首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
Vertical distributions of turbidity & phytodetritus (Chl.a and pheopigment), and their seasonal variations were measured in the deep water column of Sagami Bay, Japan, in June 1999, February 2000 and May 2000. Observations were carried out at eight stations along an east-west section of Sagami Bay using a CTD/water sampling system equipped with a memory-type infrared back-scattering meter which had been calibrated for the suspended particles collected in Sagami Bay. Turbidity increased close to the bottom in both summer and winter, indicating the existence of a benthic nepheloid layer throughout the year. But the vertical gradient of turbidity was much larger in summer than in winter. The concentration of Chl.a and pheopigment also increased in the benthic layer in summer, sometimes reaching values of more than 0.01 and 0.2 μg/l, respectively, much higher than those reported in hemipelagic regions of the ocean. In winter, on the other hand, Chl.a kept a constant low value throughout the deep water column. This indicates that the turbid water mass formed in the benthic layer in summer derives from the deposition of large amounts of phytodetritus in spring and the resuspension of these aggregates, which are subsequently decomposed in the benthic layer during the following autumn. Unlike the benthic boundary layer, the turbidity of intermediate water was lower in summer rather than in winter. Because the phytoplankton aggregates exported from the surface water during the spring bloom not only supply phytodetritus to the benthic layer but also scavenge the suspended particles in the water column, the steep vertical gradient of turbidity observed in summer may reflect the dynamic interaction between suspended and sinking particles in the deep water column.  相似文献   

2.
Temporal variations of sinking particle flux, together with their organic chemical properties, were monitored in the deep basin of Sagami Bay, Japan, using sediment traps with very high time resolutions from March 1997 to August 1998. At a height of 350 m above the bottom (about 1200 m water depth), the averaged total mass flux was more than 1000 mg/m2/day, which is about 10 times higher than those obtained for open ocean regions near Sagami Bay. While large amounts of phytodetritus, derived from phytoplankton blooms in the surface water, were transported downward in spring, the following extraordinary patterns in the temporal variability of sinking particle flux were also observed: (1) A sustained large flux of sinking particles during low productive periods from summer to winter in 1997. (2) An episodic increase of sinking particle flux in June 1998. (3) A difference in the temporal variability of sinking particles between the spring bloom periods of 1997 and 1998. The content of total organic carbon (TOC) and the stable carbon isotopic ratio (δ13C) of TOC demonstrated that the large fluxes observed in (1) and (2) could be attributed to the resuspension of phytodetritus deposited on the sea floor during the spring bloom period, and the abrupt erosion of surface sediment on the continental slope, respectively. The concentration of suspended particles in the deep water column affect the apparent flux of sinking particles. At the same time, sinking particles exported from surface waters during the spring bloom both decrease and increase suspended particle concentration through scavenging and rebound processes, respectively. Finally, the apparent difference in sinking particle flux between 1997 and 1998, (3), could be explained by differences in the extent of the scavenging process, which depend on the flux and quality of exported particles from the surface waters.  相似文献   

3.
Seasonal variations in the primary production regime in the upper water column were assessed by shipboard observations using hydrocasts and natural fluorescence profiling at a fixed station in the central part of Sagami Bay, Japan. The observations were conducted as a part of ‘Project Sagami’ dedicated to the interdisciplinary study of seasonality in bathyal benthic populations and its coupling with water column processes. Based on the time-series observations at intervals of about 1 to 2 months, primary productivity in terms of chlorophyll abundance appeared to be elevated during the spring of 1997, but the observed peaks of biomass were much less significant in the spring of 1998. Meanwhile, the organic matter flux, as indicated by sediment trap data and benthic observations, had a significant peak in the spring of 1998 as well, and its magnitude was comparable to that in 1997. Satellite images of ocean color obtained during the spring of 1997 indicate the importance of events with time scales much shorter than a month, and suggest qualitative differences in the phytoplankton community in the euphotic zone for each bloom event during this period. The possible mechanisms that could yield the spring maximum of material input to the benthic community are discussed.  相似文献   

