首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Nanyangtian skarn-type scheelite deposit is an important part of the Laojunshan W–Sn polymetallic metallogenic region in southeastern Yunnan Province, China. The deposit comprises multiple scheelite ore bodies; multilayer skarn-type scheelite ore bodies are dominant, with a small amount of quartz vein-type ore bodies. Skarn minerals include diopside, hedenbergite, grossular, and epidote. Three mineralization stages exist: skarn, quartz–scheelite, and calcite. The homogenization temperatures of fluid inclusions in hydrothermal minerals that formed in different paragenetic phases were measured as follows: 221–423 °C (early skarn stage), 177–260 °C (quartz–scheelite stage), and 173–227 °C (late calcite stage). The measured salinity of fluid inclusions ranged from 0.18% to 16.34% NaCleqv (skarn stage), 0.35%–7.17% NaCleqv (quartz–scheelite stage), and 0.35%–2.24% NaCleqv (late calcite vein stage). Laser Raman spectroscopic studies on fluid inclusions in the three stages showed H2O as the main component, with N2 present in minor amounts. Minor amounts of CH4 were found in the quartz–scheelite stage. It was observed that the homogenization temperature gradually reduced from the early to the late mineralization stages; moreover, δ13CPDB values for ore-bearing skarn in the mineralization period ranged from ? 5.7‰ to ? 6.9‰ and the corresponding δ18OSMOW values ranged from 5.8‰ to 9.1‰, implying that the ore-forming fluid was mainly sourced from magmatic water with a minor amount of meteoric water. Collectively, the evidence indicates that the formation of the Nanyangtian deposit is related to Laojunshan granitic magmatism.  相似文献   

2.
Suspended and equivalent active sediments were collected from streams at 84 sites at the eastern and western sides of a ridge with stratabound Zn mineralization, Rockingham County, Virginia (USA). The purpose was to evaluate the relative effectiveness of suspended and bottom sediment in the geochemical exploration for Mississippi-Valley type Zn ores. The orebody is composed of sphalerite and minor amounts of galena with some chalcopyrite, strikes parallel to the enclosing dolomite beds at N34°E, and cuts vertically across the 30°SE dip. Oxidation of the ore extends to about 100 m in depth.Zinc was effective in detecting the mineralized zone. Zinc in the suspensates provided a denser anomaly system (7 strong and 2 moderate samples) than Zn in the <150 μm size of the bottom sediment, either totally dissolved (4 strong and 1 moderate anomalies) or extracted with cold 3% HCl (5 strong and 3 moderate anomalies). The magnitude of the high values for suspensate Zn was considerably higher than those for the other sample types studied. Suspensate Zn was complemented by 3 strong suspensate Cu anomalies. The suspensate Zn anomaly dispersion was about 850 m, 400 m of which was upstream from the mineralization. Lead was detected only in the cold acid extraction and in combination with Cu and Zn gave an extensive overlapping multielement anomaly string that targeted the ore zone and had a dispersion downstream from the mineralization of more than 1000 m. The Pb anomalies extended about 900 m upstream and 400 m downstream from the ore zone. Together with suspensate Zn, the Pb anomalies suggest a continuation of mineralization upstrike from the known orebody.The major anomaly systems are along the eastern side of the ridge with comparatively few anomalies present in the drainage along the western side. The concentration of anomalies in the eastern drainage and anomaly disposition with respect to known mineralization result from structural control on the hydromorphic dispersion of metals from the orebody.  相似文献   

3.
包金山金钨矿床位于湘中白马山-龙山-紫云山金矿带的东段,是近年新发现的一个赋存于前寒武纪浅变质岩中的金矿床。在野外调研和室内镜下研究的基础上,本文利用XRD、EMPA、ICP-MS、ID-MS等多种分析手段,对其进行了元素地球化学和同位素地球化学研究,进而揭示了该区金矿床的形成时代和矿床成因。研究表明,该区白钨矿的化学成分较均一,其WO3含量大体与理论值一致,但Ca O含量稍低于其理论值,这可能与Sr、REE、Na等微量元素对白钨矿晶格中Ca的类质同象置换有关。除Sr、REE、As以外,该区白钨矿中的微量元素,特别是Mo、Bi、Sn、Be、Nb、Ta等均低于1×10-6,明显有别于华南与燕山期花岗岩有关钨矿床中的白钨矿。该区白钨矿的稀土元素含量为484.5×10-6~972.9×10-6(平均721.3×10-6),显著高于湘西、湘中一带其它矿床中的白钨矿;其稀土元素配分模式均表现出向上拱曲的富MREE特征。该区白钨矿的147Sm/144  相似文献   

