共查询到20条相似文献,搜索用时 15 毫秒
1.
— A numerical fracture flow simulation based on the lubrication approximation is used to investigate the influence of roughness on the flow inside a rough fracture, at low Reynolds number. Facing surfaces are described as self-affine topographies with identical roughness magnitude. Resolution of the Reynolds equation is achieved using two distinct numerical schemes, with consistency. Fracture closure is studied assuming perfect plastic contact between facing surfaces. Long-range correlations are shown to exist in the local aperture field due to the fracture geometry and subsequently in the local fluxes inside the fracture. Flow channeling is the result of these correlations in terms of spatial distribution of the flow, and is responsible for either flow-enhancing or flow-inhibiting behavior of the fracture. Matching between the two surfaces at scales larger than a mismatch scale is studied. The mismatch scale is the upper limit scale for the local apertures scale invariance. It appears to control flow channeling and the related dispersion of the possible behaviors over a large statistics of fractures with identical statistical features. Hydraulic anisotropy of a given fracture is investigated: the dependence of the fracture transmittivity on the pressure drop orientation is proved to be sinusoidal, with an amplitude that is controlled by the mismatch scale. 相似文献
2.
A new variational method is proposed for grid generation in numerical solution of groundwater flow problems requiring imposition of constraints on the space step. The proposed procedure utilizes the penalty function method for the solution of an optimization problem with inequality constraints. The efficiency of the method is illustrated by the generation of solution-dependent grids, which allow such constraints to be satisfied for complex-geometry domains. 相似文献
3.
Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW‐2005 and a kinematic‐wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three‐dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow‐through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area. 相似文献
4.
In most practical situations, the upper part of a geological section consists of loose sediments, in which heat transfer cannot be described as a purely conductive process. To investigate such situations a one-dimensional numerical model of terrestrial temperature field formation under the combined influence of vertical groundwater filtration and ground surface temperature changes has been developed. The model allows one to consider the perturbation of heat flow interval values resulting from short- and long-period temperature waves propagating into permeable rocks under conditions of advective heat transfer, caused by vertical groundwater filtration. The results show that temperature profiles and interval heat flow values are sensitive to both the paleoclimatic history and the rate of groundwater filtration. The latter plays the prevailing role in the variations of geothermal field parameters, especially within the uppermost part of the loose sediments in unconfined aquifers. The problem was solved for a permeable layer, underlaid by an impermeable layer. This schematisation of water exchange is the typically accepted for hydrogeological analysis. Even at very low rates of filtration the intensity of this effect is enhanced substantially for long-period variations. In the extreme case (for periods of temperature variations of the order of 100,000 years) at typical rates of filtration within the permeable layer, an almost gradient-free zone can be formed down to depths of a few hundred metres. For the case of upward filtration, on the contrary, the influence of climatic variations on the terrestrial temperature field becomes substantially attenuated. 相似文献
5.
Numerical Analysis of Groundwater Ridging Processes Considering Water‐Air Flow in a Hillslope 下载免费PDF全文
In this study, a water‐air two‐phase flow model was employed to investigate the formation, extension, and dissipation of groundwater ridging induced by recharge events in a hypothetical hillslope‐riparian zone, considering interactions between the liquid and gas phases in soil voids. The simulation results show that, after a rain begins, the groundwater table near the stream is elevated instantaneously and significantly, thereby generating a pressure gradient driving water toward both the stream (the discharge of groundwater to the stream) and upslope (the extension of groundwater ridging into upslope). Meanwhile, the airflow upslope triggered by the advancing wetting front moves downward gradually. Therefore, the extension of groundwater ridging into upslope and the downward airflow interact within a certain region. After the rain stops, groundwater ridging near the stream declines quickly while the airflow in the lower part of upslope is still moving into the hillslope. Thus, the airflow upslope mitigates the dissipation of groundwater ridging. Additionally, the development of groundwater ridging under different conditions, including rain intensity, intrinsic permeability, capillary fringe height, and initial groundwater table, was analyzed. Changes in intrinsic permeability affect the magnitude of groundwater ridging near the stream, as well as the downward speed of airflow, thereby generating highly complex responses. The capillary fringe is not a controlling factor but an influence factor on the formation of groundwater ridging, which is mainly related to the antecedent moisture. It was demonstrated that groundwater ridging also occurs where an unsaturated zone occurs above the capillary fringe with a subsurface lateral flow. 相似文献
6.
7.
8.
9.
