首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural source zone depletion (NSZD) refers to processes within chemically impacted vadose and saturated zones that reduce the mass of contaminants remaining in a defined source control volume. Studies of large petroleum hydrocarbon release sites have shown that the depletion rate by vapor phase migration of degradation products from the source control volume through the vadose zone (V‐NSZD) is often considerably higher than the rate of depletion from the source control volume by groundwater flow carrying dissolved petroleum hydrocarbons arising from dissolution, desorption, or back diffusion, and degradation products arising from biodegradation (GW‐NSZD). In this study, we quantified vadose zone and GW‐NSZD at a small unpaved fuel release site in California typical of those in settings with predominantly low permeability media. We estimated vadose zone using a dense network of efflux monitoring locations at four sampling events over 2 years, and GW‐NSZD using groundwater monitoring data downgradient of the source control volume in three depth intervals spanning up to 9 years. On average, vadose zone was 17 times greater than GW‐NSZD during the time interval of comparison, and vadose zone was in the range of rates quantified at other sites with petroleum hydrocarbon releases. Estimating vadose zone and GW‐NSZD rates is challenging but the vadose zone rate is the best indicator of overall source mass depletion, whereas GW‐NSZD rates may be useful as baselines to quantify progress of natural or engineered remediation in portions of the saturated zone in which there are impediments to loss of methane and other gases to the vadose zone.  相似文献   

2.
Vapor intrusion (VI) occurs when volatile contaminants in the subsurface migrate through the vadose zone into overlying buildings. The 2015 U.S. EPA petroleum VI guidance recommends that additional investigation of the VI risk from gasoline hydrocarbons at the underground storage tank (UST) sites is not necessary where the vertical distance between a building and a vapor source exceeds a recommended vertical screening distance. However, due to the lack of soil-gas data on the attenuation of ethylene dibromide (EDB), additional VI investigations to evaluate VI risk from EDB are recommended at UST sites with leaded gasoline releases containing EDB. We analyzed soil-gas and groundwater concentrations of EDB from eight petroleum UST sites using a new analytical method with soil-gas detection limit <0.16 μg/m3 EDB (VI screening level at the 10−6 risk level). The analysis included (1) assessing the frequency of EDB detections ≤0.16 μg/m3 at various vertical separation distances and (2) predicting vertical screening distances for EDB using the U.S. EPA PVIScreen model for different soil types in the vadose zone above dissolved-phase and LNAPL sources. Ranges of estimated aerobic biodegradation rate constants for EDB, air exchange rates for residential buildings, and source vapor concentrations for other constituents were combined with conservative estimates of EDB source concentrations as model inputs. Concentrations of EDB in soil-gas indicated that the U.S. EPA recommended vertical screening distances are protective of VI risk from EDB. Conversely, vertical screening distances predicted by modeling were >6 ft (1.8 m) for sites with sand and loam soil above dissolved phase sources and >15 ft (4.6 m) for sites with sand soil above LNAPL sources. This predicted dependence on the vapor source type and soil type in the vadose zone highlights the importance of soil characterization for VI screening at sites with EDB sources.  相似文献   

3.
Light non-aqueous phase liquids (LNAPL) represent one of the most serious problems in aquifers contaminated with petroleum hydrocarbons liquids. To design an appropriate remediation strategy it is essential to understand the behavior of the plume. The aim of this paper is threefold: (1) to characterize the fluid distribution of an LNAPL plume detected in a volcanic low-conductivity aquifer (∼0.4 m/day from slug tests interpretation), (2) to simulate the recovery processes of the free-product contamination and (3) to evaluate the primary recovery efficiency of the following alternatives: skimming, dual-phase extraction, Bioslurping and multi-phase extraction wells. The API/Charbeneau analytical model was used to investigate the recovery feasibility based on the geological properties and hydrogeological conditions with a multi-phase (water, air, LNAPL) transport approach in the vadose zone. The modeling performed in this research, in terms of LNAPL distribution in the subsurface, show that oil saturation is 7% in the air–oil interface, with a maximum value of 70% in the capillary fringe. Equilibrium between water and LNAPL phases is reached at a depth of 1.80 m from the air–oil interface. On the other hand, the LNAPL recovery model results suggest a remarkable enhancement of the free-product recovery when simultaneous extra-phase extraction was simulated from wells, in addition to the LNAPL lens. Recovery efficiencies were 27%, 65%, 66% and 67% for skimming, dual-phase extraction, Bioslurping and multi-phase extraction, respectively. During a 3-year simulation, skimmer wells and multi-phase extraction showed the lowest and highest LNAPL recovery rates, with expected values from 207 to 163 and 2305 to 707 l-LNAPL/day, respectively. At a field level we are proposing a well distribution arrangement that alternates pairs of dual-phase well-Bioslurping well. This not only improves the recovery of the free-product plume, but also pumps the dissolve plume and enhances in situ biodegradation in the vadose zone. Thus, aquifer and soil remediation can be achieved at a shorter time. Rough calculations suggest that LNAPL can be recovered at an approximate cost of $6–$10/l.  相似文献   