4.
湖南瑶岗仙超大型钨矿床位于南岭成矿带中段,主要由石英脉型黑钨矿矿脉和矽卡岩型白钨矿矿体组成.前人对瑶岗仙石英脉型黑钨矿矿体开展了较为详细研究,但对矽卡岩型白钨矿的研究则相对较少,有关其矿体特征、成矿过程及其与石英脉型矿化的成因联系尚不清楚.本文在矿床地质研究基础上,将瑶岗仙矽卡岩型钨矿床分为早期石榴子石-透辉石-白钨矿...  相似文献   

5.
黄沙坪多金属矿床是湖南最大的铅锌生产基地,并且在与矿床内花岗斑岩接触的矽卡岩带产有隐伏的大型矽卡岩型白钨矿和中型规模的辉钼矿。钨-钼矿化的时代为晚侏罗世,与矿床内花岗斑岩侵入时代一致。然而,已有研究认为,由于该花岗斑岩规模很小,矽卡岩型白钨矿的成矿热液应来自深部岩浆房而非此花岗斑岩。为此,我们对花岗斑岩进行了仔细的镜下观测,并且对其中的副矿物和黑云母以及矽卡岩中的白钨矿进行了电子探针成分分析,应用原位LA-ICP-MS方法测定了矽卡岩中白钨矿的稀土元素含量,试图对白钨矿矿化的物质和流体来源提供确切的证据。通过研究,首次在矿床内花岗斑岩中发现了与未蚀变黑云母伴生的黑钨矿和铌铁矿,表明花岗斑岩至少在岩浆结晶作用晚期或岩浆-热液过渡阶段早期就已发生钨的矿物富集,为确定花岗斑岩是控制钨矿化的成矿岩体提供了依据。此外,发现花岗斑岩中的黑云母(属铁叶云母)含有极高的氟含量(3%),指示其应形成于富含氟的高分异岩浆。研究进一步揭示,矽卡岩中白钨矿的轻稀土元素配分模式与花岗斑岩十分一致,而重稀土元素则显著亏损,而且Eu的含量较花岗斑岩更为富集。这暗示形成白钨矿的成矿流体应直接来自花岗斑岩,即:在早期无水矽卡岩阶段,石榴子石的沉淀导致流体中的重稀土亏损而Eu相对富集;白钨矿随后再从这种流体中沉淀。此外,白钨矿的Eu含量与Sm、Gd含量具有负相关关系,表明Eu的分配是相对独立的行为,主要以Eu2+存在,从而指示沉淀白钨矿的流体具有还原的性质。结合前人的研究成果及本文所提供的新证据,我们认为,形成矽卡岩型白钨矿的钨和成矿热液应来自高分异且富F的花岗斑岩,而所需的钙则可能来自于碳酸盐围岩,即矿床内花岗斑岩应是形成钨钼矿床的物质来源,驱动热液活动的能量来源,和寻找隐伏钨矿床的重要找矿标志。  相似文献   

