首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo‐Wilcox Aquifer (250‐1200 m depth range) and Queen City‐Sparta Aquifer (150‐900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ13Cmethane (>?55‰) and δDmethane (>?180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ13Cmethane and δDmethane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs.  相似文献   

2.
Clusters of elevated methane concentrations in aquifers overlying the Barnett Shale play have been the focus of recent national attention as they relate to impacts of hydraulic fracturing. The objective of this study was to assess the spatial extent of high dissolved methane previously observed on the western edge of the play (Parker County) and to evaluate its most likely source. A total of 509 well water samples from 12 counties (14,500 km2) were analyzed for methane, major ions, and carbon isotopes. Most samples were collected from the regional Trinity Aquifer and show only low levels of dissolved methane (85% of 457 unique locations <0.1 mg/L). Methane, when present is primarily thermogenic (δ13C 10th and 90th percentiles of ?57.54 and ?39.00‰ and C1/C2+C3 ratio 10th, 50th, and 90th percentiles of 5, 15, and 42). High methane concentrations (>20 mg/L) are limited to a few spatial clusters. The Parker County cluster area includes historical vertical oil and gas wells producing from relatively shallow formations and recent horizontal wells producing from the Barnett Shale (depth of ~1500 m). Lack of correlation with distance to Barnett Shale horizontal wells, with distance to conventional wells, and with well density suggests a natural origin of the dissolved methane. Known commercial very shallow gas accumulations (<200 m in places) and historical instances of water wells reaching gas pockets point to the underlying Strawn Group of Paleozoic age as the main natural source of the dissolved gas.  相似文献   

3.
There is concern about adverse impacts of natural gas (primarily methane) production on groundwater quality; however, data on trace element concentrations are limited. The objective of this study was to compare the distribution of trace elements in groundwater samples with and without dissolved methane in aquifers overlying the Barnett Shale (Hood and Parker counties, 207 samples) and the Haynesville Shale (Panola County, 42 samples). Both shales have been subjected to intensive hydraulic fracturing for gas production. Well clusters with high dissolved methane were previously found in these counties and are thought to be of natural origin. Overall, groundwater in these counties is of excellent quality with typically low elemental concentrations. Several statistical analyses strongly suggest that most trace element concentrations, generally at low background levels, are no higher and even reduced when dissolved methane is present. In addition, trace element concentrations are not correlated with distance to gas wells. The reduction in trace element concentrations is attributed to anaerobic microbial degradation of methane, is associated with a higher pH (>8.5), and, likely, with precipitation of carbonates and pyrite and formation of clays. Trace and other elements are likely incorporated within the precipitating mineral crystalline network or sorbed. High pH values are found throughout these high‐methane clusters (e.g., Parker‐Hood cluster), even in subregions where methane is not present, which is consistent with a pervasive natural origin of dissolved methane rather than a limited gas well source.  相似文献   

4.
Environmental concerns regarding the potential for drinking water contamination in shallow aquifers have accompanied unconventional energy development in the northern Appalachian Basin. These activities have also raised several critical questions about the hydrogeological parameters that control the naturally occurring presence and migration of hydrocarbon gases in shallow aquifers within petroliferous basins. To interrogate these factors, we analyzed the noble gas, dissolved ion, and hydrocarbon gas (molecular and isotopic composition) geochemistry of 98 groundwater samples from south‐central New York. All samples were collected ?1km from unconventional drilling activities and sample locations were intentionally targeted based on their proximity to various types of documented fault systems. In agreement with studies from other petroliferous basins, our results show significant correlations between elevated levels of radiogenic [4He], thermogenic [CH4], and dissolved ions (e.g., Cl, Br, Sr, Ba). In combination, our data suggest that faults have facilitated the transport of exogenous hydrocarbon‐rich brines from Devonian source rocks into overlying Upper Devonian aquifer lithologies over geologic time. These data conflict with previous reports, which conclude that hydrodynamic focusing regulates the occurrence of methane and salt in shallow aquifers and leads to elevated levels of these species in restricted flow zones within valley bottoms. Instead, our data suggest that faults in Paleozoic rocks play a fundamental role in gas and brine transport from depth, regulate the distribution of their occurrence in shallow aquifers, and influence the geochemistry of shallow groundwater in this petroliferous basin.  相似文献   