4.
A field screening method was developed for rapid measurement of benzene and gasoline range total petroleum hydrocarbons (TPHg) concentrations in groundwater. The method is based on collecting photoionization detector (PID) measurements from vapor samples. The vapor samples are collected by bubbling air through groundwater samples (air sparging) with a constant volume, temperature and sparging rate. The level of accuracy, sensitivity, precision, and statistical significance of the estimated concentrations, derived from the screening method, are comparable to conventional laboratory analytical results at concentrations equal to or greater than 150 µg/L for benzene and greater than 50 µg/L for TPHg. The method's concentration estimations can assist in making real‐time decisions regarding location of dissolved plumes and light nonaqueous phase liquid (LNAPL) source zones at many fuel release sites. The screening method was tested in the laboratory and in the field with 208 and 107 samples, respectively. The study concludes that the screening method can be used as a tool to aid in completing a site conceptual model as well as analyzing groundwater from monitoring wells.  相似文献   

5.
Vapor intrusion (VI) involves migration of volatile contaminants from subsurface through unsaturated soil into overlying buildings. In 2015, the US EPA recommended an approach for screening VI risks associated with gasoline releases from underground storage tank (UST) sites. Additional assessment of the VI risk from petroleum hydrocarbons was deemed unnecessary for buildings separated from vapor sources by more than recommended vertical screening distances. However, these vertical screening distances did not apply to potential VI risks associated with releases of former leaded gasoline containing 1,2-dichloroethane (1,2-DCA), because of a lack of empirical data on the attenuation of 1,2-DCA in soil gas. This study empirically evaluated 144 paired measurements of 1,2-DCA concentrations in soil gas and groundwater collected at 47 petroleum UST sites combined with BioVapor modeling. This included (1) assessing the frequency of 1,2-DCA detections in soil gas below 10−6 risk-based screening levels at different vertical separation distances and (2) comparing the US EPA recommended vertical screening distances with those predicted by BioVapor modeling. Vertical screening distances were predicted for different soil types using aerobic biodegradation rate constants estimated from the measured soil-gas data combined with conservative estimates of source concentrations. The modeling indicates that the vertical screening distance of 6 feet (1.8 m) recommended for dissolved-phase sources is applicable for 1,2-DCA below certain threshold concentrations in groundwater, while 15 feet (4.6 m) recommended for light nonaqueous phase liquid (LNAPL) sources is applicable for sites with clay and loam soils in the vadose zone, but not sand, if 1,2-DCA concentrations in groundwater exceed 150 μg/L. This dependence of the predicted vertical screening distances on soil type places added emphasis on proper soil characterization for VI screening at sites with 1,2-DCA sources. The soil-gas data suggests that a vertical screening distance of 15 feet (4.6 m) is necessary for both dissolved-phase and LNAPL sources.  相似文献   