6.
Mineral assemblages present within the Charmitan gold(-tungsten) quartz-vein mineralization have been investigated for their cathodoluminescence behaviour, chemical composition and noble gas isotope systematics. This inventory of methods allows for the first time a systematic reconstruction of the paragenetic relationships of quartz, scheelite, sulphides and native gold within the gold mineralization at Charmitan and provides the basis to utilise noble gas data in the discussion of sources and evolution of ore-forming fluids. The vein quartz is classified into four generations based on microscopic and cathodoluminescence investigations. Quartz I shows intense brittle deformation as associated scheelite I. Undeformed scheelite II overgrows scheelite I and has lower light rare earth element and higher intermediate rare earth element contents as well as higher strontium concentrations. Scheelite II is associated with the economic gold mineralization and formed during re-crystallisation and re-precipitation of material which was partly re-mobilised from early scheelite I during infiltration of gold-bearing fluids. Early stage native gold inclusions are often associated with stage 2 sulphides, scheelite II and bismuth tellurides and contain Ag (3.6–24.4 wt.%), Hg (≤1.0 wt.%) and Bi (≤0.2 wt.%). Later stage electrum grains occur in association with stage 3 sulphides and sulphosalts and contain Hg (<0.8 wt.%) and elevated Sb concentrations (up to 3.0 wt.%). Noble gas isotope data (3He/4He: 0.2-0.4 Ra) for hydrothermal ore fluids trapped in the gold-related sulphides and sulphosalts (stage 2 pyrite and arsenopyrite; stage 3 pyrite, sphalerite, galena and lead sulphosalts) suggest that diverse fluid sources were involved in the formation of the Charmitan gold deposit. These data are indicative of a small, but significant input of fluids from external, deep-seated (mantle and possibly lower crust) sources. A decrease in the input of mantle helium and an increasing role of crustal helium from early to later stages of the mineralization is suggested by the measured 3He/4He and 40Ar*/4He ratios. Sulphides from ore veins in meta-sedimentary rocks contain higher portions of meteoric fluids than those in intrusive rock types as indicated by their lower 3He/36Ar ratios. The 3He/36Ar ratios in the meta-sedimentary rocks agree well with ratios typical of gold mineralizations in the Tien Shan gold province completely hosted by meta-sedimentary sequences, indicating intense fluid-wall rock interaction.  相似文献   

7.
The problem of using surface geochemical exploration techniques in areas of very thick and electrically conductive weathering residuum is common to much of Australia. At the Elura deposit (New South Wales) a distinct electrogeochemical H+ anomaly can be detected in the top few cm of residual soil above about 100 m of conductive residual overburden. In the present paper the results of an investigation of the much more difficult problem of detecting sulfide mineralization beneath thick conductive transported overburden are described.The objective of the study was to demonstrate that sulfide mineralization beneath thick transported overburden can be detected by geochemical patterns in surface soils in the context of an electrogeochemical model of dispersion.The Thalanga massive sulfide deposit in northeast Queensland has at least 4 million tonnes of 15% combined Zn, Pb and Cu. The mineralized horizon lies at the contact between rhyolitic and dacitic rocks of the Cambro-Ordovician Mt. Windsor Volcanics. The deposit is covered by transported cemented Tertiary terrigenous clayey sandstones and grits; these are electrically conductive and vary in thickness from 0 to 70 m.Near-surface soil samples were collected along five traverses normal to the strike of mineralization. The traverses were located to give 0 m, 1 m, 30 m, 50 m, and 70 m overburden thicknesses; there is no known significant mineralization along the last traverse which is assumed to be background, and there is a small gossan where the overburden is absent.Dispersion patterns influenced by electrogeochemical processes should result in relatively low values for ions over massive sulfides with lateral peaks; this has been termed a “rabbit-ear” anomaly. “Rabbit-ear” anomalies in surface soils for H+, Cu, and Zn occur over the sulfide zone. The H+ pattern is better defined where there is a significant depth of overburden (where the anomaly is about 500 m wide). The Cu anomaly is 300–600 m wide, and the Zn anomaly is 450–675 m wide.Even where the overburden is 50 m thick, anomalous “rabbit-ear” anomalies for H+ and Zn are clearly identifiable, but the anomaly for Cu is a single peak of 20 ppm over the hanging wall. It is suggested that the results of this work convincingly demonstrate that at Thalanga surface soil samples may reliably be used to detect massive sulfide deposits - even where they are effectively blind beneath a considerable thickness of transported and conductive overburden. The processes of dispersion are speculated to be diffusion, and it is argued that the pattern-controlling mechanism is electrochemical.  相似文献   