5.
朱珍香  杨军 《湖泊科学》2018,30(2):567-580
水库是福建重要的水资源.通过2013-2015年遥感影像结合Google Earth和天地图提取福建水库3353座,分布在81个县区,总面积647.51 km2,约占全省土地面积的0.5%;其中面积≤1 km2水库3248座,总面积197.16 km2,面积1 km2水库105座,总面积450.35 km2.基于经验公式估算总蓄水量188.18亿m3,其中小型水库3078座(91.80%),蓄水总量37.06亿m3(19.69%),大中型水库275座(8.20%),蓄水总量151.12亿m3(80.31%).从空间分布格局来看,福建水库水资源空间分布不均,沿海六市水库密度大于三个内陆市,大中型水库主要分布于福建西北部,蓄水量呈现西北多、东南少的特点.单位陆地面积水库数量沿海城市县区均多于内陆,而单位人口水库数量则相反;单位面积水库蓄水量沿海与内陆差异不大,而人均蓄水量则沿海大部分县区远小于内陆.仅以水库作为供水水源,不能满足沿海地区用水,但内陆地区供水充足.水库蓄水对河流水体的平均滞留时间为0.053~0.341 a,除晋江流域受水库蓄水强烈影响外,其他流域受水库中等程度影响.  相似文献   

6.
The expanding use of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations has increased public concern about potential impacts on the environment, especially on shallow drinking water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Berea Sandstone and the Rogersville Shale. To assess baseline groundwater chemistry and evaluate methane detected in groundwater overlying the Berea and Rogersville plays, we sampled 51 water wells and analyzed the samples for concentrations of major cations and anions, metals, dissolved methane, and other light hydrocarbon gases. In addition, the stable carbon and hydrogen isotopic composition of methane (δ13C‐CH4 and δ2H‐CH4) was analyzed for samples with methane concentration exceeding 1 mg/L. Our study indicates that methane is a relatively common constituent in shallow groundwater in eastern Kentucky, where methane was detected in 78% of the sampled wells (40 of 51 wells) with 51% of wells (26 of 51 wells) exhibiting methane concentrations above 1 mg/L. The δ13C‐CH4 and δ2H‐CH4 ranged from ?84.0‰ to ?58.3‰ and from ?246.5‰ to ?146.0‰, respectively. Isotopic analysis indicated that dissolved methane was primarily microbial in origin formed through CO2 reduction pathway. Results from this study provide a first assessment of methane in the shallow aquifers in the Berea and Rogersville play areas and can be used as a reference to evaluate potential impacts of future horizontal drilling and hydraulic fracturing activities on groundwater quality in the region.  相似文献   

7.
In the eastern edge of the Ordos Basin, the coalbed methane (CBM) development has not made substantial progress in the past 20 years, and the origin of gas can be used to guide the CBM block-selecting and development. Based on the 37 sets of carbon isotope data, the origin of the gas was determined and the origin mechanism was studied in this work. The δ 13CPDB of methane ranges from ?70.5‰ to ?36.19‰ in the eastern edge in the Ordos Basin and the value becomes heavier from the north to the south. The secondary biogenic gas and the thermogenic gas are mixed in the shallow area and the thermogenic gas occurs in the medium and deep levels. The phenomenon is controlled mainly by the distribution of coal rank and hydrodynamics. Firstly, based on the relationship between China coal rank and methane δ 13CPDB, the medium rank coal is dominant in the eastern edge of the Ordos Basin, and the mixture of the secondary biogenic gas and the thermogenic gas is formed in the coal of vitrinite reflectant ratio (R max) between 0.5% and 2.0% if there is appropriate hydrodynamics; at the same time, because of the shallow burial depth, and the well-developed coal outcrop, meteoric water and other surface water carrying bacteria recharge the coal reservoir, metabolize the organic compounds at a relatively low temperature, and generate methane and carbon dioxide. Wherever the trapping mechanisms occur in the coal, such as Liulin and Hancheng, modern gas content should be high.  相似文献   

8.
Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale‐gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near‐pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction. We conducted a comprehensive pre‐industrial evaluation of water quality and gas geochemistry in 22 groundwater samples across the Karoo Basin, including dissolved ions, water isotopes, hydrocarbon molecular and isotopic composition, and noble gases. Methane‐rich samples were associated with high‐salinity, NaCl‐type groundwater and elevated levels of ethane, 4He, and other noble gases produced by radioactive decay. This endmember displayed less negative δ13C‐CH4 and evidence of mixing between thermogenic natural gases and hydrogenotrophic methane. Atmospheric noble gases in the methane‐rich samples record a history of fractionation during gas‐phase migration from source rocks to shallow aquifers. Conversely, methane‐poor samples have a paucity of ethane and 4He, near saturation levels of atmospheric noble gases, and more negative δ13C‐CH4; methane in these samples is biogenic and produced by a mixture of hydrogenotrophic and acetoclastic sources. These geochemical observations are consistent with other basins targeted for unconventional energy extraction in the USA and contribute to a growing data base of naturally occurring methane in shallow aquifers globally, which provide a framework for evaluating environmental concerns related to unconventional energy development (e.g., stray gas).  相似文献   