6.
A detailed seasonal study of soil vapor intrusion at a cold climate site with average yearly temperature of 1.9 °C was conducted at a house with a crawlspace that overlay a shallow dissolved‐phase petroleum hydrocarbon (gasoline) plume in North Battleford, Saskatchewan, Canada. This research was conducted primarily to assess if winter conditions, including snow/frost cover, and cold soil temperatures, influence aerobic biodegradation of petroleum vapors in soil and the potential for vapor intrusion. Continuous time‐series data for oxygen, pressure differentials, soil temperature, soil moisture, and weather conditions were collected from a high‐resolution monitoring network. Seasonal monitoring of groundwater, soil vapor, crawlspace air, and indoor air was also undertaken. Petroleum hydrocarbon vapor attenuation and biodegradation rates were not significantly reduced during low temperature winter months and there was no evidence for a significant capping effect of snow or frost cover that would limit oxygen ingress from the atmosphere. In the residual light nonaqueous phase liquid (LNAPL) source area adjacent to the house, evidence for biodegradation included rapid attenuation of hydrocarbon vapor concentrations over a vertical interval of approximately 0.9 m, and a corresponding decrease in oxygen to less than 1.5% v/v. In comparison, hydrocarbon vapor concentrations above the dissolved plume and below the house were much lower and decreased sharply within a few tens of centimeters above the groundwater source. Corresponding oxygen concentrations in soil gas were at least 10% v/v. A reactive transport model (MIN3P‐DUSTY) was initially calibrated to data from vertical profiles at the site to obtain biodegradation rates, and then used to simulate the observed soil vapor distribution. The calibrated model indicated that soil vapor transport was dominated by diffusion and aerobic biodegradation, and that crawlspace pressures and soil gas advection had little influence on soil vapor concentrations.  相似文献   

7.
Passive measurements of volatile organic compounds (VOCs) provide a method for early detection and long-term monitoring of potential leaks from underground storage tanks (USTs) and associated fuel service lines. A diffusive sampler was constructed of a sorbent tube that fits inside a specially designed sampling chamber. VOCs in the soil enter the chamber by molecular diffusion and are collected by the sorbent. The sorbent is easily retrieved for laboratory analyses by thermally desorbing into a gas chromatograph/mass spectrometer (GC/MS), or qualitative concentrations can be determined directly in the field with specific-indicator detectors.
The diffusive samplers were evaluated in an exposure chamber under controlled conditions. Laboratory measurements of the sorbed mass of organic vapor were found to be in close agreement with theoretical values and indicate the passive sampling approach is viable for detecting relatively low concentrations of organic vapors in the vadose zone over a one-day sampling period, as well as providing relatively long-term monitoring periods up to 58 days. A field test found the sampling approach successful in identifying an area where the vadose zone was contaminated by leaking petroleum USTs.  相似文献   

8.
Several regulatory agencies recommend screening petroleum vapor intrusion (PVI) sites based on vertical screening distance between a petroleum hydrocarbon source in soil or groundwater and a building foundation. U.S. Environmental Protection Agency (U.S. EPA) indicate the risk of PVI is minimal at buildings that are separated by more than 6 feet (1.8 m) from a dissolved-phase source and 15 feet (4.6 m) from a light nonaqueous phase liquid (LNAPL) source. This vertical screening distance method is not, however, recommended at sites with leaded gasoline sources containing ethylene dibromide (EDB) because of a lack of field data to document EDB attenuation in the vadose zone. To help address this gap, depth-discrete soil-gas samples were collected at a leaded gasoline release site in Sobieski, Minnesota (USA). The maximum concentration of EDB in groundwater (175 μg/L) at the site was high relative to those observed at other leaded gasoline release sites. Soil gas was analyzed for EDB using a modification of U.S. EPA Method TO-14A that achieved analytical detection limits below the U.S. EPA Vapor Intrusion Screening Level (VISL) for EDB based on a 10−6 cancer risk (<0.16 μg/m3). Concentrations of EDB in soil gas above LNAPL reached as high as 960 μg/m3 and decreased below the VISL within a source-separation distance of 7 feet. This result coupled with BioVapor model predictions of EDB concentrations indicate that vertical screening distances recommended by regulatory agencies at PVI sites are generally applicable for EDB over the range of anticipated source concentrations and soil types at most sites.  相似文献   