8.
云南北衙矿床是中国21世纪初新发现的超大型矽卡岩-斑岩型金多金属矿床之一,除已经勘查评价的Au、Fe、Cu、Pb、Zn等元素外,还伴生有一定量的W元素等有益组分。文章对北衙金多金属矿床万硐山矿段及外围马头湾和南大坪矿区中的钨矿化开展系统的岩石学和矿物学研究,初步查明了万硐山矿段和其外围矿床中的钨矿化特征。研究发现,这些矿区(段)的含钨矿物主要为白钨矿,在万硐山矿段和马头湾矿区还有少量的黑钨矿产出;钨矿化主要产于岩体与围岩地层接触部位的矽卡岩或其退化蚀变岩中,白钨矿多充填在石榴子石等矿物的晶体间隙,个别被石榴子石包裹(南大坪矿区);万硐山矿段和马头湾矿区中的白钨矿具有较高的w(Mo)。这些特征表明,北衙地区的钨矿化作用与典型矽卡岩型白钨矿矿床基本一致。万硐山矿段中白钨矿交代黑钨矿的过程与磁铁矿的结晶过程密切相关,暗示钨矿化与铁、金矿化作用是同一成矿作用的产物。北衙地区的区域土壤W元素地球化学异常具有良好的浓度分级,且部分异常中心与已知的矿床/点明显对应,说明北衙地区具有良好的钨矿找矿潜力,白钨矿和黑钨矿均可以作为找矿标志性矿物,而Mo元素地球化学异常则可以作为间接找矿标志。  相似文献   

9.
庞玉蕙 《矿物岩石》1997,17(1):96-99
铀钨矿床是一种新矿床类型。其主要矿物是白钨矿和沥青铀矿,它们既有共生,也有伴生。钨以白钨矿细脉、分散状微粒白钨矿和吸附状等形式产出。钨与铀的成矿过程可划分为六个阶段。矿岩时差较大。钨来源于已固结的花岗石,它是由地下热水或热卤水从已固结的花岗岩中浸取出来的。钨(铀)矿化是在低温条件下,在有利的构造岩性中沉淀富集而成的,不是岩浆热液矿床  相似文献   

10.
U–Pb SHRIMP analyses of zircons from various lithologies and ore bodies of the Felbertal scheelite deposit (western and eastern ore field) and neighbouring areas allow the reconstruction of the pre-Alpine magmatic and metamorphic processes responsible for the tungsten mineralization. The ore deposit belongs to the Magmatic Rock Formation, which is tectonically squeezed between the Habach Phyllite Formation and the Basal Schist Formation (all members of the Habach Group). In both the eastern and western ore field, the pre-mineralization geological processes are marked by the emplacement of basalts (547±27?Ma). Ensialic back-arc extension provided pathways for gabbroic and pyroxenitic melts as well as normal "I-type" granitoids (minimum crystallization age of 529±18?Ma). The rock assemblage forms a magmatic arc on an approximately 2?Ga continental Gondwana (?) margin. Post-emplacement tectonism and metamorphism have converted the basalts to fine-grained amphibolites, the gabbroic and pyroxenitic rocks to coarse-grained amphibolites and hornblendites, and the granitoids to leucocratic orthogneisses, respectively. Tungsten mineralization is intimately related to small patches and dikes of differentiated granitoids in the eastern ore field and the K2 ore body in the western ore field. The granitic melts have supposedly been generated by ongoing differentiation of calcalkaline magmas. They cut the older lithologies and intruded along the same pathways as the earlier melts. Fluids have been carried up along a major line in the eastern ore field. They caused the formation of an elongate ore body with a scheelite-quartz stockwork zone (scheelite-bearing quartz veinlets and veins) and an overlying, likewise elongate, 900-m-long, scheelite-rich quartzite lens. In the western ore field, accompanying fluids produced the K2 ore body. In this ore body, an eruption breccia occurs above a mineralized quartzite. The breccia (younger than 529±18?Ma) contains mineralized quartzite clasts as well as barren fine-grained amphibolite clasts and leucocratic orthogneiss-clasts that are similar to the surrounding host rock equivalents. The quartzite, which represents the main mineralization stage of the K2 ore body, is unsuitable for dating. However, the scheelite-rich quartzite lens of the eastern ore field is probably coeval. This lens locally lies on top of a differentiated and strongly mineralized gneiss. The crystallization age of this gneiss is 529±17?Ma, and marks the peak of tungsten input in the eastern ore field. Small, differentiated granitic dikes, which cut both the K2 eruption breccia and the K2 quartzite in the western ore field, contain only minor scheelite and mark a decrease in mineralization at 519±14?Ma. Thus, a period between 530 and 520?Ma and a setting between magmatic arc and (ensialic) back-arc may properly explain the likely scenario for the primary tungsten input (stage-1 scheelite) by differentiated granitic melts of calcalkaline character. Surprisingly, a second stage-2 scheelite formation was induced in the western ore field by a Variscan granite intrusion (K1–K3 gneiss; 336±19?Ma), the emplacement time of which is pre-dated by a cross-cutting dacitic dike of 340±5?Ma. This mineralization, which occurs in small quartz veins and within a quartz aureole atop the intrusion as well as an even younger mineralization in shear zones (yellowish-fluorescent stage-2 scheelite porphyroblasts), is bracketed between 355?Ma (the upper age limit of the K1–K3 gneiss precursor) and 335?Ma (the lower age limit of the dacitic dike, which is stage-2 scheelite free). Supposedly, long-lasting Variscan (amphibolite facies) metamorphic conditions till 282±2?Ma extended the scheelite remobilization. They caused a further dispersion of scheelite and induced the growth of individual grains and of rims around older grains (bluish-fluorescent stage-3 scheelite). The Alpine metamorphism of lower amphibolite to upper greenschist facies conditions caused a further, minor scheelite remobilization, especially along some faults and quartz veins, including sparse, but large, whitish-bluish-fluorescent crystals (stage-4 scheelite).  相似文献   

