首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late Quaternary stratigraphy and sedimentation in the Middle Ganga Plain (MGP) (Uttar Pradesh–Bihar) have influenced groundwater arsenic contamination. Arsenic contaminated aquifers are pervasive within narrow entrenched channels and flood plains (T0-Surface) of fine-grained grey to black coloured argillaceous organic rich Holocene sediments (Newer Alluvium). Contaminated aquifers are often located close to distribution of abandoned or existing channels and swamps. The Pleistocene Older Alluvium upland terraces (T2-Surface) made up of oxidized yellowish brown sediments with calcareous and ferruginous concretions and the aquifers within it are free of arsenic contamination. MGP sediments are mainly derived from the Himalaya with minor inputs from the Peninsular India. The potential source of arsenic in MGP is mainly from the Himalaya. The contaminated aquifers in the Terai belt of Nepal are closely comparable in nature and age to those of the MGP. Arsenic was transported from disseminated sources as adsorbed on dispersed phases of hydrated-iron-oxidea and later on released to groundwater mainly by reductive dissolution of hydrated-iron-oxide and corresponding oxidation of organic matter in aquifer. Strong reducing nature of groundwater is indicated by high concentration of dissolved iron (11.06 mg/l). Even within the arsenic-affected areas, dugwells are found to be arsenic safe due to oxyginated nature.  相似文献   

2.
 Arsenic toxicity in groundwater in the Ganges delta and some low-lying areas in the Bengal basin is confined to middle Holocene sediments. Dissected terraces and highlands of Pleistocene and early Holocene deposits are free of such problems. Arsenic-rich pyrite or other arsenic minerals are rare or absent in the affected sediments. Arsenic appears to occur adsorbed on iron hydroxide-coated sand grains and clay minerals and is transported in soluble form and co-precipitated with, or is scavenged by, Fe(III) and Mn(IV) in the sediments. It became preferentially entrapped in fine-grained and organic-rich sediments during mid-Holocene sea-level rises in deltaic and some low-lying areas of the Bengal basin. It was liberated subsequently under reducing conditions and mediated further by microbial action. Intensive extraction of groundwater for irrigation and application of phosphate fertilizer possibly triggered the recent release of arsenic to groundwater. This practice has induced groundwater flow, mobilizing phosphate derived from fertilizer, as well as from decayed organic matter, which has promoted the growth of sediment biota and aided the further release of arsenic. However, the environment is not sufficiently reducing to mobilize iron and arsenic in groundwater in the Ganges floodplains upstream of Rajmahal. Thus, arsenic toxicity in the groundwater of the Bengal basin is caused by its natural setting, but also appears to be triggered by recent anthropogenic activities. Received: 23 August 1999 · Accepted: 16 November 1999  相似文献   

3.
Arsenic contamination in groundwater affecting West Bengal (India) and Bangladesh is a serious environmental problem. Contamination is extensive in the low-lying areas of Bhagirathi–Ganga delta, located mainly to the east of the Bhagirathi River. A few isolated As-contaminated areas occur west of the Bhagirathi River and over the lower parts of the Damodar river fan-delta. The Damodar being a Peninsular Indian river, the arsenic problem is not restricted to Himalayan rivers alone. Arsenic contamination in the Bengal Delta is confined to the Holocene Younger Delta Plain and the alluvium that was deposited around 10,000–7,000 years bp, under combined influence of the Holocene sea-level rise and rapid erosion in the Himalaya. Further, contaminated areas are often located close to distribution of abandoned or existing channels, swamps, which are areas of surface water and biomass accumulation. Extensive extraction of groundwater mainly from shallow aquifers cause recharge from nearby surface water bodies. Infiltration of recharge water enriched in dissolved organic matter derived either from recently accumulated biomass and/or from sediment organic matter enhanced reductive dissolution of hydrated iron oxide that are present mainly as sediment grain coatings in the aquifers enhancing release of sorbed arsenic to groundwater.  相似文献   

