtigkeitsmessungen wird die durch Absorption und Streuung verursachte Gesamtextinktion eines Lichtstrahls im Meerwasser erfat. Als Mazahl der Extinktion eignet sich der physikalische Extinktionskoeffizient. Dem Ziel, geräteunabhängige absolute Mewerte zu erhalten, kann man im sichtbaren Teil des Spektrums durch Eichung der. Durchsichtigkeitsmegeräte mit einem Pulfrich-Photometer näher kommen. Doch bleibt die Genauigkeit der Mewerte besonders durch die Schwerpunktsverschiebungen, die für verschiedene mittlere Durchlässigkeiten des Meerwassers berechnet und tabellarisch zusammengestellt werden, und durch die technischen Eigenschaften der Megeräte und Photoelemente beschränkt. Es wird ein Meprinzip angegeben, das diese Nachteile weitgehend vermeidet und gestattet, auch im UV absolute Extinktionswerte in exakt definierten Punkten des Spektrums zu messen.
Quantitative measurements of transparency in the sea
Summary The total extinction of a ray of light in sea water caused by absorption and scattering is ascertained by measuring the transparency. The physical extinction coefficient is suitable to act as an indicator of extinction. In the visible part of the spectrum, it is possible to obtain approximately absolute measurements not influenced by the instruments used, by standardizing the transparency-meters with the aid of a Pulfrich-Photometer. The accuracy of the measurements continues, however, to be limited in particular by the shifting of the centres which are calculated and tabulated for various mean values of transparency of sea water, as well as by the technical properties of the instruments and the rectifier photocell. A principle for measuring transparency free of these deficiencies to a large extent and allowing the measurement of absolute extinction values at exactly defined points of the spectrum, including the ultra-violet, is described.


Herrn Prof. Dr. G. Wüst gewidmet zum 60. Geburtstag.  相似文献   

15.
The implicit time integration scheme of Stott and Harwood (1993) was proposed as an efficient scheme for use in three-dimensional chemical models of the atmosphere. The scheme was designed for chemistry schemes using chemical families, in which species with short lifetimes are grouped into longer-lived families. Further study with more complex chemistry, more species and reactions showed the scheme to be non-convergent and unstable under certain conditions; particularly for the perturbed chemical scenarios of polar stratospheric winters. In this work the scheme has been improved by revising the treatment of families and the convergence properties of the scheme. The new scheme has been named IMPACT (IMPlicit Algorithm for Chemical Time-stepping). It remains easy to implement and produces simulations that compare well with integrations using more accurate higher order schemes.  相似文献   

16.
Although constitutive modeling is a well-established branch of mathematics which has found wide industrial application, geophysicists often do not take full advantage of its known results. We present a synopsis of the theory of constitutive modeling, couched in terms of the simple material, which has been extensively studied and is complex enough to include most of the correct models proposed to describe the behavior of geological materials. Critical in the development of the theory are various invariance requirements, the principal ones being coordinate invariance, peer group invariance (isotropy), and frame-indifference. Each places distinet restrictions on constitutive equations. A noncomprehensive list of properly invariant and commonly used constitutive equations is given.To exemplify use of the equations, we consider two problems in detail: steady extension, which models the commonly performed constant strain rate triaxial test, and simple shearing. We note that each test is so restricted kinematically that only the most trivial aspects of material behavior are manifested in these tests, no matter how complex the material. Furthermore, the results of one test do not generally determine the results of the other.This article was supported by the U.S. Department of Energy (DOE) under Contract DE-AC04-76DP00789.A U.S. DOE facility.  相似文献   

17.
Subduction zone earthquakes and stress in slabs   总被引:3,自引:0,他引:3  
Summary The pattern of seismicity as a function of depth in the world, and the orientation of stress axes of deep and intermediate earthquakes, are explained using viscous fluid models of subducting slabs, with a barrier in the mantle at 670 km. 670 km is the depth of a seismic discontinuity, and also the depth below which earthquakes do not occur. The barrier in the models can be a viscosity increase of an order of magnitude or more, or a chemical discontinuity where vertical velocity is zero. LongN versus depth, whereN is the number of earthquakes, shows (1) a linear decrease to about 250–300 km depth, (2) a minimum near that depth, and (3) an increase thereafter. Stress magnitude in a subducting slab versus depth, for a wide variety of models, shows the same pattern. Since there is some experimental evidence thatN is proportional toe , where is a constant and is the stress magnitude, the agreement is encouraging. In addition, the models predict down-dip compression in the slab at depths below 400 km. This has been observed in earlier studies of earthquake stress axes, and we have confirmed it via a survey of events occurring since 1977 which have been analysed by moment tensor inversion. At intermediate depths, the models predict an approximate but not precise state of down-dip tension when the slab is dipping. The observations do not show an unambiguous state of down-dip tension at intermediate depths, but in the majority of regions the state of stress is decidedly closer to down-dip tension than it is to down-dip compression. Chemical discontinuities above 670 km, or phase transitions with an elevation of the boundary in the slab, predict, when incorporated into the models, stress peaks which are not mirrored in the profile of seismicity versus depth. Models with an asthenosphere and mesosphere of appropriate viscosity can not only explain the state of stress observed in double Benioff zones, but also yield stress magnitude profiles consistent with observed seismicity. Models where a nonlinear rheology is used are qualitatively consistent with the linear models.  相似文献   

