首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports the first comprehensive data set of characteristic concentrations of four artificial sweeteners: acesulfame (ACE), sucralose (SUC), saccharin (SAC), and cyclamate (CYC), and their ratios with nutrients, for untreated septic system wastewater. Samples were collected from the tanks of 19 different septic systems from across Ontario, Canada; these had a variety of usages, from single‐family cottages to multiple‐dwelling (campground or resort) facilities and had no additional treatment systems. The artificial sweetener concentrations and their relative proportions were highly variable in some cases, both temporally for several individual tanks and from site‐to‐site. Variability tended to be lower for multiple‐dwelling compared to single‐dwelling systems. This variability likely reflects differing use of artificial sweetener‐containing products. The median concentrations for the complete data set of all four artificial sweeteners (in a range of 10 to 60 μg/L) were of a similar order of magnitude, but slightly higher, than has generally been reported for wastewater treatment plant influent (though these vary substantially globally). Both SUC and ACE provided adequate positive linear relationships for dissolved nitrogen and phosphorus in the septic tanks, while a summation of ACE and SUC concentrations also gave a strong correlation. In contrast, CYC and SAC showed poor linear correlation with these nutrients. These reported ranges for artificial sweetener concentrations and ratios with nutrients may be used in future studies to estimate the contributions of nutrients or other wastewater constituents (e.g., pharmaceuticals, bacteria, and viruses) from domestic septic systems to groundwater, including water supply or irrigation wells, and nearby surface water bodies.  相似文献   

2.
Leachate-contaminated groundwater from historical municipal landfills, typically lacking engineered liners and leachate collection systems, poses a threat to nearby urban streams, particularly to benthic ecosystems. Effective monitoring and assessment of such sites requires understanding of the spatial patterns (i.e., two-dimensional footprint) of contaminated groundwater discharge and associated controlling factors. However, discharges from groundwater contaminated by modern wastewater can complicate site assessments. The objectives of this study were to (1) demonstrate the use of artificial sweeteners (AS): saccharin (SAC), cyclamate (CYC), acesulfame (ACE), and sucralose (SUC), to distinguish groundwater discharge areas influenced by historic landfill leachate (elevated SAC and sometimes CYC; low ACE and SUC concentrations) from those influenced by wastewater (high ACE and SUC concentrations), and (2) investigate contaminant discharge patterns for two gaining urban stream reaches adjacent historic landfills at base flows. Contaminant discharge patterns revealed by the AS were strongly controlled by hyporheic flow (low AS concentrations), particularly for the straight reach, and stream sinuosity, particularly for the meandering reach. These patterns were different and the contaminant footprint coverage (<25% of streambed area) much less than most past studies (typically >50% coverage), likely due to the homogeneous streambed-aquifer conditions and shallow, narrow landfill plume in this setting.  相似文献   

3.
The presence of artificial sweeteners in environmental samples is increasingly used to detect wastewater (and recently landfill leachate) in rivers, lakes and groundwater. Through routine laboratory quality assurance/quality control procedures, it was discovered that some syringe‐tip filters leach saccharin when used to process water samples. We subsequently tested several brands of filters to determine if they leached any of the four common artificial sweeteners analyzed in environmental samples, acesulfame, saccharin, cyclamate, and sucralose. Of the six types of filters tested, only one brand was a source of artificial sweeteners and the only artificial sweetener found was saccharin. The source of the saccharin in the filters is unknown but it is likely the result of some step in the manufacturing process. The saccharin was typically removed from these filters using a distilled water rinse of 13 mL or less. As a precaution, filters should be pre‐tested for the presence of saccharin and/or filters should be flushed with distilled water or sample prior to the collection of water samples for artificial sweetener analyses.  相似文献   

4.
The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate‐stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02‐0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2‐11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.  相似文献   

5.
Four artificial sweeteners, acesulfame, sucralose, cyclamate, and saccharin were detected in a large septic plume at Long Point, Ontario, Canada. The pattern of sweetener detections in the groundwater indicated that they were derived from waste water seepage from a large septic system at the site. Acesulfame was pervasive in the septic plume, whereas the other three sweeteners have been attenuated, probably by microbial degradation.  相似文献   

