首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leachate-contaminated groundwater from historical municipal landfills, typically lacking engineered liners and leachate collection systems, poses a threat to nearby urban streams, particularly to benthic ecosystems. Effective monitoring and assessment of such sites requires understanding of the spatial patterns (i.e., two-dimensional footprint) of contaminated groundwater discharge and associated controlling factors. However, discharges from groundwater contaminated by modern wastewater can complicate site assessments. The objectives of this study were to (1) demonstrate the use of artificial sweeteners (AS): saccharin (SAC), cyclamate (CYC), acesulfame (ACE), and sucralose (SUC), to distinguish groundwater discharge areas influenced by historic landfill leachate (elevated SAC and sometimes CYC; low ACE and SUC concentrations) from those influenced by wastewater (high ACE and SUC concentrations), and (2) investigate contaminant discharge patterns for two gaining urban stream reaches adjacent historic landfills at base flows. Contaminant discharge patterns revealed by the AS were strongly controlled by hyporheic flow (low AS concentrations), particularly for the straight reach, and stream sinuosity, particularly for the meandering reach. These patterns were different and the contaminant footprint coverage (<25% of streambed area) much less than most past studies (typically >50% coverage), likely due to the homogeneous streambed-aquifer conditions and shallow, narrow landfill plume in this setting.  相似文献   

2.
Four artificial sweeteners, acesulfame, sucralose, cyclamate, and saccharin were detected in a large septic plume at Long Point, Ontario, Canada. The pattern of sweetener detections in the groundwater indicated that they were derived from waste water seepage from a large septic system at the site. Acesulfame was pervasive in the septic plume, whereas the other three sweeteners have been attenuated, probably by microbial degradation.  相似文献   

3.
Groundwater samples collected at sites where in situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of groundwater contaminants and permanganate (MnO4), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and contaminant in aqueous samples may negatively impact the quality of the sample as well as the analytical instruments used to quantify contaminant concentrations. In this study, binary mixtures comprised of (1) a multicomponent standard with permanganate and (2) groundwater samples collected at two ISCO field sites were preserved with ascorbic acid. Ascorbic acid reacts rapidly with the MnO4 and limits the reaction between MnO4 and the organic compounds in the mixture. Consequently, most of the compounds in the multicomponent standard were within the control limit for quality assurance. However, despite timely efforts to preserve the samples, the rapid reaction between permanganate and contaminant caused the concentration of several sensitive compounds to fall significantly below the lower control limit. Concentrations of volatile organic compounds in the field‐preserved binary mixture groundwater samples were greater than in samples refrigerated in the field and preserved upon arrival at the laboratory, indicating the time‐dependency and benefit of field preservation. The molar ratio of ascorbic acid required to neutralize KMnO4 was 1.64 (mol ascorbic acid/mol KMnO4); this provided a baseline to estimate the volume of ascorbic acid stock solution and/or the weight of crystalline ascorbic acid required to neutralize MnO4. Excess ascorbic acid did not negatively impact the quality of the aqueous samples, or analytical instruments, used in the analyses.  相似文献   

4.
This study reports the first comprehensive data set of characteristic concentrations of four artificial sweeteners: acesulfame (ACE), sucralose (SUC), saccharin (SAC), and cyclamate (CYC), and their ratios with nutrients, for untreated septic system wastewater. Samples were collected from the tanks of 19 different septic systems from across Ontario, Canada; these had a variety of usages, from single‐family cottages to multiple‐dwelling (campground or resort) facilities and had no additional treatment systems. The artificial sweetener concentrations and their relative proportions were highly variable in some cases, both temporally for several individual tanks and from site‐to‐site. Variability tended to be lower for multiple‐dwelling compared to single‐dwelling systems. This variability likely reflects differing use of artificial sweetener‐containing products. The median concentrations for the complete data set of all four artificial sweeteners (in a range of 10 to 60 μg/L) were of a similar order of magnitude, but slightly higher, than has generally been reported for wastewater treatment plant influent (though these vary substantially globally). Both SUC and ACE provided adequate positive linear relationships for dissolved nitrogen and phosphorus in the septic tanks, while a summation of ACE and SUC concentrations also gave a strong correlation. In contrast, CYC and SAC showed poor linear correlation with these nutrients. These reported ranges for artificial sweetener concentrations and ratios with nutrients may be used in future studies to estimate the contributions of nutrients or other wastewater constituents (e.g., pharmaceuticals, bacteria, and viruses) from domestic septic systems to groundwater, including water supply or irrigation wells, and nearby surface water bodies.  相似文献   