9.
Analysis of dissolved light hydrocarbon gas concentrations (primarily methane and ethane) in water supply wells is commonly used to establish conditions before and after drilling in areas of shale gas and oil extraction. Several methods are currently used to collect samples for dissolved gas analysis from water supply wells; however, the reliability of results obtained from these methods has not been quantified. This study compares dissolved methane and ethane concentrations measured in groundwater samples collected using three sampling methods employed in pre‐ and post‐drill sampling programs in the Appalachian Basin. These include an open‐system collection method where 40 mL volatile organic analysis (VOA) vials are filled directly while in contact with the atmosphere (Direct‐Fill VOA) and two alternative methods: (1) a semi‐closed system method whereby 40 mL VOA vials are filled while inverted under a head of water (Inverted VOA) and (2) a relatively new (2013) closed system method in which the sample is collected without direct contact with purge water or the atmosphere (IsoFlask®). This study reveals that, in the absence of effervescence, the difference in methane concentrations between the three sampling methods was relatively small. However, when methane concentrations equaled or exceeded 20 mg/L (the approximate concentration at which effervescence occurs in the study area), IsoFlask® (closed system) samples yielded significantly higher methane concentrations than Direct‐Fill VOA (open system) samples, and Inverted VOA (semi‐closed system) samples yielded lower concentrations. These results suggest that open and semi‐closed system sample collection methods are adequate for non‐effervescing samples. However, the use of a closed system collection method provides the most accurate means for the measurement of dissolved hydrocarbon gases under all conditions.  相似文献   

10.
Experiments were made on 58 sediment samples from four sites(1244,1245,1250 and 1251) of ODP204 at five temperature points(25,35,45,55 and 65℃) to simulate methane production from hydrate-bearing sediments.Simulation results from site 1244 show that the gas components consist mainly of methane and carbon dioxide,and heavy hydrocarbons more than C2+ cannot be detected.This site also gives results,similar to those from the other three,that the methane production is controlled by experimental temperatures,gene...  相似文献   

11.
We investigated greenhouse gas emissions (CO2, CH4, and N2O) from reservoirs located across an altitude gradient in Switzerland. These are the first results of greenhouse gas emissions from reservoirs at high elevations in the Alps. Depth profiles were taken in 11 reservoirs located at different altitudes between the years 2003 and 2006. Diffusive trace gas emissions were calculated using surface gas concentrations, wind speeds and transfer velocities. Additionally, methane entering with the inflowing water and methane loss at the turbine was assessed for a subset of the reservoirs. All reservoirs were emitters of carbon dioxide and methane with an average of 970?±?340?mg?m?2?day?1 (results only from four lowland and one subalpine reservoir) and 0.20?±?0.15?mg?m?2?day?1, respectively. One reservoir (Lake Wohlen) emitted methane at a much higher rate (1.8?±?0.9?mg?m?2?day?1) than the other investigated reservoirs. There was no significant difference in methane emissions across the altitude gradient, but average dissolved methane concentrations decreased with increasing elevation. Only lowland reservoirs were sources for N2O (72?±?22???g?m?2?day?1), while the subalpine and alpine reservoirs were in equilibrium with atmospheric concentrations. These results indicate reservoirs from subalpine/alpine regions to be only minor contributors of greenhouse gases to the atmosphere compared to other reservoirs.  相似文献   

12.
Dipole sonic logs acquired in near‐vertical pilot wells and over the build section of nearby horizontal production wells are inverted to determine the five elastic constants characterizing a transversely isotropic formation, under the assumption of lateral homogeneity. Slowness values from a single depth in the vertical well are combined with data from the corresponding depth in the deviated well; these data are then inverted using nonlinear optimization to derive the five elastic constants. The technique is demonstrated on data from the Haynesville Shale in Texas. Estimates of the anisotropy are in line with a priori expectations; the Thomsen ε and γ parameters are well correlated and generally possess positive anellipticity, with Thomsen's ε greater than Thomsen's δ.  相似文献   