18.
The Earth’s gravity field observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission shows variations due to the integral effect of mass variations in the atmosphere, hydrosphere and geosphere. Several institutions, such as the GeoForschungsZentrum (GFZ) Potsdam, the University of Texas at Austin, Center for Space Research (CSR) and the Jet Propulsion Laboratory (JPL), Pasadena, provide GRACE monthly solutions, which differ slightly due to the application of different reduction models and centre-specific processing schemes. The GRACE data are used to investigate the mass variations in Fennoscandia, an area which is strongly influenced by glacial isostatic adjustment (GIA). Hence the focus is set on the computation of secular trends. Different filters (e.g. isotropic and non-isotropic filters) are discussed for the removal of high frequency noise to permit the extraction of the GIA signal. The resulting GRACE based mass variations are compared to global hydrology models (WGHM, LaDWorld) in order to (a) separate possible hydrological signals and (b) validate the hydrology models with regard to long period and secular components. In addition, a pattern matching algorithm is applied to localise the uplift centre, and finally the GRACE signal is compared with the results from a geodynamical modelling. The GRACE data clearly show temporal gravity variations in Fennoscandia. The secular variations are in good agreement with former studies and other independent data. The uplift centre is located over the Bothnian Bay, and the whole uplift area comprises the Scandinavian Peninsula and Finland. The secular variations derived from the GFZ, CSR and JPL monthly solutions differ up to 20%, which is not statistically significant, and the largest signal of about 1.2 Gal/year is obtained from the GFZ solution. Besides the GIA signal, two peaks with positive trend values of about 0.8 Gal/year exist in central eastern Europe, which are not GIA-induced, and also not explainable by the hydrology models. This may indicate that the recent global hydrology models have to be revised with respect to long period and secular components. Finally, the GRACE uplift signal is also in quite good agreement with the results from a simple geodynamical modelling.  相似文献   

19.
We employ a realistic finite-extent k -2 stochastic source model with k-dependent rise time, introduced by Bernard et al. (1996) and extended by Gallovi and Brokeová (2004), to synthesize the strong ground motions in near source distances. For a given magnitude, this rupture model involves a number of free parameters (fault dimensions, slip roughness, maximum rise time, slip velocity function). We study their influence on the peak ground acceleration (PGA) maps (parametric study) for an example of the 1999 Athens earthquake of M w = 5.9. The observed macroseismic intensities serve us as a rough constraint on the simulated PGA's to find a set of suitable k -2 models. These models agree with empirical source scaling relations.  相似文献   

20.
Summary The phase velocity dispersion of Rayleigh waves for the Moxa-Vienna (MOX-VIE) and Moxa-Kaperské Hory (MOX-KHC) profiles, and of both Rayleigh and Love waves for the Kaperské Hory-Ksi (KHC-KSP) profile have been measured and inverted into models of shearwave velocity vs. depth. The three paths cross, respectively, the central part of the Bohemian Massif, its western margin, and the Bohemian Pluton and Cretaceous. For the MOX-VIE profile mean and lower crustal shear wave velocities of 3.7 and 3.9 km/s, respectively, a mean Moho depth of 34 km, and no existence of a low-velocity layer in the lower crust were found. The model obtained for the MOX-KHC profile is characterized by a slightly lower velocity in the lower crust (3.8 km/s), by a slightly lower Moho depth (32 km), and by the appearance of a weak low-velocity channel between 55 and 140 km. The crustal section of the final model for the KHC-KSP profile agrees well with the KHKS82 model derived by Novotný from results of DSS along international profile VII. Our final Rayleigh-wave model has significantly lower shear-wave velocities down to 215 km in the mantle. A systematic difference of 0.18 km/s between the average velocities of Rayleigh and Love waves has been revealed for the depth range from 30 to 215 km. Since almost no contamination of the fundamental Love mode with higher modes has been observed, and since the investigated structure hardly contains an unresolved system of thin, alternately low- and high-velocity layers, the cause of the difference is evidently polarization anisotropy of the upper mantle beneath the Bohemian Massif. It is recommended that the discussed investigations should be supplemented with data from the fan of KSP-GRF (Gräfenberg Array, Germany) paths and from the KHC-BRG (Berggiesshübel, Germany) profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号