5.
Developing an accurate conceptual site model (CSM) is an important process before a decision can be made regarding effective remedial actions. A critical aspect of an accurate CSM is thoroughly understanding the biogeochemistry occurring at the site in the area of concern. To collect media samples that accurately preserve the in situ biogeochemistry, a new Rotosonic core barrel and core preservation protocol was developed. The new biogeochemical core barrel (BCB) successfully isolated and preserved the in situ biogeochemical conditions of the soil core and minimized the soil core's exposure pathways to air. The BCB's success was achieved by a modified Rotosonic core barrel, a specialized drive shoe, an internal BCB core barrel piston, hydraulic extrusion of the soil core into a stainless core tube with an internal piston, and specialized core tube sealing, handling, and subsampling methods. Detailed subsampling of 65-foot (nominally 20 m) soil core in 2-inch (nominally 51 mm) increments within a specialized anaerobic glovebox confirmed the presence of five biogeochemical redox transition zones within the soil core. The BCB also allowed for split soil core samples for detailed mineralogical and live microbiological studies. Success of the BCB method is further evidenced by the presence of the highly redox-sensitive surface bound iron sulfide mineral mackinawite. The BCB allowed detailed analysis of the soil core including Fe and S concentration gradients, oxidation–reduction potential gradients, volatile organic compound analysis, and live microbiological assessments.  相似文献   

6.
A cryogenic coring system for the collection and preservation of biomolecules in unconsolidated subsurface solid samples is presented here. The sampler is based on existing direct‐push coring technology, with the addition of a cryogenic step to freeze the sample in situ. Once brought to the surface, the frozen cores can be packed in dry ice and shipped to the laboratory for further processing and analysis. The approach prevents redistribution of fluids during sample recovery and shipping, and because the cores are frozen in situ there is little loss of solid material during retrieval to ground surface. To evaluate the performance of the approach, DNA analyses of samples collected by cryogenic coring in a very large physical model are compared with results from water samples and horizontal core samples taken in close proximity. The data indicate that the vertical distribution of DNA within the cryogenic core can be measured at the centimeter scale, providing unprecedented characterization of subsurface biogeochemical interfaces.  相似文献   

7.
Analysis of dissolved light hydrocarbon gas concentrations (primarily methane and ethane) in water supply wells is commonly used to establish conditions before and after drilling in areas of shale gas and oil extraction. Several methods are currently used to collect samples for dissolved gas analysis from water supply wells; however, the reliability of results obtained from these methods has not been quantified. This study compares dissolved methane and ethane concentrations measured in groundwater samples collected using three sampling methods employed in pre‐ and post‐drill sampling programs in the Appalachian Basin. These include an open‐system collection method where 40 mL volatile organic analysis (VOA) vials are filled directly while in contact with the atmosphere (Direct‐Fill VOA) and two alternative methods: (1) a semi‐closed system method whereby 40 mL VOA vials are filled while inverted under a head of water (Inverted VOA) and (2) a relatively new (2013) closed system method in which the sample is collected without direct contact with purge water or the atmosphere (IsoFlask®). This study reveals that, in the absence of effervescence, the difference in methane concentrations between the three sampling methods was relatively small. However, when methane concentrations equaled or exceeded 20 mg/L (the approximate concentration at which effervescence occurs in the study area), IsoFlask® (closed system) samples yielded significantly higher methane concentrations than Direct‐Fill VOA (open system) samples, and Inverted VOA (semi‐closed system) samples yielded lower concentrations. These results suggest that open and semi‐closed system sample collection methods are adequate for non‐effervescing samples. However, the use of a closed system collection method provides the most accurate means for the measurement of dissolved hydrocarbon gases under all conditions.  相似文献   

8.
This paper describes a practical field method of using applied tracers to determine how much purging is required to collect representative groundwater samples after the introduction of drilling water during borehole advancement. In general, the approach involves adding a tracer of known concentration to the drilling water and then measuring the tracer in the purge water until the tracer concentration declines to a defined target level. If necessary, the dilution effects of residual drilling water can be quantified, and the measured contaminant concentration can be corrected based on the measured tracer concentration. A project example is presented to demonstrate that this method is straightforward and reliable and that applied tracers can be used to quantify the influence of residual drilling water on formation water quality while also ensuring that purge times and volumes are not unnecessarily large.  相似文献   