9.
Petroleum liquids, referred to as light non‐aqueous phase liquids (LNAPLs), are commonly found beneath petroleum facilities. Concerns with LNAPLs include migration into clean soils, migration beyond property boundaries, and discharges to surface water. Single‐well tracer dilution techniques were used to measure LNAPL fluxes through 50 wells at 7 field sites. A hydrophobic tracer was mixed into LNAPL in a well. Intensities of fluorescence associated with the tracer were measured over time using a spectrometer and a fiber optic cable. LNAPL fluxes were estimated using observed changes in the tracer concentrations over time. Measured LNAPL fluxes range from 0.006 to 2.6 m/year with a mean and median of 0.15 and 0.064 m/year, respectively. Measured LNAPL fluxes are two to four orders of magnitude smaller than a common groundwater flux of 30 m/year. Relationships between LNAPL fluxes and possible governing parameters were evaluated. Observed LNAPL fluxes are largely independent of LNAPL thickness in wells. Natural losses of LNAPL through dissolution, evaporation, and subsequent biodegradation, were estimated using a simple mass balance, measured LNAPL fluxes in wells, and an assumed stable LNAPL extent. The mean and median of the calculated loss rates were found to be 24.0 and 5.0 m3/ha/year, respectively. Mean and median losses are similar to values reported by others. Coupling observed LNAPL fluxes to observed rates of natural LNAPL depletion suggests that natural losses of LNAPL may be an important parameter controlling the overall extent of LNAPL bodies.  相似文献   

10.
11.
1,4‐Dioxane is totally miscible in water, sequestering in vadose pore water that can serve as a source of long‐term groundwater contamination. Although some 1,4‐dioxane is removed by conventional soil vapor extraction (SVE), remediation is typically inefficient. SVE efficiency is hindered by low Henry’s Law constants at ambient temperature and redistribution to vadose pore water if SVE wells pull 1,4‐dioxane vapors across previously clean soil. It was hypothesized that heated air injection and more focused SVE extraction (“Enhanced SVE” or XSVE) could increase the efficiency of 1,4‐dioxane vadose treatment, and this new process was tested at former McClellan Air Force Base, CA. The XSVE system had four peripheral heated air injection wells surrounding a 6.1 m × 6.1 m × 9.1 m deep treatment zone with a central vapor extraction well. After 14 months of operation, soil temperatures reached as high as ~90 °C near the injection wells and the treatment zone was flushed with ~20,000 pore volumes of injected air. Post‐treatment sampling results showed reductions of ~94% in 1,4‐dioxane and ~45% in soil moisture. Given the simplicity of the remediation system components and the promising demonstration test results, XSVE has the potential to be a cost‐effective remediation option for vadose zone soil containing 1,4‐dioxane.  相似文献   

12.
Diminishing rates of subsurface volatile contaminant removal by soil vapor extraction (SVE) oftentimes warrants an in-depth performance assessment to guide remedy decision-making processes. Such a performance assessment must include quantitative approaches to better understand the impact of remaining vadose zone contamination on soil gas and groundwater concentrations. The spreadsheet-based Soil Vapor Extraction Endstate Tool (SVEET) software functionality has recently been expanded to facilitate quantitative performance assessments. The updated version, referred to as SVEET2, includes expansion of the input parameter ranges for describing a site (site geometry, source characteristics, etc.), an expanded list of contaminants, and incorporation of elements of the Vapor Intrusion Estimation Tool for Unsaturated-zone Sources software to provide soil gas concentration estimates for use in vapor intrusion evaluation. As part of the update, SVEET2 was used to estimate the impact of a tetrachloroethene (PCE) vadose zone source on groundwater concentrations, comparing SVEET2 results to field-observed values at an undisclosed site where SVE was recently terminated. PCE concentrations from three separate monitoring wells were estimated by SVEET2 to be within the range of 6.0–6.7 μg/L, as compared to actual field concentrations that ranged from 3 to 11 μg/L PCE. These data demonstrate that SVEET2 can rapidly provide representative quantitative estimates of impacts from a vadose zone contaminant source at field sites. In the context of the SVE performance assessment, such quantitative estimates provide a basis to support remedial and/or regulatory decisions regarding the continued need for vadose zone volatile organic compound remediation or technical justification for SVE termination, which can significantly reduce the cost to complete for a site.  相似文献   