11.
The basement of the Front Range structural-facies zone consists of diorite, granodiorite, and plagiogranite gneisses and their vein derivatives: plagioalaskites, plagioaplites, and pegmatites (the pre-Paleozoic gabbro-diorite-plagiogranite association) and their host metamorphic rocks (the Balkanskaya and Armovskaya formations). This pre-Paleozoic basement crops out only in the valley of the Greater Laba River in the region of the BoPsheblyb [“Big Blyb”] tungsten deposit. On the basis of their petro-geochemistry and mineralogy (presence of a substantial amount of accessory scheelite), rare-earth contents and their distribution spectrum, and low strontium ratio (87Sr/86Sr = 0.70407-0.70442), these granodiorite and plagiogranite gneisses can be classified as tungsten-bearing and most likely of mantle origin.

The scheelite mineralization, of quartz-vein type, is spatially related to the rocks of this gabbro-diorite-plagiogranite association. On the basis of the results of geochemical and isotopic (Sr, 0) investigations of accessory scheelite from the granodiorite and plagiogranite gneisses (87Sr/86Sr = 0.70398 and 0.70411, S180 = +3.72%) and scheelites from the ore body of the BoPsheblyb deposit, they are virtually identical, indicating that the tungsten mineralization was genetically related to the rocks of the pre-Paleozoic gabbro-diorite-plagiogranite association, and that the ore material (scheelite) probably had a mantle source. This last conclusion also is confirmed by the results of EPR (electron paramagnetic resonance) investigations of scheelites from different orebodies of the deposit (ΣEu2+ > ΣGd3+).  相似文献   