4.
In an extended deep-sea study the response of the benthic community to seasonally varying sedimentation rates of organic matter were investigated at a fixed abyssal site in the NE Atlantic (BIOTRANS station or JGOFS station L2 at 47°N–20°W, water depth >4500 m) on four legs of METEOR expedition 21 between March and August 1992. The vertical flux at 3500 m depth and temporal variations in the chloroplastic pigment concentration, a measure of phytodetritus deposition, and of total adenylates and total phospholipids, measures of benthic biomass, and of activity of hydrolytic enzymes were observed. The flux patterns in moored sediment traps of total chlorophyll, POC and total flux showed an early sedimentation peak in March/April 1992, followed by low fluxes in May and intermediate ones from June to August. Thus 1992 differed from other years, in which one large flux peak after the spring phytoplankton bloom was observed. Unusually high concentrations of chloroplastic pigments were consistently observed in March 1992, reflecting the early sedimentation input. At the same time biomass of small benthic organisms (bacteria to meiobenthos) and activity of hydrolytic enzymes were higher compared to values from March 1985 and from the following months in 1992. In May and August 1992 pigment concentrations and biomass and activity parameters in the sediment were lower than during previously observed depositions of phytodetrital matter in summer. The data imply that the deep ocean benthic community reacts to small sedimentation events with transient increases in metabolic activity and only small biomass production. The coupling between pelagic and benthic processes is so close that interannual variability in surface water production is “mirrored” by deep-sea benthic processes.  相似文献   

5.
海洋雾状层的成因及其对海洋碳循环过程的影响   总被引:2,自引:0,他引:2  
海洋雾状层既是陆源物质进入海底的输送通道,又是海洋水体中沉降颗粒及底部再悬浮颗粒物的停留场所。雾状层物质来源主要有陆源、生源以及海底表层沉积物的再悬浮,不同海区、不同层位的雾状层的物质来源有所差异;雾状层的成因具有复杂性,既有物理作用,又有生物及化学作用,大量研究表明,海底洋流、内波(潮)等物理作用是雾状层形成的主要控制因素。雾状层中碳的存在形态主要有颗粒有机碳(POC)、溶解有机碳(DOC)、胶体有机碳(COC)以及无机碳,雾状层与其上下海水之间、雾状层与海底表层沉积物之间不同形态碳在生物-化学-物理动力系统作用下不断发生物质交换与迁移,对海洋碳循环生物地球化学过程起重要的控制作用,是整个海洋碳循环的一个不可忽视的环节。  相似文献   

6.
Latitudinal gradients in biodiversity are found in both terrestrial and marine environments, but little agreement exists on the mechanisms or ecological causes creating these patterns. Marine biodiversity patterns have been particularly challenging to document, because of the lack of appropriate data sets from ocean basins. We document latitudinal patterns of North Atlantic deep-sea benthic foraminifera and show that seasonality of primary productivity, as estimated from SeaWiFS satellite imagery, has a significant effect on diversity indices, with generally lower values of H(S), species ?, and species equitability found with high seasonality between 40 and 60°N. High foraminiferal diversity is not found in areas with phytodetritus deposition in the North Atlantic basin, which indicates that patch dynamics, biological disturbance, and sediment heterogeneity resulting from phytodetritus deposits do not create high deep-sea foraminiferal diversity. Annual resource stability, reflecting the timing of organic carbon flux and the mode of sedimentation, accounts for the benthic foraminiferal patterns found in this study and is an important variable structuring the deep-sea benthic foraminiferal community.  相似文献   

7.
The beam attenuation coefficient, organic carbon (POC) and organic nitrogen (PON) contents of suspended materials in Etauchi Bay, which has little inflow of river water as well as very weak tidal current (maximum speed: 6.5cm·sec−1), were measured as a function of depth for all seasons to understand a seasonal variation of bottom turbidity layer. In spring and summer, the beam attenuation coefficient in bottom layer and POC and PON contents of suspended materials in the surface water layer increased with time, which brought the occurrence of the bottom turbidity layer. From autumn to winter, however, their concentrations became low and constant over the whole depth almost independent of time. As a result, the bottom turbidity layer disappeared in winter and beam attenuation coefficient became constant over the whole depth. From these results, it may be considered that the bottom turbidity layer was produced by phytodetritus brought from surface water layer, rather than by resuspension of bottom sediment in Etauchi Bay.  相似文献   