6.
In this study a field‐sampling technique for dissolved hydrogen (H2) in groundwater will be presented which allows the transport of gaseous samples into the laboratory for further analysis. The method consists of transferring the headspace trapped in a gas‐sampling bulb which is continuously purged by groundwater into previously evacuated vials using a gas‐tight syringe. Three transfer steps with preceding evacuation of the vial led to a H2‐recovery of 100 % in laboratory experiments. The method has been applied to determine H2 concentrations in an aquifer contaminated with chlorinated solvents. Tests concerning the effect of different pumping techniques on H2 concentrations revealed that most reliable values were obtained with a bladder pump, while an electrically driven submersible pump generated considerable amounts of hydrogen due to electrochemical interactions with the sampled water. Concentrations of dissolved hydrogen in field and laboratory samples were about two orders of magnitude higher when sampling was performed with the electrically driven submersible pump compared to sampling with the bladder pump and a peristaltic pump. Lab experiments with a Plexiglas reservoir to produce H2‐enriched water were used to study the effect of two tubing materials (PVC, polyamide) on H2 losses. PVC tubing turned out to allow transfer of H2‐enriched water over 25 m without significant losses, while PA‐tubing was not suitable for sampling of H2.  相似文献   

7.
Purging influence on soil‐gas concentrations for volatile organic compounds (VOCs), as affected by sampling tube inner diameter and sampling depth (i.e., system volume) for temporary probes in fine‐grained soils, was evaluated at three different field sites. A macro‐purge sampling system consisted of a standard, hollow, 3.2‐cm outer diameter (OD) drive probe with a retractable sampling point attached to an appropriate length of 0.48‐cm inner diameter (ID) Teflon® tubing. The macro‐purge sampling system had a purge system volume of 24.5 mL at a 1‐m depth. In contrast, the micro‐purge sampling systems were slightly different between the field sites and consisted of a 1.27‐cm OD drive rod with a 0.10‐cm ID stainless steel tube or a 3.2‐cm OD drive rod with a 0.0254‐cm inner diameter stainless steel tubing resulting in purge system volumes of 1.2 and 7.05 mL at 1‐m depths, respectively. At each site and location within the site, with a few exceptions, the same contaminants were identified in the same relative order of abundances indicating the sampling of the same general soil atmosphere. However, marked differences in VOC concentrations were identified between the sampling systems, with micro‐purge samples having up to 27 times greater concentrations than their corresponding macro‐purge samples. The higher concentrations are the result of a minimal disturbance of the ambient soil atmosphere during purging. The minimal soil‐gas atmospheric disturbance of the micro‐purge sampling system allowed for the collection of a sample that is more representative of the soil atmosphere surrounding the sampling point. That is, a sample that does not contain an atmosphere that has migrated from distance through the geologic material or from the surface in response to the vacuum induced during purging soil‐gas concentrations. It is thus recommended that when soil‐gas sampling is conducted using temporary probes in fine‐grained soils, the sampling system use the smallest practical ID soil‐gas tubing and minimize purge volume to obtain the soil‐gas sample with minimal risk of leakage so that proper decisions, based on more representative soil‐gas concentrations, about the site can be made.  相似文献   

8.
Given the importance of groundwater temperature to the biogeochemical health of aquatic ecosystems, a floodplain study was implemented to improve understanding of rural land use impacts on shallow groundwater (SGW) temperature. Study sites included a historic agricultural field (Ag) and bottomland hardwood forest (BHF), each with nine piezometers in an 80 × 80 m grid. Piezometers were equipped with pressure transducers to monitor SGW temperature and level at 30 min intervals during the 2011, 2012, 2013, and 2014 water years. The study is one of the first to utilize long‐term, continuous, automated, in situ monitoring to investigate rural land use impacts on shallow groundwater temperatures. Average SGW temperature during the study period was 11.1 and 11.2 °C at the Ag and BHF sites, respectively. However, temperature range at the Ag site was 72% greater than at the BHF site. Results indicate a greater responsiveness to seasonal climate fluctuations in Ag site SGW temperature related to absence of forest canopy. Patterns of intra‐site groundwater temperature differences at both study sites illustrate the influence of stream–aquifer thermal conduction and occasional baseflow reversals. Considering similar surface soil temperature amplitudes and low average groundwater flow values at both sites, results suggest that contrasting rates of plant water use, groundwater recharge, and subsurface hydraulic conductivity are likely mechanistic causes for the observed SGW temperature differences. Results highlight the long‐term impact of forest removal on subsurface hydrology and groundwater temperature regime. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Gas‐saturated groundwater forms bubbles when brought to atmospheric pressure, preventing precise determination of its in situ dissolved gas concentrations. To overcome this problem, a modeling approach called the atmospheric sampling method is suggested here to recover the in situ dissolved gas concentrations of groundwater collected ex situ under atmospheric conditions at the Horonobe Underground Research Laboratory, Japan. The results from this method were compared with results measured at the same locations using two special techniques, the sealed sampler and pre‐evacuated vial methods, that have been developed to collect groundwater under its in situ conditions. In gas‐saturated groundwater cases, dissolved methane and inorganic carbon concentrations derived using the atmospheric sampling method were mostly within ±4 and ±10%, respectively, of values from the sealed sampler and pre‐evacuated vial methods. In gas‐unsaturated groundwater, however, the atmospheric sampling method overestimated the in situ dissolved methane concentrations, because the groundwater pressure at which bubbles appear (Pcritical) was overestimated. The atmospheric sampling method is recommended for use where gas‐saturated groundwater can be collected only ex situ under atmospheric conditions.  相似文献   