12.
高任  谢桂青  冯道水  纪云昊  钟浩  张磊 《矿床地质》2023,42(6):1139-1158
钨和铜有明显不同的地球化学性质,但钨、铜在矿床中可以共伴生,原因还不清楚。长江中下游成矿带发育典型的斑岩-矽卡岩-层状铜(钨)多金属成矿系统,其中层状铜(钨)矿体成矿时代数据相对较少。作者以该带九瑞矿集区武山铜矿区新发现的钨矿(化)体为研究对象,开展了矿相学、白钨矿原位U-Pb年代学和元素地球化学的研究。研究发现,武山矿床具有层状、矽卡岩型、斑岩型3类铜矿体均有白钨矿矿化,矿床整体由浅至深存在Cu→Cu-W的分带规律。3类矿石中的白钨矿产状类似,充填在粗粒黄铁矿晶体间隙,或呈浸染状分布,被黄铜矿、闪锌矿等交代,产于退化蚀变阶段;其中斑岩中还存在少量晚世代白钨矿,与石英、黄铁矿共生,形成细脉并穿切花岗闪长斑岩,为石英-硫化物阶段产物。通过对退化蚀变阶段白钨矿进行测年和地球化学研究,作者获得了层状矿体含钨黄铜矿矿石中的白钨矿原位LA-ICP-MS U-Pb同位素年龄为(140.6±1.5)Ma,代表层状铜钨矿体成矿时代,在误差范围内与前人获得的斑岩、矽卡岩型矿体的成矿时代基本一致。层状矿体中白钨矿的稀土元素特征和Sr/Mo值符合岩浆热液矿床特征,相比矽卡岩型、花岗岩型白钨矿,层状矿体中白钨矿具有明显较低Mo含量,反映了形成于相对低氧逸度条件;另外,层状矿体中白钨矿具有正Eu异常和与围岩相近的高Y/Ho值的特征,推测其是流体充分交代了含碳围岩地层导致流体性质的明显改变,并且有利于白钨矿和黄铁矿的沉淀,可从深部黄龙组层间部位形成钨品位更富的黄铁矿矿石得到佐证。文章从白钨矿角度证实层状矿体是斑岩-矽卡岩成矿系统的重要组成部分,提出在九瑞矿集区已知铜矿床的深部,尤其是燕山期中酸性侵入岩与含碳质碳酸盐岩的接触带及黄龙组层位,是寻找富钨矿体的新找矿方向。白钨矿的U-Pb同位素定年为长江中下游成矿带层状矿体的成矿时代提供了新的可靠依据。  相似文献   

13.
肖文进 《地质与勘探》2023,59(5):921-931
新疆天宇北金钨矿地处沙泉子断裂以南的中天山地块,为近年新发现的钨矿点,产于新太古界-古元古界天湖岩群碳酸盐岩与晚元古代斜长片麻状花岗岩、晚石炭世-早二叠世二长花岗岩接触带,且与以钨为主的1∶5万岩屑测量综合异常对应,与北山地区钨钼矿为同一成矿带,金钨矿具有多期岩浆活动及成矿作用特点。该矿点矿床类型属矽卡岩型钨矿,矿化以白钨矿化为主,伴生金,含矿二长花岗岩成矿时代为华力西期。槽探工程控制矿体长大于220 m,平均厚2.70 m,WO3平均品位0.46%。钻探工程和物探异常激电测深双验证表明:钨矿化带在深部有一定的延伸。在该区及外围,围绕前寒武纪碳酸盐岩地层与中酸性岩浆岩的接触带,开展钨多金属地质找矿工作,找矿潜力大。  相似文献   

14.
云南文山官房钨矿床团山矿段围岩蚀变与矿化规律研究   总被引:1,自引:0,他引:1  
云南省文山县官房白钨矿床属于中—大型矽卡岩型白钨矿床。矿区内围岩蚀变强烈,蚀变分带明显,依据蚀变岩岩相学及岩石化学测试结果,并结合钻孔编录资料,将团山矿段围岩蚀变划分为3个蚀变带,自花岗岩体向外依次为金云母-绿帘石化带→透辉石-透闪石化带→镁橄榄石化带。通过对各蚀变带中岩石组分迁移量分析认为:在团山矿段热液蚀变及白钨矿化过程中,来自花岗质岩浆热液的A l2O3、S iO2、TFe、K2O、Na2O迁入,灰岩(白云质灰岩)中MgO、CaO迁出,团山矿段白钨矿化主要发生在透辉石-透闪石化带中,矿体产状与透辉石-透闪石带产状基本一致,橄榄石化带中钨矿化相对较弱,金云母-绿帘石化带中仅可见零星钨矿化。这一研究成果将对文山官房钨矿床成矿规律研究以及矿区进一步找矿提供重要的理论依据。  相似文献   