4.
The basin-fill aquifers of the Western U.S. contain elevated concentrations of arsenic in the groundwater due to ancient volcanic deposits that host arsenic minerals. Microcosms were constructed using two oxidized sediments and, by contrast, a reduced sediment collected from a shallow basin-fill aquifer in the Cache Valley Basin, Northern Utah to evaluate the fate of geologic arsenic under anoxic conditions. Sequential extractions indicated the primary arsenic host mineral was amorphous iron oxides, but 13%–17% of the total arsenic was associated with carbonate minerals. Arsenic was solubilized from the sediments when incubated with groundwater in the presence of native organic carbon. Arsenic solubilization occurred prior to iron reduction rather than the commonly observed co-reactivity. Arsenic(V) associated with carbonate minerals was the main source of arsenic released to solution and redistributed onto less soluble minerals, including FeS and siderite as defined by chemical extraction. Arsenic reduction occurred only in the site-oxidized sediments. The addition of a carbon and energy source, glucose, resulted in enhanced arsenic solubilization, which was coupled with iron reduction from the site-oxidized sediments. Adding glucose promoted iron reduction that masked the role of carbonate minerals in arsenic solubilization and retention as observed with incubation with groundwater only.  相似文献   

5.
The study area covers an about 100 km2 of the middle Ganga plain in Uttar Pradesh, experiencing intensive groundwater extraction. In order to recognize the arsenic contamination zones of the Varanasi environs, sixty eight groundwater samples have been collected and analyzed for major ions, iron and arsenic. Twenty one sediment samples in the four boreholes were also collected to deduce the source of arsenic in the groundwater. The preliminary survey reports for the first time indicates that part of rural and urban population of Varanasi environs are drinking and using for irrigation arsenic contaminated water mostly from hand tube wells (<70 m). The study area is a part of middle Ganga plain which comprises of Quaternary alluvium consists of an alternating succession of clay, clayey silt and sand deposits. The high arsenic content in groundwater samples of the study area indicates that 14% of the samples are exceeding the 10 μg/l and 5% of the samples are exceeding 50 μg/l. The high arsenic concentration is found in the villages such as Bahadurpur, Madhiya, Bhojpur, Ratanpur, Semra, Jalilpur, Kateswar, Bhakhara and Kodupur (eastern side of Ganga River in Varanasi), situated within the newer alluvium deposited during middle Holocene to Recent. The older alluvial aquifers situated in the western side of the Ganga River are arsenic safe (maximum As concentration of 9 μg/l) though the borehole sediments shows high arsenic (mean 5.2 mg/kg) and iron content (529 mg/kg) in shallow and medium depths. This may be due to lack of reducing conditions (i.e organic content) for releasing arsenic into the groundwater. Rainfall infiltration, organic matter from recently accumulated biomass from flood prone belt in the newer alluvium plays a critical role in releasing arsenic and iron present in sediments. The main mechanism for the release of As into groundwater in the Holocene sandy aquifer sediments of Varanasi environs may be due to the reductive dissolution of Fe oxyhydroxide present as coatings on sand grains as well as altered mica content. The high societal problems of this study will help to mitigate the severity of arsenic contamination by providing alternate drinking water resources to the people in middle Ganga plain and to arrange permanent arsenic safe drinking water source by the authorities.  相似文献   

6.
A comparative hydrogeochemical study evaluated arsenic release mechanism and differences in contamination levels in the shallow groundwater of two areas within the deltaic environment of West Bengal (i.e. Karimpur and Tehatta blocks of Nadia district) in India. Groundwaters from both the areas are Ca-Na(K)-Cl-HCO3 type with highly reducing character (−110.16 ± 16.85 to −60.77 ± 16.93 mV). Low correlations among As, Fe, and Mn and the higher association between As and DOC are indicative of microbial decomposition of organic matter enhancing the weathering of shallow aquifer materials. Arsenic contamination in groundwater is higher in Karimpur (95 ± 81.17 μg/L) than that in Tehatta (43.05 ± 41.06 μg/L). The release mechanism of arsenic into groundwater is very complex. Low Fe (0.27–4.78 mg/L and 0.81–4.13 mg/L), Mn (0.08–0.2 mg/L and 0.03–0.22 mg/L), and SO42− (3.82 ± 0.31 and 2.78 ± 0.40 mg/L) suggest that the mechanism of arsenic release is not a single mechanistic pathway. Clustering of redox-active parameters in the principal component planes indicate that the reductive dissolution, and/or weathering/co-precipitation of Fe/Mn-bearing minerals in the shallow aquifer sediments control the dominant mechanistic pathway of arsenic release.  相似文献   