10.
This study employs stable oxygen and hydrogen isotopes as natural tracers to assess the headwater of a landslide next to a drainage divide and the importance of the slope's headwater in the study area. The study is undertaken near Wu‐She Township in the mountains of central Taiwan. Because a reservoir is located on the other side of the divide, this study evaluates the relationship between the reservoir water and headwater of the landslide as well. Over a 1‐year period, water samples from September 2008 to September 2009, including local precipitation (LP), Wu‐She Reservoir's water (WSRW), slope groundwater (SGW), upper‐reach stream water (USTW), and down‐reach stream water (DSTW), were analysed for deuterium (δD) and oxygen (δ18O) stable isotopes. Results indicate that WSRW is the predominant component in SGW: approximately 70% of SGW originates from WSRW and 30% from LP based on a two end‐member mass‐balance mixing model for δ18O. The similar two end‐member mixing model is also employed to assess the contributions of USTW and SGW to DSTW. Model results indicate that SGW is the major source of DSTW with a contribution of about 67%. Accordingly, about 47% of DSTW sources from the WSRW. In short, owing to reservoir leakage, WSRW contributes the greater part of both SGW and DSTW. Plentiful WSRW in SGW threatens the stability of the slope in the divide area. To avoid subsequent continuous slope failure, necessary mitigation steps are required. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Optical sensors are promising for collecting high resolution in‐well groundwater nitrate monitoring data. Traditional well purging methods are labor intensive, can disturb ambient conditions and yield an unknown blend of groundwater in the samples collected, and obtain samples at a limited temporal resolution (i.e., monthly or seasonally). This study evaluated the Submersible Ultraviolet Nitrate Analyzer (SUNA) for in‐well nitrate monitoring through new applications in shallow overburden and fractured bedrock environments. Results indicated that SUNA nitrate‐N concentration measurements during flow cell testing were strongly correlated (R 2 = 0.99) to purged sample concentrations. Vertical profiling of the water column identified distinct zones having different nitrate‐N concentrations in conventional long‐screened overburden wells and open bedrock boreholes. Real‐time remote monitoring revealed dynamic responses in nitrate‐N concentrations following recharge events. The monitoring platform significantly reduced labor requirements for the large amount of data produced. Practitioners should consider using optical sensors for real‐time monitoring if nitrate concentrations are expected to change rapidly, or if a site's physical constraints make traditional sampling programs challenging. This study demonstrates the feasibility of applying the SUNA in shallow overburden and fractured bedrock environments to obtain reliable data, identifies operational challenges encountered, and discusses the range of insights available to groundwater professionals so they will seek to gather high resolution in‐well monitoring data wherever possible.  相似文献   