8.
A survey was made in an area of complicated topography within the deep-sea system of Sagami Bay. Samples were obtained quantitatively with the Smith-McIntyre bottom-sampler of 1/10 m2 and were washed through a screen of 1.0 mm mesh. The biomass, the number of individuals and the number of species were studied at each station in relationship to submarine topography. All the items showed more or less parallel features in three topographical environments. High figures were found on the top of the bank and low ones in the canyon, while those values obtained in the sloping environment were intermediate and variable. The percent composition of the quantitatively important animal groups was rather constant throughout the top of the bank, and in this hahitat the faunal diversity was higher than in the others. From the distributional patterns of the species, and also from the species composition and dominancy at each station, the benthic communities of the bank-top and of the canyon were known to be distinct. In the sloping environment, however, the benthic assemblages at some stations were related to the bank-top community, either being its impoverished phase or with several elements peculiar to the slope, while at the remaining stations they were rather peculiar but related to the canyon community. All the aspects of the benthic ecology mentioned above were found to be closely related, both in their general and special features, to the nature of the sediments, in which three major types were recognized corresponding to the above three topographical environments. From the nature of the sediment, water movement, if any, can be expected on the top of the bank, and this is reflected in the preponderance of plankton- and/or ceston feeders making up this benthic community. Within the canyon, there were found the impoverishment of benthic community which is supposed to be due to the stagnant environment. The biomasses of the whole area were compared to those in other regions in the form of cumulative curves. In the deep-sea system of Sagami Bay which is well surrounded by land, the biomasses were only slightly lower than those of the shallow-sea system on the shelves in neighbouring regions, and those of a shallow enclosed bay were an order of magnitude higher than these figures. Those in the offshore parts of the continental shelf, remote from the coast, were nearly an order of magnitude lower. This work is carried out as a part of JIBP-PM Project  相似文献   

9.
Material transport through the shelf edge to the deep ocean determines the fate of particulate matter generated in productive coastal seas. In stratified estuaries, onshore flow in the bottom layer generally keeps particulate matter generated in the upper layer and settled down to the bottom layer within the estuaries. AT the shelf edge of Tokyo Bay under the condition of average onshore flow in the bottom layer, we observed higher vertical sediment flux during ebb than flood tidal currents. The on-shelf and off-shelf differences in turbulent mixing and water depth mainly cause such difference in sediment flux. We propose to call this export process of particulate matter the tidal pump at the shelf edge.  相似文献   

10.
We conducted an in situ feeding experiment using 13C-labeled unicellular algae in Sagami Bay, Japan (water depth, 1450 m), in order to understand the fate of lipid compounds in phytodetritus at the deep-sea floor. We examined the incorporation of excess 13C into lipid compounds extracted from bulk sediments and benthic foraminiferal cells. 13C-enriched fatty acids derived from 13C-labeled algae were exponentially degraded during 6 days of incubation in the sediment. Subsequent enrichments in 13C in sedimentary n-C15, anteiso-C17, and C17 fatty acids indicated the microbial degradation of algal material and production of bacterial biomass in the sediment. We observed the incorporation of 13C-labeled algal phytol and fatty acids into foraminiferal cells. The compositions of 13C-labeled algal lipids in foraminiferal cells were different from those in the bulk sediments, indicating that foraminiferal feeding and digestion influenced the lipid distribution in the sediments. Furthermore, some sterols in Globobulimina affinis (e.g., 24-ethylcholesta-5,22-dien-3β-ol, 24-ethylcholest-5-en-3β-ol, and 23,24-dimethylcholesta-5,22E-dien-3β-ol) were newly produced via the modification of dietary algal sterols within 4–6 days. In addition to the effects of bacteria, feeding by benthic foraminifera can result in a significant reorganization of the composition of organic matter and influence benthic food webs and carbon cycling at the deep-sea floor.  相似文献   

11.
Analysis of 121 in-situ nephelometer profiles recorded in the waters above Nitinat Deep-Sea Fan during three cruises between 1971 and 1974 reveals a substantial degree of correlation between fan topography and the vertical distribution of suspended particulate matter within 150 m of the sea floor. Profiles recorded above different topographic provinces may be generalized into two structural classes which have retained their characteristic features throughout the 4-year observation period: the levee type, in which a thin bottom nepheloid layer consists of a single steep scattering gradient sharply capped by the overlying clearer water; and the fan-valley type, in which a bottom nepheloid layer of variable thickness and prominent internal layering dissipates only gradually into the overlying clearer water. Although the source of the particles which form the bottom nepheloid layer has not yet been definitely identified, the multi-year stability of scattering intensity, thickness, and internal structure imply that it is maintained by some combination of continually operative processes, rather than by infusions of material from episodic events such as turbidity currents.  相似文献   

12.
Megalobenthic samples trawled from the bathyal zone in Sagami Bay contain some probable subarctic elements, such asSebastolobus macrochir, Clidoderma asperrimum, Solaster paxillatus, Macoma calcarea, Cryptonatica clausa, Eunatica pallida, Volutomitra alaskana, Paralomis multispina andPandalus hyspinotus, among others. The mechanism and process of invasion of such cold-water species into the deep-sea zone in Sagami Bay are not simple. There are some evidences that these animals are propagating in Sagami Bay. The occurrences of subarctic fish there are not unusual because of their strong swimming ability. The benthic animals that have planktonic larval stages might be dispersed in the same process as in the Oyashio plankton translocated by Oyashio Undercurrent. However, the mechanism and process of dispersions of egg-carrying crustaceans and egg-case producing gastropods remain unanswered. Perhaps, the palaeo-oceanographical and evolutional considerations will help to solve the problem.Contribution B-557 from Tokai Regional Fisheries Research Laboratory.  相似文献   