9.
The hydraulic gradient between aquifers and rivers is one of the most variable properties in a river/aquifer system. Detailed process understanding of bank storage under hydraulic gradients is obtained from a two‐dimensional numerical model of a variably saturated aquifer slice perpendicular to a river. Exchange between the river and the aquifer occurs first at the interface with the unsaturated zone. The proportion of total water exchanged through the river bank compared to the river bed is a function of aquifer hydraulic conductivity, partial penetration, and hydraulic gradient. Total exchange may be estimated to within 50% using existing analytical solutions provided that unsaturated zone processes do not strongly influence exchange. Model‐calculated bank storage is at a maximum when no hydraulic gradient is present and increases as the hydraulic conductivity increases. However, in the presence of a hydraulic gradient, the largest exchange flux or distance of penetration does not necessarily correspond to the highest hydraulic conductivity, as high hydraulic conductivity increases the components of exchange both into and out of an aquifer. Flood wave characteristics do not influence ambient groundwater discharge, and so in large floods, hydraulic gradients must be high to reduce the volume of bank storage. Practical measurement of bank storage metrics is problematic due to the limitations of available measurement technologies and the nested processes of exchange that occur at the river‐aquifer interface. Proxies, such as time series concentration data in rivers and groundwater, require further development to be representative and quantitative.  相似文献   

10.
Groundwater is one of the major valuable water resources for the use of communities, agriculture, and industries. In the present study, we have developed three novel hybrid artificial intelligence (AI) models which is a combination of modified RealAdaBoost (MRAB), bagging (BA), and rotation forest (RF) ensembles with functional tree (FT) base classifier for the groundwater potential mapping (GPM) in the basaltic terrain at DakLak province, Highland Centre, Vietnam. Based on the literature survey, these proposed hybrid AI models are new and have not been used in the GPM of an area. Geospatial techniques were used and geo-hydrological data of 130 groundwater wells and 12 topographical and geo-environmental factors were used in the model studies. One-R Attribute Evaluation feature selection method was used for the selection of relevant input parameters for the development of AI models. The performance of these models was evaluated using various statistical measures including area under the receiver operation curve (AUC). Results indicated that though all the hybrid models developed in this study enhanced the goodness-of-fit and prediction accuracy, but MRAB-FT (AUC = 0.742) model outperformed RF-FT (AUC = 0.736), BA-FT (AUC = 0.714), and single FT (AUC = 0.674) models. Therefore, the MRAB-FT model can be considered as a promising AI hybrid technique for the accurate GPM. Accurate mapping of the groundwater potential zones will help in adequately recharging the aquifer for optimum use of groundwater resources by maintaining the balance between consumption and exploitation.  相似文献   

11.
Agriculture is a major occupation for people who inhabit the state of West Bengal in India. In order to boost irrigation, 570 tube wells per year were installed during 2002‐2008, and 12,000 wells per year were installed during 2009‐2013, contributing to higher groundwater (GW) withdrawal. However, the impact of tube wells on GW storage levels has not been well‐studied, both spatially and temporally. Hence, this study used remote sensing data from NASA's Gravity Recovery and Climate Experiment and the Global Land Data Assimilation Systems to assess change in GW storage. Results showed that GW is being depleted at 8, 5.3, and 14.7 cm (Billion Cubic Meters)/year during the study period. After tube well intensification, the state‐wide average net GW recharge was 15.33 BCM/year, while the net GW discharge was at 19 BCM/year. The spatiotemporal GW storage data presented in this paper will benefit managers and policymakers in identifying suitable mitigation plans for future management of GW resources.  相似文献   

12.
Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide quantitative measurement of terrestrial water storage (TWS) changes with unprecedented accuracy. Combining GRACE-observed TWS changes and independent estimates of water change in soil and snow and surface reservoirs offers a means for estimating groundwater storage change. Since its launch in March 2002, GRACE time-variable gravity data have been successfully used to quantify long-term groundwater storage changes in different regions over the world, including northwest India, the High Plains Aquifer and the Central Valley in the USA, the North China Plain, Middle East, and southern Murray–Darling Basin in Australia, where groundwater storage has been significantly depleted in recent years (or decades). It is difficult to rely on in situ groundwater measurements for accurate quantification of large, regional-scale groundwater storage changes, especially at long timescales due to inadequate spatial and temporal coverage of in situ data and uncertainties in storage coefficients. The now nearly 13 years of GRACE gravity data provide a successful and unique complementary tool for monitoring and measuring groundwater changes on a global and regional basis. Despite the successful applications of GRACE in studying global groundwater storage change, there are still some major challenges limiting the application and interpretation of GRACE data. In this paper, we present an overview of GRACE applications in groundwater studies and discuss if and how the main challenges to using GRACE data can be addressed.  相似文献   