12.
Bench-scale experiments were conducted to investigate the effect of hydraulic loadings and influent concentration on the migration and biotransformation behaviour of three groundwater pollutants: ammonium (NH4+), iron (Fe2+) and manganese (Mn2+). Columns packed with aquifer media collected from a riverbank filtration (RBF) site in Harbin City, NE China were introduced synthetic groundwater (SGW) or real groundwater (RGW) were at two different constant flow rates and initial contaminant concentrations to determine the impact of system conditions on the fate of the target pollutants biotransformation. The results showed that the biotransformation rate of Fe2+ Mn2+ and NH4+ decreased by 8%, 39% and 15% under high flow rate (50 L d−1) compared to low flow rate (25 L d−1), which was consistent with the residence-time effect. While the biotransformation rate of Fe2+ Mn2+ and NH4+ decreased by 7%, 14% and 9% under high influent concentration comparing with original groundwater. The 16S rRNA analysis of the aquifer media at different depths after experiments completion demonstrated that the relative abundance of major functional microbes iron-oxidizing bacteria and manganese-oxidizing bacteria under higher flow rate and higher influent concentration decreased 13%, 14% and 25%, 24%, respectively, whereas the ammonium-oxidizing bacteria and nitrite-oxidizing bacteria exhibited minimal change, compared to the lower flow rate. Above all results indicated that both high flow rate and high concentration inhibit the biotransformation of NH4+, Fe2+ and Mn2+. The biotransformation of Fe2+ and Mn2+ occurs primarily in the 0–40 cm and 20–60 cm depth intervals, respectively, whereas the NH4+ biotransformation appears to occur relatively uniformly throughout the whole 110 cm column. The biotransformation kinetics of NH4+ in RGW and SGW, Mn2+ in RGW at different depths accords with the first order kinetics model, while Fe2+ in RGW and SGW, Mn2+ in SGW presented more complicated biotransformation process. The results should improve understanding of the transport and fate of common groundwater pollutants in RBF and other groundwater recharge environments.  相似文献   

13.
Groundwater microbial community samples are traditionally collected using pumping techniques optimized for groundwater chemistry assessment, although the impact of groundwater pumping parameters on apparent bacterial community structures (BCSs) is not really known. We therefore studied the impact of pumping lift, flow regime, and tubing material on BCS, which were analyzed by terminal‐restriction fragment length polymorphism (T‐RFLP). Ruzicka dissimilarity coefficients were calculated between T‐RFLP profiles to assess disparities between BCS. Variations in pumping lift, flow regime, and tubing material did not affect the apparent BCS in experiments using a homogenous water system under laboratory conditions showing that the conditions within the tube had no detectable effect on BCS. However, pumping groundwater from aquifer monitoring wells at different flow rates in the field revealed a significant impact on the apparent BCS. Water samples collected from fine sediment were the most affected by the pumping flow rate.  相似文献   

14.
Groundwater is not a sustainable resource, unless abstraction is balanced by recharge. Identifying the sources of recharge in a groundwater basin is critical for sustainable groundwater management. We studied the importance of river water recharge to groundwater in the south‐eastern San Joaquin Valley (24,000 km2, population 4 million). We combined dissolved noble gas concentrations, stable isotopes, tritium, and carbon‐14 analyses to analyse the sources, mechanisms, and timescales of groundwater recharge. Area‐representative groundwater sampling and numerical model input data enabled a stable isotope mass balance and quantitative estimates of river and local recharge. River recharge, identified by a lighter stable isotope signature, represents 47 ± 4% of modern groundwater in the San Joaquin Valley (recharged after 1950) but only 26 ± 4% of premodern groundwater (recharged before 1950). This implies that the importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a 40% increase in total recharge, caused by river water irrigation return flows and increased stream depletion and river recharge due to groundwater pumping. Compared with the large and long‐duration capacity for water storage in the subsurface, storage of water in rivers is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast infiltration and recharge. Groundwater banking of seasonal surface water flows and expansion of managed aquifer recharge practices therefore appear to be a natural and promising method for increasing the resilience of the San Joaquin Valley water supply system.  相似文献   

15.
ABSTRACT

Understanding recharge processes is fundamental to improve sustainable groundwater resource management. Shallow groundwater (SGW) is being developed for multiple purposes in Ethiopia without consideration of monitoring. We established a citizen science-based hydro-meteorological monitoring network, with a focus on SGW recharge estimation, in Eshito micro-watershed, Ethiopia. Citizen scientists collected rainfall, groundwater-level and stream water-level data. We characterized the shallow aquifer using pumping tests. The data were used to estimate SGW recharge using three methods: chloride mass balance, water-level fluctuation (WLF) and baseflow separation. Approximately 20% and 35% of annual rainfall amount contributes to recharge based on the chloride mass balance and WLF results, respectively. Baseflow separation showed recharge values for the watershed vary from 38% to 28% of annual rainfall at the upstream and downstream gauging stations, respectively. This study shows that the recharge in previously unmonitored micro-watersheds can be studied if citizens are involved in data generation.  相似文献   

16.
Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point‐specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1‐D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine‐Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ13CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1‐D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine‐Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream‐gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water.  相似文献   