13.
Waste disposal sites with volatile organic compounds (VOCs) frequently contain contaminants that are present in both the ground water and vadose zone. Vertical sampling is useful where transport of VOCs in the vadose zone may effect ground water and where steep vertical gradients in chemical concentrations are anticipated. Designs for combination ground water and gas sampling wells place the tubing inside the casing with the sample port penetrating the casing for sampling. This physically interferes with pump or sampler placement. This paper describes a well design that combines a ground water well with gas sampling ports by attaching the gas sampling tubing and ports to the exterior of the casing. Placement of the tubing on the exterior of the casing allows exact definition of gas port depth, reduces physical interference between the various monitoring equipment, and allows simultaneous remediation and monitoring in a single well. The usefulness and versatility of this design was demonstrated at the Idaho National Engineering and Environmental Laboratory (INEEL) with the installation of seven wells with 53 gas ports, in a geologic formation consisting of deep basalt with sedimentary interbeds at depths from 7.2 to 178 m below land surface. The INEEL combination well design is easy to construct, install, and operate.  相似文献   

14.
The present study proposes a methodology for predicting the vertical light nonaqueous-phase liquids (LNAPLs) distribution within an aquifer by considering the influence of water table fluctuations. The LNAPL distribution is predicted by combining (1) information on air/LNAPL and LNAPL/water interface elevations with (2) the initial elevation of the water table without LNAPL effect. Data used in the present study were collected during groundwater monitoring undertaken over a period of 4 months at a LNAPL-impacted observation well. In this study, the water table fluctuations raised the free LNAPL in the subsurface to an elevation of 206.63 m, while the lowest elevation was 205.70 m, forming a thickness of 0.93 m of LNAPL-impacted soil. Results show that the apparent LNAPL thickness in the observation well is found to be three times greater than the actual free LNAPL thickness in soil; a finding that agrees with previous studies reporting that apparent LNAPL thickness in observation wells typically exceeds the free LNAPL thickness within soil by a factor estimated to range between 2 and 10. The present study provides insights concerning the transient variation of LNAPL distribution within the subsurface and highlights the capability of the proposed methodology to mathematically predict the actual LNAPL thickness in the subsurface, without the need to conduct laborious field tests. Practitioners can use the proposed methodology to determine by how much the water table should be lowered, through pumping, to isolate the LNAPL-impacted soil within the unsaturated zone, which can then be subjected to in situ vadose zone remedial treatment.  相似文献   

15.
Detailed site investigations to assess potential inhalation exposure and risk to human health associated with the migration of petroleum hydrocarbon vapors from the subsurface to indoor air are frequently undertaken at leaking underground storage tank (UST) sites, yet documented occurrences of petroleum vapor intrusion are extremely rare. Additional assessments are largely driven by low screening‐level concentrations derived from vapor transport modeling that does not consider biodegradation. To address this issue, screening criteria were developed from soil‐gas measurements at hundreds of petroleum UST sites spanning a range of environmental conditions, geographic regions, and a 16‐year time period (1995 to 2011). The data were evaluated to define vertical separation (screening) distances from the source, beyond which, the potential for vapor intrusion can be considered negligible. The screening distances were derived explicitly from benzene data using specified soil‐gas screening levels of 30, 50, and 100 µg/m3 and nonparametric Kaplan‐Meier statistics. Results indicate that more than 95% of benzene concentrations in soil gas are ≤30 µg/m3 at any distance above a dissolved‐phase hydrocarbon source. Dissolved‐phase petroleum hydrocarbon sources are therefore unlikely to pose a risk for vapor intrusion unless groundwater (including capillary fringe) comes in contact with a building foundation. For light nonaqueous‐phase liquid (LNAPL) hydrocarbon sources, more than 95% of benzene concentrations in soil gas are ≤30 µg/m3 for vertical screening distances of 13 ft (4 m) or greater. The screening distances derived from this analysis are markedly different from 30 to 100 ft (10 to 30 m) vertical distances commonly found cited in regulatory guidance, even with specific allowances to account for uncertainty in the hydrocarbon source depth or location. Consideration of these screening distances in vapor intrusion guidance would help eliminate unnecessary site characterization at petroleum UST sites and allow more effective and sustainable use of limited resources.  相似文献   