7.
Arsenic is present in groundwater at Siliguri–Jalpaiguri area, West Bengal, India. This is the place where Tista river descending from the Himalayas meets the alluvial plain. The area represents alluvial fan and floodplains of Tista, Mahananda-Balasan, Jaladhaka and its tributaries. In the river sediment samples, para- and ferro-magnetic minerals within 0.3–0.05 mm fraction contain 9–80 ppm of arsenic. The study indicates that iron bearing minerals viz. biotite, hornblende as well as iron coated grains of the sediment are major contributors towards arsenic budget. Though magnetite as a mineral shows maximum arsenic content (22 ppm), it is volumetrically not of much significance. Measurement of groundwater collected from tube wells shows up to 0.05 ppm of arsenic. These arsenic contaminated tube wells occur in a linear fashion along the course of the rivers. Moreover, localization of contaminated tube wells coincides with the change of channel gradient as observed in longitudinal section. The study enumerates a cause–effect relationship of arsenic occurrence with river gradient and fluvial sedimentation.  相似文献   

8.
The problem of arsenic (As) poisoning in the upper deltaic plain of the Ganga-Bhagirathi river system in the Bengal Basin of West Bengal, India is an alarming issue. Four blocks (Kaliachak-1, 2, 3 and English Bazar) of Malda district, West Bengal were critically studied. Geomorphologically, the area exhibits three terraces: the present Youngest terrace (T0-terrace), the Older Shaugaon Surface (T1-terrace) and the Oldest Baikunthapur Surface (T2-terrace). On the basis of numerous measurements, including As-content, pH, DO, specific conductivity and salinity, it was observed that maximum As-content beyond the permissible limit (0.05 mg/L, Indian standard) occurs within a depth range of 10–30 m with a non-linear distribution pattern. Variance test also found that a block effect was highly significant in an As-distribution pattern. Mean arsenic level of Kaliachak block-1 is 0.2253 mg/L, followed by Kaliachak-2 with arsenic level 0.1923, Kaliachak-3 with arsenic level 0.1755 and English Bazar with arsenic level 0.1324. The arsenious belt lies mainly within the Older terrace (T1). The very recent flood plain deposits of silvery white, fine sands lying very close to the Ganga River margin do not contain significant amounts of As. Elevated As-concentration in the ground water was observed in alluvial sands, grayish white to brownish in color and occurring away from the Ganga margin. The Oldest terrace (T2) further away from the Ganga margin (e.g. English Bazar) and Barind surface contains less arsenic. Barind surface acts as a hard capping with ferruginous sands and lateritic concretions-chocolate, mottled and purple brown in color-occurring northeast of the studied area. Arsenic content of ground water in the same locality within a radius of ∼ 20 m varies within wide limits. Thus, it poses problem to delineate its distribution pattern. Such a patchy occurrence possibly could not be explained satisfactorily solely by geomorphology. Chemical analysis of aquifer clay samples of the cores shows a maximum Ascontent of up to 3 mg/kg, whereas the bulk samples (sandclay mixture) of the cores contain a maximum of 17 mg/kg As-value. Therefore, it is not always true that clay contains elevated As-value.  相似文献   

9.
Arsenic contamination occurs in groundwater of Bangladesh mainly from the alluvial and deltaic sediments. Arsenic contamination of groundwater in Bangladesh was first detected more than a decade ago and the ’shallow tubewells’ were reported as the main source of arsenic contaminated water. From the nutritional and metabolic points of view, arsenic is likely to adversely affect human health and nutrition. Up to now, several studies have been carried out on this context; however, inadequate knowledge on arsenic sources, mobilization and transport still remains as a constraint due to lack of data, information and technological advances. Thus, a review study has been undertaken on the sources of arsenic, its causes, mobilization, transport, effects on human health, arsenic test procedures and removal methods, in the context of groundwater contamination in Bangladesh, and finally sustainable remedial measures of arsenic have been proposed. This study suggests that laboratory facilities for testing of arsenic and effects of enhanced groundwater pumping, phosphate fertilizer etc., need to be updated, expanded and studied. This review work is significant to further knowledge improvement, as the topic is general and worldwide. It can be concluded that the integration of the proposed remedial measures with the national geographic information system interface database relating to arsenic for analysis, production of hazard maps, and dissemination on television show for the planners, engineers, managers, field supervisors and affected people, can reach at the sustainable solution for mitigating arsenic and associated problems successfully in Bangladesh.  相似文献   