13.
The sedimentation system of the bottom contour current over the continental slope of Bear Island in the Norwegian Sea is considered. The nepheloid layer that provides the high horizontal flux of sedimentary material represents the main source of matter for the bottom sediments. The vertical particulate matter flux is largely formed in the nepheloid layer; the flux from higher layers of the water column is insignificant. Horizontal and vertical fluxes of sedimentary matter show a positive correlation. The flux of the matter from the bottom sediment into the nepheloid matter and the residence time of particles in the latter are estimated.  相似文献   

14.
Profiles of the radioisotopes 210Pb and 137Cs were determined in 15 sediment cores collected from Sagami Bay, Japan. The activities of 210Pbex (unsupported) in core top sediments increased with water depth from 25 dpm g−1 on the upper continental slope off the mouth of Tokyo Bay to an average of 283 dpm g−1 at the deep-sea station SB. The high 210Pb trapping efficiency of settling particles expected from the results of the sediment trap experiment near the SB site suggests that effective 210Pb enrichment in surface sediments may occur during resuspension and lateral transportation of particles via the benthic nepheloid layer on the continental slope. In several cores, 137Cs profiles showed an increase, a distinct peak, and then a decrease to an undetectable level downcore. These profiles can be compared with the temporal change of bomb-produced 137Cs fallout.The mean sedimentation rates estimated by the 210Pbex inventory method, rather than using 210Pbex profiles, ranged from 0.06 g cm−2 y−1 to 0.14 g cm−2 y−1. The average value of the rates in SB cores was calculated to be 0.11 g cm−2 y−1, which was similar to that calculated under the assumption that the age of the 137Cs peak corresponds to its maximum fallout year in 1963.Although 137Cs inventories represented one tenth of the anthropogenic fallout of 137Cs until 1997, they correlated with the increase in 210Pbex inventory. This suggests that the scavenging of refractory 137Cs as well as 210Pb by settling particles in the water column can lead to the formation of a time marker layer even in deep-sea sediment core, such as at the SB site.  相似文献   

15.
The vertical distribution of benthic organisms in the sediment profile was studied using horizontally sliced sediments collected at five stations at depths from 115 to 472 m in Suruga Bay, central Japan. Using sieves of 1.0 and 0.5 mm mesh, benthic organisms were divided into two size classes, smaller macrobenthos (>1mm, <1g wet weight) and larger meiobenthos (1.0 mm0.5 mm). The maximum depth of vertical distribution of organisms in the sediment profile was expressed by the 95 % intercept of the cumulative % curve of the number of individuals drawn with respect to depth in the sediment. It has long been supposed that benthic animals are concentrated in the surface centimeters of sediment in the deep-sea system, and the present study clearly substantiated this. Most benthic organisms of both of these two size classes were concentrated in the upper 5 cm of sediment. The vertical distribution was almost always deeper in the case of smaller macrobenthos than for larger meiobenthos. However the difference could not be substantiated statistically since the number of samples was insufficient. The maximum depth indices of polychaetes were found to be significantly larger than those of crustaceans in the case of macrobenthos, while in the case of meiobenthos, the difference was not significant. The maximum depth index of all benthic organisms was positively and significantly correlated with water-depth and the possible cause for this relationship is discussed.  相似文献   

16.
赤道东北太平洋悬浮体物源示踪元素的研究   总被引:2,自引:0,他引:2  
2005年7月在赤道东北太平洋的3个测站分层采集了悬浮体水样.利用ICP-MS对悬浮体的元素组成进行了测试,从测试的47种元素中筛选出了钡和铝分别作为悬浮体生源组分和陆源组分的示踪元素.悬浮体中钡含量为0.02~0.19μg/dm3,其中生源钡含量为0.01~0.13μg/dm3,铝含量为0.33~18.54μg/dm3.生源钡和铝元素含量及其比值在水体中的分布特征与悬浮体含量的相对应,分为三段.水体透光层生物作用和近底层底质沉积物再悬浮作用是其在水体表层和近底层显著变化的原因.近底雾状层内生源钡和铝元素含量的比值从水体向底质沉积物中降低,至底质沉积物降到最低,显示出底质沉积物再悬浮对悬浮体组分和含量的影响,可以作为近底雾状层颗粒物质运移的示踪指标.  相似文献   