16.
There are several key data gaps in our understanding of Natural Source Zone Depletion (NSZD) processes at sites impacted by light nonaqueous phase liquid (LNAPL), and quantifying NSZD rates can be challenging due to the inherent differences in measurement methods. In this study, four different NSZD measurement methods (oxygen influx measured by the Gradient Method, long-term carbon dioxide efflux measured with Carbon Traps, instantaneous carbon dioxide efflux measured with Dynamic Closed Chambers (DCC LI-COR), and the long-term heat flux from biodegradation measured by Thermal NSZD monitoring), as well as LNAPL composition and dissolved gas sampling, were applied at a site in Southern California. These techniques were used to evaluate key questions such as: (1) how do different NSZD rate measurement methods compare, and what causes variability in NSZD results?; (2) to what extent NSZD processes are occurring in LNAPL within the saturated zone?; and (3) how is NSZD related to LNAPL composition change over time? Carbon Traps and Thermal NSZD monitoring measurement methods provided the most consistent NSZD data at this geologically heterogeneous site, with two location average NSZD rates of 540 and 480 gal/acre/year, respectively. Overall, comparisons of NSZD rates between methods were challenging due to different measurement timeframes, significant temporal and spatial heterogeneity, and operational challenges with two of the NSZD methods. Finally, samples of subsurface LNAPL were collected for analysis in 2007 and 2016; results indicated that diesel-range constituents were already very degraded and anaerobic degradation of gasoline-range constituents was ongoing. A LNAPL depletion model (Douglas et al. 1996) applied to the measured LNAPL composition change appeared to greatly overestimate the amount of LNAPL depletion compared to the measured NSZD rate, but did provide an independent semiqualitative line of evidence that LNAPL was being depleted by active NSZD processes at the site.  相似文献   

17.
Sulfate reducing conditions are widely observed in groundwater plumes associated with petroleum hydrocarbon releases. This leads to sulfate depletion in groundwater which can limit biodegradation of hydrocarbons (usually benzene, toluene, ethylbenzene, xylenes [BTEX] compounds) and can therefore result in extended timeframes to achieve groundwater cleanup objectives by monitored natural attenuation. Under these conditions, sulfate addition to the subsurface can potentially enhance BTEX biodegradation and facilitate enhanced natural attenuation. However, a delivery approach that enables effective contact with the hydrocarbons and is able to sustain elevated and uniform sulfate concentrations in groundwater remains a key challenge. In this case study, sulfate addition to a groundwater plume containing predominantly benzene by land application of agricultural gypsum and Epsom salt is described. Over 4 years of groundwater monitoring data from key wells subjected to pilot‐scale and site‐wide land application events are presented. These are compared to data from pilot testing employing liquid Epsom salt injections as an alternate sulfate delivery approach. Sulfate land application, sulfate retention within the vadose zone, and periodic infiltration following ongoing precipitation events resulted in elevated sulfate concentrations (>150 mg/L) in groundwater that were sustained over 12 months between application events and stimulated benzene biodegradation as indicated by declines in dissolved benzene concentration, and compound‐specific isotope analysis data for carbon in benzene. Long‐term groundwater benzene concentration reductions were achieved in spite of periodic rebounds resulting from water table fluctuations across the smear zone. Land application of gypsum is a potentially cost‐effective sulfate delivery approach at sites with open, unpaved surfaces, relatively permeable geology, and shallow hydrocarbon impacts. However, more research is needed to understand the fate and persistence of sulfate and to improve the likelihood of success and effectiveness of this delivery approach.  相似文献   