17.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   

18.
Measurement of the stable isotopes oxygen‐18 and deuterium in water is an important tool to characterize aquifer recharge sources. In the driest areas of the Mediterranean, this application is of special interest due to the scarcity of water and the resulting common incidence of human influence on natural hydrological systems. The Motril‐Salobreña detrital aquifer (southern Spain) is a clear example of such an impact as inhabitants have designed irrigation systems and a dam was recently built across the course of the Guadalfeo River, which feeds the aquifer. The sampling of (river or ground) water has allowed the determination of stable isotope contents (oxygen‐18 and deuterium), both temporally and spatially, and the relative importance of the main recharge sources in certain sectors. In addition, we were able to infer seasonal trends and to improve existing knowledge of the main flow paths and the position of a seasonal groundwater divide. Data analysis shows evaporation plays a minor role (despite the high temperatures in the zone), scarce rainwater influence, and the overwhelming contribution of recharge from the Guadalfeo River and from the carbonate aquifer (Escalate aquifer) in contact with the Motril‐Salobreña aquifer. Irrigation return flow during the summer months comprises the main recharge due to the significant volumes of water that infiltrate. The construction of the dam will almost certainly entail great changes in the current dynamics of the hydrogeology of the Motril‐Salobreña aquifer; therefore, knowledge of its behaviour is crucial in order to carry out sustainable use of its groundwater resources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Artificially enhancing recharge rate into groundwater aquifer at specially designed facilities is an attractive option for increasing the storage capacity of potable water in arid and semi‐arid region such as Damascus basin (Syria). Two dug wells (I and II) for water injection and 24 wells for water extraction are available in Mazraha station for artificial recharge experiment. Chemical and stable isotopes (δ2H and δ18O) were used to evaluate artificial recharge efficiency. 400 to 500*103 m3 of spring water were injected annually into the ambient shallow groundwater in Mazraha station, which is used later for drinking purpose. Ambient groundwater and injected spring water are calcium bicarbonate type with EC about 880 ± 60 μS/cm and 300 ± 50 μS/cm, respectively. The injected water is under saturated versus calcite and the ambient groundwater is over saturated, while the recovered water is near equilibrium. It was observed that the injection process formed a chemical dilution plume that improves the groundwater quality. Results demonstrate that the hydraulic conductivity of the aquifer is estimated around 6.8*10?4 m/s. The effective diameter of artificial recharge is limited to about 250 m from the injection wells. Mixing rate of 30% is required in order to reduce nitrate concentration below 50 mg/l which is considered the maximum concentration limit for potable water. Deuterium and oxygen‐18 relationship demonstrates that mixing line between injected water and ambient groundwater has a slope of 6.1. Oxygen‐18 and Cl? plot indicates that groundwater salinity origin is from mixing process, and no dissolution and evaporation were observed. These results demonstrate the efficiency of the artificial recharge experiments to restore groundwater storage capacity and to improve the water quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Chloride contamination of groundwater in urban areas due to deicing is a well‐documented phenomenon in northern climates. The objective of this study was to evaluate the effects of permeable pavement on degraded urban groundwater. Although low impact development practices have been shown to improve stormwater quality, no infiltration practice has been found to prevent road salt chlorides from entering groundwater. The few studies that have investigated chlorides in permeable asphalt have involved sampling directly beneath the asphalt; no research has looked more broadly at surrounding groundwater conditions. Monitoring wells were installed upgradient and downgradient of an 860 m2 permeable asphalt parking lot at the University of Connecticut (Storrs, Connecticut). Water level and specific conductance were measured continuously, and biweekly samples were analyzed for chloride. Samples were also analyzed for sodium (Na), calcium (Ca), and magnesium (Mg). Analysis of variance analysis indicated a significantly (p < 0.001) lower geometric mean Cl concentration downgradient (303.7 mg/L) as compared to upgradient (1280 mg/L). Concentrations of all alkali metals increased upgradient and downgradient during the winter months as compared to nonwinter months, indicating that cation exchange likely occurred. Despite the frequent high peaks of chloride in the winter months as well as the increases in alkali metals observed, monitoring revealed lower Cl concentrations downgradient than upgradient for the majority of the year. These results suggest that the use of permeable asphalt in impacted urban environments with high ambient chloride concentrations can be beneficial to shallow groundwater quality, although these results may not be generalizable to areas with low ambient chloride concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号