10.
The study region covers 1,650 km2 of the Mid-Ganga Basin in Bihar, experiencing intensive groundwater draft. The area forms a part of the Gangetic alluvial plain where high incidence of arsenic groundwater contamination (>50 μg/l) has recently been detected. Seventy-seven groundwater samples have been collected and analysed for major ions, iron and arsenic. Arsenic contamination (max 620 μg/l) is confined in hand pump zones (15–35 m) within the newer alluvium deposited during Middle Holocene to Recent age. The older alluvial aquifers are arsenic-safe and recorded maximum concentration as 9 μg/l. Out of 12 hydrochemical facies identified, four have been found arsenic-affected: Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3 and Mg–Ca–HCO3. The geochemical evolution of groundwater, as investigated by graphical interpretation and statistical techniques (correlation, principal component analysis) revealed that dissolution of detrital calcite, dolomite and infiltration of rainwater are the major processes shaping the groundwater chemistry in the newer alluvium. Arsenic and iron showed strong positive correlation. Rainfall infiltration, carrying organic matter from recently accumulated biomass from this flood-prone belt, plays a critical role in releasing arsenic and iron present in the sediments. Geochemical evolution of groundwater in older alluvium follows a different path, where cation-exchange has been identified as a significant process.  相似文献   

11.
Arsenic concentrations surpassing potability limit of 10 μg/L in the groundwater supplies of an extensive area in the Duero Cenozoic Basin (central Spain) have been detected and the main sources of arsenic identified. Arsenic in 514 samples of groundwater, having mean values of 40.8 μg/L, is natural in origin. Geochemical analysis of 553 rock samples, assaying arsenic mean values of 23 mg/kg, was performed. Spatial coincidence between the arsenic anomaly in groundwater and the arsenic lithogeochemical distribution recorded in the Middle Miocene clayey organic-rich Zaratan facies illustrates that the rocks of this unit are the main source of arsenic in groundwater. The ferricretes associated to the Late Cretaceous–Middle Miocene siliciclastics also constitute a potential arsenic source. Mineralogical study has identified the presence of arsenic in iron oxides, authigenic pyrite, manganese oxides, inherited titanium–iron oxides, phyllosilicates and organomineral compounds. Arsenic mobilization to groundwater corresponds to arsenic desorption from iron and manganese oxides and from organic matter.  相似文献   

12.
Geological and geochemical study has been carried out to investigate arsenic contamination in groundwater in Nawalparasi, the western Terai district of Nepal. The work carried out includes analyses of core sediments, provenance study by rare earth elements analyses, 14C dating, and water analyses. Results showed that distribution of the major and trace elements are not homogeneous in different grain size sediments. Geochemical characteristics and sediment assemblages of the arsenic contaminated (Nawalparasi) and uncontaminated (Bhairahawa) area have been compared. Geochemical compositions of sediments from both the areas are similar; however, water chemistry and sedimentary facies vary significantly. Extraction test of sediment samples showed significant leaching of arsenic and iron. Chemical reduction and contribution from organic matter could be a plausible explanation for the arsenic release in groundwater from the Terai sediments.  相似文献   

13.
Anthropogenic arsenic menace in Delhi Yamuna Flood Plains   总被引:2,自引:1,他引:1  
Arsenic, one of the most poisonous chemical elements, was analyzed in the waters of the host of the 2010 Commonwealth Games, i.e., New Delhi. The study revealed shocking outcomes with arsenic concentrations well beyond the safe limits set by WHO, and a maximum concentration up to 180 ppb was found in the groundwater. Analysis of around 120 water samples collected extensively along the Yamuna Flood Plain showed that more than 55% had arsenic contamination beyond the WHO limit of 10 ppb. The maximum value of arsenic in coal and fly ash from Rajghat coal-based thermal power plant contained 200 and 3,200 ppb, respectively. Moreover, the ore petrography of coal samples shows the presence of arsenopyrite mineral. Maximum concentration of arsenic contamination is found within a 5-km radius from power plants. In the perspective of Delhi, arsenic contamination is purely anthropogenic due to coal-based thermal power plants, which had already shown toxic arsenic, fluorine and China-type coal effects. The presence of such power plants in coal field locations, e.g., West Bengal and Bangladesh, could release the arsenic due to combustion in superthermal power plants, thus accentuating the arsenic concentration besides the natural arsenic coming from the foreland basins of the Himalaya in Indian sub-continent.  相似文献   