18.
Soil vapor extraction (SVE) is a prevalent remediation remedy for volatile organic compound (VOC) contaminants in the vadose zone. To support selection of an appropriate condition at which SVE may be terminated for site closure or for transition to another remedy, an evaluation is needed to determine whether vadose zone VOC contamination has been diminished sufficiently to keep groundwater concentrations below threshold values. A conceptual model for this evaluation was developed for VOC fate and transport from a vadose zone source to groundwater when vapor‐phase diffusive transport is the dominant transport process. A numerical analysis showed that, for these conditions, the groundwater concentration is controlled by a limited set of parameters, including site‐specific dimensions, vadose zone properties, and source characteristics. On the basis of these findings, a procedure was then developed for estimating groundwater concentrations using results from the three‐dimensional multiphase transport simulations for a matrix of parameter value combinations and covering a range of potential site conditions. Interpolation and scaling processes are applied to estimate groundwater concentrations at compliance (monitoring) wells for specific site conditions of interest using the data from the simulation results. The interpolation and scaling methodology using these simulation results provides a far less computationally intensive alternative to site‐specific three‐dimensional multiphase site modeling, while still allowing for parameter sensitivity and uncertainty analyses. With iterative application, the approach can be used to consider the effect of a diminishing vadose zone source over time on future groundwater concentrations. This novel approach and related simulation results have been incorporated into a user‐friendly Microsoft® Excel®‐based spreadsheet tool entitled SVEET (Soil Vapor Extraction Endstate Tool), which has been made available to the public.  相似文献   

19.
An estimation of the volume of light nonaqueous phase liquids (LNAPL) is often required during site assessment, remedial design, or litigation. LNAPL volume can be estimated by a strictly empirical approach whereby core samples, distributed throughout the vertical and lateral extent of LNAPL, are analyzed for LNAPL content, and these data are then integrated to compute a volume. Alternatively, if the LNAPL has obtained vertical equilibrium, the thickness of LNAPL in monitoring wells can be used to calculate of LNAPL in monitoring wells can be used to calculate LNAPL volume at the well locations if appropriate soil and LNAPL properties can be estimated.
A method is described for estimating key soil and LNAPL properties by nonlinear regression of vertical profiles of LNAPL saturation. The methods is relatively fast, cost effective, and amenable to quantitative analysis of uncertainty. Optionally, the method allows statistical determination of best-fit values for the Van Genuchten capillary parameters (n, αoil-water and αoil-air), residual water saturation and ANAPL density. The sensitivity of the method was investigated by fitting field LNAPL saturation profiles and then determining the variation in misfit (mean square residual) as a function of parameter value for each parameter. Using field data from a sandy aquifer, the fitting statistics were found to be highly sensitive to LNAPL density, αoil-water and αoil-air moderately sensitive to the Van Genuchten n value, and weakly sensitive to residual water saturation. The regression analysis also provides information that can be used to estimate uncertainty in the estimated parameters, which can then be used to estimate uncertainty in calculated values of specific volume.  相似文献   

20.
We compare two methods for estimating the natural source zone depletion (NSZD) rate at fuel release sites that occurs by groundwater flow through the source zone due to dissolution and transport of biodegradation products. Dissolution is addressed identically in both methods. The “mass budget method”, previously proposed and applied by others, estimates the petroleum hydrocarbon biodegradation rate based on dissolved electron acceptor delivery and dissolved biodegradation product removal by groundwater flow. The mass budget method relies on assumed stoichiometry for the degradation reactions and differences in concentrations of dissolved species (oxygen, nitrate, sulfate, reduced iron, reduced manganese, nonvolatile dissolved organic carbon, methane) at monitoring locations upgradient and downgradient of the source zone. We illustrate a refinement to account for degradation reactions associated with loss of reduced iron from solution. The “carbon budget method,” a simplification of approaches applied by others, addresses carbon‐containing species in solution or lost from solution (precipitated) and does not require assumptions about stoichiometry or information about electron acceptors. We apply both methods to a fuel release site with unusually detailed monitoring data and discuss applicability to more typical and less thoroughly monitored sites. The methods, as would typically be applied, yield similar results but have different constraints and uncertainties. Overall, we conclude that the carbon budget method has greater practical utility as it is simpler, requires fewer assumptions, accounts for most iron‐reducing reactions, and does not include CO2 that escapes from the saturated to the unsaturated zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号