17.
Vesicomyid bivalves have a substantial biomass in deep-sea chemosynthetic biological communities in the Pacific. Using a novel multiplex-PCR (mPCR) method to identify the co-occurring vesicomyids in Sagami Bay, we analyzed the distribution of Calyptogena okutanii and Calyptogena soyoae along environmental gradients. All the known distributions of C. okutanii indicated the different preferences in salinity and temperature to those of C. soyoae, and in Sagami Bay, depth seemed to be an important environmental factor, too. Although the concentration of hydrogen sulfide in sediment was not examined, our results showed that the distributions of these two Calyptogena clams were affected by salinity and temperature.  相似文献   

18.
Sex ratios and reproductive activity of benthic copepod assemblages were investigated at the bathyal site (depth 1430 m) in Sagami Bay, central Japan. The ratio of adult females to adult males was approximately 3.5:1, significantly different from 1:1, although this parameter did not show a seasonal pattern. On the other hand, the percentage of ovigerous females among adult females and the ratio of nauplii to total copepods appeared to fluctuate seasonally in 1997 and 1998. Statistical tests, however, could not detect significant difference in either parameter. We discuss the possibility that the reproductive activity of copepods was enhanced by the increased supply of fresh phytodetritus to the sea floor.  相似文献   

19.
Living benthic foraminiferal faunas of six stations from the continental shelf of the Bay of Biscay have been investigated during three successive seasons (spring, summer and autumn 2002). For the three investigated stations, bottom water oxygen concentration, oxygen penetration into the sediment and sediment organic carbon contents are all relatively similar. Therefore, we think that the density and the composition of the foraminiferal faunas is mainly controlled by the quantity and quality of organic input resulting from a succession of phytoplankton bloom events, occurring from late February to early September. The earliest blooms are positioned at the shelf break, late spring and early summer blooms occur off Brittany, whereas in late summer and early autumn, only coastal blooms appear, often in the vicinity of river outlets. In spring, the benthic foraminiferal faunas of central (B, C and D) and outer (E) continental shelf stations are characterised by strong dominance in the first area and strong presence in the second area of Nonionella iridea. In fact, station E does not serve as a major depocenter for the remains of phytoplankton blooms. If station E is not considered, the densities of this taxon show a clear gradient from the shelf-break, where the species dominates the assemblages, to the coast, where it attains very low densities. We explain this gradient as a response to the presence, in early spring, of an important phytoplankton bloom, mainly composed of coccolithophorids, over the shelf break. This observation is supported by the maximum particles flux values at stations close to the shelf break (18.5 g m− 2 h− 1) and lower values in a station closer to the coast (6.8 g m− 2 h− 1). In summer, the faunal density is maximum at station A, relatively close to more varied phytoplancton blooms that occur off Brittany until early June. We suggest that the dominant species, Nonion fabum, Cassidulina carinata and Bolivina ex. gr. dilatata respond to phytodetritus input from these blooms. In autumn, the rich faunas of inner shelf station G are dominated by N. fabum, B. ex. gr. dilatata, Hyalinea balthica and Nonionella turgida. These taxa seem to be correlated with the presence of coastal blooms phenomena, in front of river outlets. They may be favoured by an organic input with a significant contribution of terrestrial, rather low quality organic matter.  相似文献   

20.
We present several types of data which show that strong geostrophic bottom currents are present in a broad valley in the deep western Bay of Bengal adjacent to the Indian margin. Sea-floor photographs show well-developed current lineations with scour marks on the northern sides and sediment deposition tails on the southern sides of some objects (such as fecal pellets) suggesting strong southward-flowing bottom currents. A direct current measurement made in the region confirms this inferred flow direction. The nepheloid layer is much stronger in the western Bay of Bengal than in any other region of the northern Indian Ocean and indicates strong turbulence and a high concentration of suspended sediment at or near the sea floor. Additional data which do not provide unequivocal evidence for, but may also be indicative of, the existence of the bottom currents are as follows: the dispersal of the peninsular Indian rivers-derived smectite-rich sediments all along the valley to as far as south of Sri Lanka; a zone of sediment waves (as recorded on 3.5-kHz echograms) parallel to the regional trend of bathymetric contours along the Indian margin; and the frequent occurrence of thin, sharp and uniform layers of fine sand and silt beds rather than thick graded turbidite beds in the cores from the broad valley in the deep western Bay of Bengal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号