Streamline simulation in groundwater flow modeling is a time-consuming process when a large number of streamlines are analyzed. We develop a parallelization method on graphics processing units (GPUs) for the semi-analytical particle tracking algorithm developed by Pollock (1988). Compute Unified Device Architecture was used to implement the parallel method. Forward and backward tracking of a streamline is handled by an individual thread. A GPU includes a grid of blocks where a block handles 32 threads. We use multi-GPUs to accelerate streamline tracking in a flow model with millions of particles. The method was examined to simulate streamlines for identifying three-dimensional (3D) flow systems in a Tóthian basin. The speedup exceeds 1000 when 8 NVIDIA GPUs are used to simulate 5 million or more streamlines. 相似文献
10.
P. A. Kiselev 《Water Resources》2005,32(5):505-507
The direction of motion of groundwater with a varying salinity is shown to depend on the spatial position of equal-salinity surfaces (planes), along the slopes of which groundwater motion takes place. The equations required for the solution of such problems are given. The procedure is exemplified by estimating the direction of groundwater motion in the western part of the Moscow Artesian Basin. 相似文献
11.
Martí Bayer-Raich Anthony Credoz Jordi Guimerà Salvador Jordana Diego Sampietro Jordi Font-Capó Nathalie Nief Matthieu Grossemy 《Ground water》2019,57(4):525-533
Currently, monitoring tools can be deployed in observation boreholes to better assess groundwater flow, flux of dissolved contaminants and their mass discharge in an aquifer. The relationship between horizontal water velocity in observation boreholes and Darcy fluxes in the surrounding aquifer has been studied for natural flow conditions (i.e., no pumping). Interpretation of measurements taken with dilution tests, the colloidal borescope, the Heat Pulse Flowmeter, and other techniques require the conversion of observed borehole velocity u to aquifer Darcy flux q∞ . This conversion is typically done through a proportionality factor α = u/q∞ . In experimental studies as well as in theoretical developments, reported values of α vary almost three orders of magnitude (from 0.5 to 10). This large variability in reported values of α could be explained by: (1) unclear distinction between Darcy flux and water seepage velocity, (2) unclear definition of water velocity in the borehole, (3) effects of well screen and the presence of the measurement device itself on the observable velocities, and (4) hydraulic conditions in the borehole annulus. We address (1), (2) from a conceptual/theoretical perspective, and (3) by means of numerical simulations. We show that issue (1) in low porosity aquifers can yield to order-of-magnitude discrepancies in estimates of q∞ ; (2) may result in discrepancies of up to 50%, and (3) can cause differences up to 20% of water velocity in the borehole void space compared to the theoretical case of an open borehole. 相似文献
12.
预制空心板受火后力学性能的试验研究 总被引:1,自引:0,他引:1
为比较不同受火时间后预制空心板剩余承载力、跨中挠度和破坏形态的异同,进行了6块预制空心板受火后力学性能的对比试验研究,其中3块为未受火的对比试件,另3块为板底分别受火23、38、53min的试件。受火试验结果表明,各试件在升温过程中的跨中挠度随受火时间增加而显著增加,熄火自然冷却后,跨中挠度大部分可恢复。加载试验结果表明,对比试件和受火试件的最终破坏模式均为弯曲破坏;随着受火时间延长,试件开裂荷载和破坏荷载均有所降低,且破坏荷载与受火时间大致呈线性关系;受火试件初始弯曲刚度较对比试件明显降低,相同荷载作用下,受火试件受拉边缘拉应变和受压边缘压应变,均明显大于对比试件。 相似文献
13.
14.
采用有限元软件ABAQUS,以锈蚀率(0%、5%、10%、15%和20%)为变量,对5根钢筋混凝土柱的力学性能进行了数值模拟,研究各试件的滞回性能、骨架曲线、延性及耗能能力,分析钢筋锈蚀率对承载力、延性、耗能和塑性铰转动能力的影响。研究结果表明:模拟分析得到的锈蚀钢筋混凝土柱的强度和变形与试验结果吻合较好,建立的有限元模型可用于锈蚀钢筋混凝土柱的力学性能分析;混凝土开裂前,锈蚀构件的力学性能基本与未锈蚀构件相同,混凝土开裂后,构件的承载力、屈服荷载、极限位移、延性等均随钢筋锈蚀率的增大而降低;轻度锈蚀构件的滞回性能和破坏形式与未锈蚀构件类似,随着钢筋锈蚀率逐渐增大,滞回环的饱满程度降低,“捏拢”现象严重,滞回曲线由“弓形”逐渐发展成“反S形”,耗能能力降低,破坏形式趋于脆性破坏,位移延性系数、平均耗能系数等指标逐渐下降。 相似文献
15.