14.
Manipur State, with a population of 2.29 million, is one of the seven North-Eastern Hill states in India, and is severely affected by groundwater arsenic contamination. Manipur has nine districts out of which four are in Manipur Valley where 59% of the people live on 10% of the land. These four districts are all arsenic contaminated. We analysed water samples from 628 tubewells for arsenic out of an expected total 2,014 tubewells in the Manipur Valley. Analyzed samples, 63.3%, contained >10 μg/l of arsenic, 23.2% between 10 and 50 μg/l, and 40% >50 μg/l. The percentages of contaminated wells above 10 and 50 μg/l are higher than in other arsenic affected states and countries of the Ganga–Meghna–Brahmaputra (GMB) Plain. Unlike on the GMB plains, in Manipur there is no systematic relation between arsenic concentration and the depth of tubewells. The source of arsenic in GMB Plain is sediments derived from the Himalaya and surrounding mountains. North-Eastern Hill states were formed at late phase of Himalaya orogeny, and so it will be found in the future that groundwater arsenic contamination in the valleys of other North-Eastern Hill states. Arsenic contaminated aquifers in Manipur Valley are mainly located within the Newer Alluvium. In Manipur, the high rainfall and abundant surface water resources can be exploited to avoid repeating the mass arsenic poisoning that has occurred on the GMB plains.  相似文献   

15.
The influx of Sr responsible for increase in marine Sr has been attributed to rise of Himalaya and weathering of the Himalayan rocks. The rivers draining Himalaya to the ocean by the northern part of the Indian sub-continent comprising the Ganga Alluvial Plain (GAP) along with Central parts of the Himalaya and the northern part of the Indian Craton are held responsible for the transformation of Sr isotopic signature. The GAP is basically formed by the Himalayan-derived sediments and serves as transient zone between the source (Himalaya) and the sink (Bay of Bengal). The Gomati River, an important alluvial tributary of the Ganga River, draining nearly 30,500 km2 area of GAP is the only river which is originating from the GAP. The river recycles the Himalayan-derived sediments and transport its weathering products into the Ganga River and finally to Bay of Bengal. 11 water samples were collected from the Gomati River and its intrabasinal lakes for measurement of Sr isotopic composition. Sr concentration of Gomati River water is about 335 μg/l, which is about five times higher than the world’s average of river water (70 μg/l) and nearly three times higher than the Ganga River water in the Himalaya (130 μg/l) The Sr isotopic ratios reported are also higher than global average runoff (0.7119) and to modern seawater (0.7092) values. Strong geochemical sediment–water interaction appearing on surface is responsible for the dissolved Sr isotopic ratios in the River water. Higher Sr isotopic rations found during post-monsoon than in pre-monsoon season indicate the importance of fluxes due to monsoonal erosion of the GAP into the Gomati River. Monsoon precipitation and its interaction with alluvium appear to be major vehicle for the addition of dissolved Sr load into the alluvial plain rivers. This study establishes that elevated 87Sr/86Sr ratios of the Gomati River are due to input of chemical weathering of alluvial material present in the Ganga Alluvial Plain.  相似文献   

16.
The authors’ survey of the Ganga–Meghna–Brahmaputra (GMB) plain (area 569,749 km2; population >500 million) over the past 20 years and analysis of more than 220,000 hand tube-well water samples revealed groundwater arsenic contamination in the floodplains of the Ganga–Brahmaputra river (Uttar Pradesh, Bihar, Jharkhand, West Bengal, and Assam) in India and the Padma–Meghna–Brahmaputra river in Bangladesh. On average, 50 % of the water samples contain arsenic above the World Health Organization guideline value of 10 μg/L in India and Bangladesh. More than 100 million people in the GMB plain are potentially at risk. The authors’ medical team screened around 155,000 people from the affected villages and registered 16,000 patients with different types of arsenical skin lesions. Arsenic neuropathy and adverse pregnancy outcomes have been recorded. Infants and children drinking arsenic-contaminated water are believed to be at high risk. About 45,000 biological samples analyzed from arsenic-affected villages of the GMB plain revealed an elevated level of arsenic present in patients as well as non-patients, indicating that many are sub-clinically affected. In West Bengal and Bangladesh, there are huge surface water in rivers, wetlands, and flooded river basins. In the arsenic-affected GMB plain, the crisis is not over water scarcity but about managing the available water resources.  相似文献   