13.
Groundwater extraction is rampant in many developing countries and urban areas whereas the natural recharge is decreasing due to covering of Earth's surface for various developmental activities. This leads to declining levels of groundwater and deterioration in groundwater quality. Artificial recharge with rain water harvesting techniques offers an excellent scope to arrest this degradation. This paper presents a study that analyzes the influence of rain water harvesting (RWH) on groundwater storage and quality. Chennai City, India is selected as study area, as major RWH implementation has taken place during 2002–2003 due to Government legislation. Preliminary analysis of groundwater levels were done spatially and temporally. Groundwater table contours were drawn using the GIS software for pre‐ (1999–2000) and post‐RWH (2009–2010) periods. The groundwater levels follow a decreasing trend before implementation of RWH where as a positive increasing trend takes place after construction of RWH structures. “Groundwater Estimation Committee (GEC)” norms of Government of India were used to estimate the change in storage during pre‐ and post‐RWH periods, which are found to be 1.76 × 106 and 32.77 × 106 m3, respectively. The results show that the implementation of RWH has increased the groundwater storage considerably. Also, the influence of RWH on groundwater quality is found to be encouraging in some parts of the studied area.  相似文献   

14.
The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate‐stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02‐0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2‐11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.  相似文献   

15.
16.
17.
Groundwater plays a major role in the hydrological processes driven by climate change and human activities, particularly in upper mountainous basins. The Jinsha River Basin (JRB) is the uppermost region of the Yangtze River and the largest hydropower production region in China. With the construction of artificial cascade reservoirs increasing in this region, the annual and seasonal flows are changing and affecting the water cycles. Here, we first infer the groundwater storage changes (GWSC), accounting for sediment transport in JRB, by combining the Gravity Recovery and Climate Experiment mission, hydrologic models and in situ data. The results indicate: (1) the average estimation of the GWSC trend, accounting for sediment transport in JRB, is 0.76 ± 0.10 cm/year during the period 2003 to 2015, and the contribution of sediment transport accounts for 15%; (2) precipitation (P), evapotranspiration (ET), soil moisture change, GWSC, and land water storage changes (LWSC) show clear seasonal cycles; the interannual trends of LWSC and GWSC increase, but P, runoff (R), surface water storage change and SMC decrease, and ET remains basically unchanged; (3) the main contributor to the increase in LWSC in JRB is GWSC, and the increased GWSC may be dominated by human activities, such as cascade damming and climate variations (such as snow and glacier melt due to increased temperatures). This study can provide valuable information regarding JRB in China for understanding GWSC patterns and exploring their implications for regional water management.  相似文献   

18.
Dasheng Zhang  Zhang  Yongxiang  Liu  Licai  Li  Binghua  Yao  Xuchu 《Water Resources》2020,47(3):399-408
Water Resources - Artificial recharge is an effective way to alleviate water shortages and excessive groundwater exploitation. In this study, to explore environmental changes of surface water and...  相似文献   

19.
20.
In the arid to semi-arid district of Chengcheng, Weinan City, in central Shaanxi Province, diminishing groundwater reserves in the shallow Quaternary (QLB) aquifer and elevated fluoride in the similarly shallow Permo-Triassic (PTF) aquifer, have promoted interest in the development of groundwater resources in the deep but poorly understood Cambrian-Ordovician carbonate aquifer system (COC). To investigate the origin of the COC groundwaters and the relationship between the deep and shallower systems, a hydrochemical study was undertaken involving 179 major and minor ion analyses, 39 stable isotope analyses (δD and δ18O), and 14 carbon isotope analyses (14C and δ13C). PHREEQC 3.0 was used to investigate mixing. Hydrochemical data support the presence of a well-connected regional flow system extending southwards from the more mountainous north. Stable isotope data indicate that the COC groundwaters originate as soil zone infiltration, under a much cooler regime than is found locally today. This is confirmed by 14C, which indicates the groundwater to be palaeowater recharged during the late Pleistocene (∼10–12 ka B.P.). The presence of nitrate in the COC groundwaters suggests leakage from overlying shallow aquifers currently provides an additional source of COC recharge, with major faults possibly providing the primary pathways for downward vertical flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号