13.
Water and gas samples were collected from (1) nine shallow groundwater aquifers overlying Marcellus Shale in north‐central West Virginia before active shale gas drilling, (2) wells producing gas from Upper Devonian sands and Middle Devonian Marcellus Shale in southwestern Pennsylvania, (3) coal‐mine water discharges in southwestern Pennsylvania, and (4) streams in southwestern Pennsylvania and north‐central West Virginia. Our preliminary results demonstrate that the oxygen and hydrogen isotope composition of water, carbon isotope composition of dissolved inorganic carbon, and carbon and hydrogen isotope compositions of methane in Upper Devonian sands and Marcellus Shale are very different compared with shallow groundwater aquifers, coal‐mine waters, and stream waters of the region. Therefore, spatiotemporal stable isotope monitoring of the different sources of water before, during, and after hydraulic fracturing can be used to identify migrations of fluids and gas from deep formations that are coincident with shale gas drilling.  相似文献   

14.
Technological improvements in remote sensing and geographic information systems have demonstrated the abundance of artificially constructed water bodies across the landscape. Although research has shown the ubiquity of small ponds globally, and in the southeastern United States in particular, their cumulative impact in terms of evaporative alteration is less well quantified. The objectives of this study are to examine the hydrologic and evaporative importance of small artificial water bodies in the Upper Oconee watershed in the northern Georgia Piedmont, USA, by mapping their locations and modelling these small reservoirs using the Soil Water Assessment Tool. Comparative Soil Water Assessment Tool models were run with and without the inclusion of small reservoir surface area and volume. The models used meteorological inputs from 1990–2013 to represent years with drought, high precipitation, and moderate precipitation for both the calibration and evaluation periods. Statistical comparison of streamflow indicated that the calibration methodology produced results where the default model simulation without reservoirs fit observed flows more closely than the modified model with small reservoirs included (e.g., Nash–Sutcliffe efficiency of 0.72 vs. 0.64, r2 of 0.73 vs. 0.66, and percent bias of 11.4 vs. 21.6). In addition, Penman–Monteith, Hargreaves, and Priestley–Taylor evapotranspiration equations were used to estimate actual evaporation from 2,219 small water bodies identified throughout the 1,936.8 km2 watershed. Depending on the evaporation equation used, water bodies evaporated an average of 0.03–0.036 km3/year for the period 2003–2013. Using Penman–Monteith further, if the reservoirs were not considered and average actual evapotranspiration rates from the rest of the basin were applied, only 0.016 km3 of water would have left the basin as a result of evapotranspiration. This finding suggests construction of small reservoirs increased evaporation by an average of 0.017 km3 per year (approximately 46,500 m3/day). As the construction of small reservoirs continues and high resolution image data used to map these water bodies becomes increasingly available, watershed models that evolve to address the cumulative impacts of small water bodies on evaporation and other hydrologic processes will have greater potential to benefit the water resource management community.  相似文献   

15.
The Kockatea Shale is a proposed target for unconventional gas development in the North Perth Basin in Western Australia. This research is concerned with correlating the extent of thermogenic gas leakage into deep aquifers overlying the Kockatea Shale with an assessment of how close the formation is to mechanical failure. Data from two petroleum exploration wells located approximately 20 km apart were considered. Both have comparable stratigraphy; however, they differ by their local tectonic setting. The stress regime is strike slip at Arrowsmith 2 well and for an assumed hydrostatic pressure the Kockatea Shale is not close to frictional limits. Minor amounts of methane and trace amounts of short chain alkanes are leaking into deep aquifers pre-development. In contrast, the stress regime is strike slip/normal at Woodada Deep well and the Kockatea Shale is close to frictional limits. Significant volumes of gas including methane and condensate are leaking into deep aquifers. The sealing capacity of the Kockatea Shale as evidenced by the variation in gas concentration in aquifers at the two sites indicates the formation is sensitive to stress. Additionally given the low permeability of the regional Kockatea Shale seal, it is assumed that at both locations gas leakage is via critically stressed faults. Deep aquifers proximal to the shale gas target are low salinity (<5000 ppm NaCl eq.) at Woodada Deep well and are saline at Arrowsmith 2 well. Based on this assessment, it is suggested that hydraulic fracture stimulation at the Woodada Deep well poses a significant environmental risk.  相似文献   

16.
青海湖最近25年变化的遥感调查与研究   总被引:23,自引:6,他引:23  
沈芳  匡定波 《湖泊科学》2003,15(4):289-296
青海湖是我国最大的内陆水体,它及其流域的生态环境近来一直倍受广泛关注.其水位下降、湖水面积缩小、湖体分离等更是研究的热点问题.本文针对这些问题展开遥感调查与研究,收集了多时相、多种信息源的影像数据;分析了1975年至2000年25年以来湖泊的变迁及成因,湖岸变化及湖体分离状况;用遥感方法反推25年以来湖水位的变化;计算了1975、2000年两个年份的湖水面积,并遥感分析了湖水面积萎缩的原因.此外,对青海湖进行了实地调查与水深测量,建立了该湖泊水深反演模型.  相似文献   