17.
Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25–40 m depth, 9.6–4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25–94 μg/L) than in the HUA (5.2–42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.  相似文献   

18.
Studies within the As-affected Bengal Basin have indicated that low-As groundwater can be found in a variety of geological and geomorphological settings. The hydrogeological environments that host low-As groundwater may be interpreted within a geological framework determined by the Quaternary evolution of the Bengal Aquifer System (BAS). This provides the basis for delineating the position and extent of shallow low-As groundwater, low-As groundwater in oxidised ‘red-bed’ sediments, and deep low-As groundwater. Data available on a national scale allow a preliminary delineation of these low-As groundwater environments across Bangladesh, based on empirical associations of low-As groundwater occurrences with topography, water table elevation, surface sediment lithology, geology and the screen depth of deep wells in low-As zones.  相似文献   

19.
To better understand the sources and mobilization processes responsible for arsenic enrichment in groundwater in the central part of Datong Basin where serious arsenic poisoning cases have been reported, hydrochemical characteristics of the groundwater and the geochemical and mineralogical features of the aquifer sediments were studied. The aqueous arsenic levels are strongly depth-dependent in the study area and the high arsenic concentrations are found at depths between 15 m and 60 m, with a maximum up to 1820 μg/L. The hydrochemical characteristics of high arsenic groundwater from the Datong Basin indicate that the mobilization of arsenic is related to reductive dissolution of Fe oxides/oxyhydroxides and/or desorption from the Fe oxides/oxyhydroxides at high pH (above 8.0). The bulk chemical results of sediments show the arsenic and iron are moderately correlated, suggesting that arsenic is associated with iron-bearing minerals. Results of sequential-extraction experiment show that solid-phase arsenic is similarly distributed among the different pools of reservoir in the aquifer sediments. Strongly adsorbed arsenic and co-precipitated arsenic are its dominant species in the solid-phase. Geochemical studies using chemical analysis, X-ray diffraction and scanning electron microscopy on magnetically separated fractions demonstrate that iron oxides/oxyhydroxides with residual magnetite and chlorite, illite, iron oxides/oxyhydroxides-coated quartz and feldspar, and ankerite are the dominant carriers of arsenic in the sediments. The major processes of arsenic mobilization are probably linked to desorption of As from Fe oxides/oxyhydroxides and reductive dissolution of Fe-rich phases in the aquifer sediments under reducing and alkaline conditions.  相似文献   

20.
Groundwater arsenic survey in Cachar and Karimganj districts of Barak Valley, Assam shows that people in these two districts are drinking arsenic-contaminated (max. 350 μg/l) groundwater. 66% of tubewells in these two districts have arsenic concentration above the WHO guideline value of 10 μg/l and 26% tubewells have arsenic above 50 μg/l, the Indian standards for arsenic in drinking water. 90% of installed tubewells in these two districts are shallow depth (14–40 m). Shallow tubewells were installed in Holocene Newer Alluvium aquifers are characterised by grey to black coloured fine grained organic rich argillaceous sediments and are mostly arsenic contamination in groundwater. Plio-Pleistocene Older Alluvium aquifers composed of shale, ferruginous sandstone, mottle clay, pebble and boulder beds, which at higher location or with thin cover of Newer Alluvium sediments are safe in arsenic contamination in groundwater. 91% of tubewell water samples show significantly higher concentrations of iron beyond its permissible limit of 1 mg/l. The iron content in these two districts varies from 0.5 to as much as 48 mg/l. Most of the arsenic contaminated villages of Cachar and Karimganj districts are located in entrenched channels and flood plains of Newer Alluvium sediments in Barak-Surma-Langai Rivers system. However, deeper tubewells (>60 m) in Plio-Pleistocene Older Alluvium aquifers would be a better option for arsenic-safe groundwater. The arsenic in groundwater is getting released from associated Holocene sediments which were likely deposited from the surrounding Tertiary Barail hill range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号