Various subsurface flow systems exhibit a combination of small‐scale to large‐scale anisotropy in hydraulic conductivity (K). The large‐scale anisotropy results from systematic trends (e.g., exponential decrease or increase) of K with depth. We present a general two‐dimensional solution for calculation of topography‐driven groundwater flow considering both small‐ and large‐scale anisotropy in K. This solution can be applied to diverse systems with arbitrary head distribution and geometry of the water table boundary, such as basin or hyporheic flow. In a special case, this solution reduces to the well‐known Tóth model of uniform isotropic basin. We introduce an integral measure of flushing intensity that quantifies flushing at different depths. Using this solution, we simulate heads and streamlines and provide analyses of flow structure in the flow domain, relevant to basin analyses or hyporheic flow. It is shown that interactions between small‐scale anisotropy and large‐scale anisotropy strongly control the flow structure. In the classic Tóth flow model, the flushing intensity curves exhibit quasi‐exponential decrease with depth. The new measure is capable of capturing subtle changes in the flow structure. Our study shows that both small‐ and large‐scale anisotropy characteristics have substantial effects that need to be integrated into analysis of topography‐driven flow. 相似文献
16.
为分析地下水的存在对地震动参数的影响,以3个实际场地作为计算土层,2条真实的地震波记录作为输入地震动,分别计算不含地下水工况和饱含地下水工况的土层地震反应。其中,不含地下水工况使用单相介质模型,饱含地下水工况使用双相介质模型,算法均使用有限差分方法,人工边界使用透射边界。根据得到的加速度时程,提取它们的峰值加速度和反应谱数据,经过对比分析,得出以下结论:(1)含地下水场地的地表峰值加速度要明显小于不含地下水场地的地表峰值加速度;(2)含地下水场地的地表加速度反应谱要大于不含地下水场地的反应谱值;(3)由于地下水的存在,场地放大系数反应谱特征周期向长周期改变,反应谱平台值变大。 相似文献
17.
形状记忆合金金属橡胶(Shape Memory Alloy Metal Rubber,SMAMR)是在金属橡胶基础上改进的一种新型减振材料,在减震(振)器发生塑性变形之后,形状记忆合金金属橡胶可以通过加热诱发金属橡胶中的形状记忆合金丝发生相变,从而达到变形自回复的目的。本文通过对8个金属橡胶试件的静力和动力压缩试验研究发现,形状记忆合金金属橡胶力学性能稳定,并且形状记忆合金金属橡胶减震(振)器的塑性变形可以通过升温进行自回复,而不需要更换新的减震设备。 相似文献
18.
采用地震工程开源模拟软件OpenSees(Open System for Earthquake Engineering Simulation)对CFRP(Carbon Fiber Reinforced Polymer,碳纤维增强复合材料)布加固高强钢筋混凝土方柱的抗震性能进行了数值分析。采用Steel02Material和Concrete02Material材料本构模型模拟了CFRP布加固高强混凝土方柱的抗震性能;在此基础上,进一步研究了轴压比和剪跨比这2个因素对试件抗震性能的影响。将所得数值分析结果与相同条件下的试验结果对比后发现:基于Steel02 Material和Concrete02 Material材料本构,利用OpenSees,可以较好地模拟CFRP布加固高强混凝土方柱的抗震性能,并且与试验结果(滞回曲线、骨架曲线、水平承载力和位移延性系数)能够较好地吻合,从而说明该数值分析方法还可以准确地反映出轴压比和剪跨比对高强混凝土柱抗震性能的影响规律。 相似文献
19.
Tyler G. Sproule Glenn A. Spinelli John L. Wilson Michael D. Fort Peter S. Mozley Jared Ciarico 《Ground water》2021,59(3):396-409
Fault zones are an important control on fluid flow, affecting groundwater supply, contaminant migration, and carbon storage. However, most models of fault seal do not consider fault zone cementation, despite the recognition that it is common and can dramatically reduce permeability. In order to study the field-scale hydrogeologic effects of fault zone cementation, we conducted a series of aquifer pumping tests in wells installed within tens of meters of the variably cemented Loma Blanca Fault, a normal fault in the Rio Grande Rift. In the southern half of the study area, the fault zone is cemented by calcite; the cemented zone is 2-8 m wide. In the center of the study area, the cemented fault zone is truncated at a buttress unconformity that laterally separates hydrostratigraphic units with a ∼40X difference in permeability. The fault zone north of the unconformity is not cemented. Constant rate pumping tests indicate that where the fault is cemented, it is a barrier to groundwater flow. This is an important demonstration that a fault with no clay in its core and similar sediment on both sides can be a barrier to groundwater flow by virtue of its cementation; most conceptual models for the hydrogeology of faults would predict that it would not be a barrier to groundwater flow. Additionally, the lateral permeability heterogeneity across the unconformity imposes another important control on the local flow field. This permeability discontinuity acts as either a no-flow boundary or a constant head boundary, depending on the location of pumping. 相似文献