17.
On 27 June 2015, a moderate earthquake with magnitude Mb 5.2 struck the Gulf of Aqaba near Nuweiba City. This event was instrumentally recorded by the Egyptian National Seismic Network (ENSN) and many other international seismological centres. The event was felt in all the cities on the Gulf of Aqaba, as well as Suez City, Hurghada City, the greater Cairo Metropolitan Area, Israel, Jordan and the north-western part of Saudi Arabia. No casualties were reported, however. Approximately 95 aftershocks with magnitudes ranging from 0.7 to 4.2 were recorded by the ENSN following the mainshock. In the present study, the source characteristics of both the mainshock and the aftershocks were estimated using the near-source waveform data recorded by the very broadband stations of the ENSN, and these were validated by the P-wave polarity data from short period stations. Our analysis reveals that an estimated seismic moment of 0.762?×?1017 Nm was released, corresponding to a magnitude of Mw 5.2, a focal depth of 14 km, a fault radius of 0.72 km and a rupture area of approximately 1.65 km2. Monitoring the sequence of aftershocks reveals that they form a cluster around the mainshock and migrated downwards in focal depth towards the west. We compared the results we obtained with the published results from the international seismological centres. Our results are more realistic and accurate, in particular with respect to the epicenteral location, magnitude and fault plane solution which are in accordance with the hypocentre distribution of the aftershocks.  相似文献   

18.
The recent boom in shale gas development in the Marcellus Shale has increased interest in the methods to distinguish between naturally occurring methane in groundwater and stray methane associated with drilling and production operations. This study evaluates the relationship between natural methane occurrence and three principal environmental factors (groundwater redox state, water type, and topography) using two pre‐drill datasets of 132 samples from western Pennsylvania, Ohio, and West Virginia and 1417 samples from northeastern Pennsylvania. Higher natural methane concentrations in residential wells are strongly associated with reducing conditions characterized by low nitrate and low sulfate ([NO3?] < 0.5 mg/L; [SO42?] < 2.5 mg/L). However, no significant relationship exists between methane and iron [Fe(II)], which is traditionally considered an indicator of conditions that have progressed through iron reduction. As shown in previous studies, water type is significantly correlated with natural methane concentrations, where sodium (Na) ‐rich waters exhibit significantly higher (p<0.001) natural methane concentrations than calcium (Ca)‐rich waters. For water wells exhibiting Na‐rich waters and/or low nitrate and low sulfate conditions, valley locations are associated with higher methane concentrations than upland topography. Consequently, we identify three factors (“Low NO3? & SO42?” redox condition, Na‐rich water type, and valley location), which, in combination, offer strong predictive power regarding the natural occurrence of high methane concentrations. Samples exhibiting these three factors have a median methane concentration of 10,000 µg/L. These heuristic relationships may facilitate the design of pre‐drill monitoring programs and the subsequent evaluation of post‐drill monitoring results to help distinguish between naturally occurring methane and methane originating from anthropogenic sources or migration pathways.  相似文献   

19.
Data of integrated gas-geochemical studies in the 45 cruise of the R/V Akademik M.A. Lavrent’ev in July 2008 were used to study the spatial distribution of methane in the surface seawater layer, the distribution and qualitative composition of hydrocarbon gases in bottom sediments of the northwestern continental shelf, northeastern slope of Sakhalin Island, and Deryugin depression in the Sea of Okhotsk. The specific features of the methane anomalies that form in this case are considered. Tectonic faults and the distribution of oil-and-gas-bearing structures are the main factors governing the formation of hydrocarbon gas fluxes in the study area. The surface water in the entire examined area was found to be oversaturated with methane. A developed model was used to calculated methane fluxes at the water–atmosphere interface and to identify areas with maximal fluxes (up to 324 mol/(km2 day).  相似文献   

20.
An M=6.0 earthquake occurred on February 23, 2001 in the western Sichuan Province, China. The macro seismic epicenter situated in the high mountain-narrow valley region between Yajiang and Kangding counties. According to field investigation in the region, the intensity of epicentral area reached VIII and the areas with intensity VIII, VII and VI are 180 km2, 1 472 km2 and 3 998 km2, respectively. The isoseismals are generally in elliptic shape with major axis trending near N-S direction. The earthquake destroyed many buildings and produced some phenomena of ground failure and mountainous disasters in the area with intensity VIII. This event may be resulted from long-term activities of the Litang fault and Yunongxi fault, two main faults in the western Sichuan. The movements between the main faults made the crust stress adjusted and concentrated, and finally the earthquake on a secondary fault in the block released a quite large energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号