15.
安徽桂林郑钼钨矿床位于江南钨矿带北部,是目前区内唯一钼储量达到大型的钼钨矿床。本文在对该矿床地质特征和已有成果总结基础上,详细观察了各代表性矿化蚀变样品的岩相学特征,提出该矿床具镁质矽卡岩矿床特征,是桂林郑花岗斑岩熔体与奥陶系白云质灰岩地层交代的产物。矿石类型可分为靠近岩体(100m)浸染状矿石和远离岩体( 100m)的条带状矿石,分别赋存在接触交代矽卡岩和层控矽卡岩中。桂林郑矿床的矿石矿物为富钼白钨矿(钼钙矿-白钨矿系列),可分为三个世代,分别形成于无水矽卡岩阶段(Sch-Ⅰ)和含水矽卡岩-氧化物阶段(Sch-Ⅱ和Sch-Ⅲ),辉钼矿仅在浸染状矿石富钼白钨矿(Sch-Ⅲ)边部少量发育。不同矿石类型、不同世代富钼白钨矿的电子探针成分分析显示,富钼白钨矿的钼含量(MoO_3%)在5.75%~71.02%之间,均值为46.00%(n=224),总体具有超常富钼的特点;从无水矽卡岩阶段到含水矽卡岩-氧化物阶段(早→晚)、从浅部的条带状矿石到深部的浸染状矿石(浅→深),富钼白钨矿MoO_3含量有降低趋势。桂林郑钼钨矿床是首个以富钼白钨矿为主要矿石矿物的钼-多金属矿床,这一特殊钼钨矿床的发现深化了矽卡岩钼钨矿床的成因认识,同时对江南钨矿带内区域成矿规律与找矿勘探工作的推进提供了依据。  相似文献   

16.
The Sangdong scheelite–molybdenite deposit in northeast South Korea consists of strata-bound orebodies in intercalated carbonate-rich layers in the Cambrian Myobong slate formation. Among them, the M1 layer hosts the main orebody below which lie layers of F1–F4 host footwall orebodies. Each layer was first skarnized with the formation of a wollastonite + garnet + pyroxene assemblage hosting minor disseminated scheelite. The central parts of the layers were subsequently crosscut by two series of quartz veining events hosting minor scheelite and major scheelite–molybdenite ores, respectively. The former veins associate amphibole–magnetite (amphibole) alteration, whereas the latter veins host quartz–biotite–muscovite (mica) alteration. Deep quartz veins with molybdenite mineralization are hosted in the Cambrian Jangsan quartzite formation beneath the Myobong formation. In the Sunbawi area, which is in close proximity to the Sangdong deposit, quartz veins with scheelite mineralization are hosted in Precambrian metamorphic basement. Three muscovite 39Ar–40Ar ages between 86.6 ± 0.2 and 87.2 ± 0.3 Ma were obtained from M1 and F2 orebodies from the Sangdong deposit and Sunbawi quartz veins. The Upper Cretaceous age of the orebodies is concordant with the published ages of the hidden Sangdong granite, 87.5 ± 4.5 Ma. This strongly suggests that the intrusion is causative for the Sangdong W–Mo ores and Sunbawi veins.Fluid inclusions in the quartz veins from the M1 and F2 orebodies, the deep quartz-molybdenite veins, and the Sunbawi veins are commonly liquid-rich aqueous inclusions having bubble sizes of 10–30 vol%, apparent salinities of 2–8 wt% NaCl eqv., and homogenization temperatures of 180–350 °C. The densities of the aqueous inclusions are 0.70–0.94 g/cm3. No indication of fluid phase separation was observed in the vein. To constrain the formation depth in the Sangdong deposit, fluid isochores are combined with Ti–in–quartz geothermometry, which suggests that the M1 and F2 orebodies were formed at depths of 1–3 km and 5–6 km below the paleosurface, respectively. The similarity of the Cs (cesium) concentrations and Rb/Sr ratios in the fluid inclusions of the respective orebodies indicate an origin from source magmas having similar degrees of fractionation and enrichment of incompatible elements such as W and Mo. High S concentrations in the fluids and possibly organic C in the sedimentary source likely promoted molybdenite precipitation in the Sangdong orebodies, whereas the scheelite deposition in the deep quartz–molybdenite veins hosted in the quartzite is limited by a lack of Ca and Fe in the hydrothermal fluids. The molybdenite deposition in the Sunbawi quartz–molybdenite veins hosted in the Precambrian metamorphic basement rocks was possibly limited by a lack of reducing agents such as organic C.  相似文献   

17.
白钨矿和石榴子石的原位微量元素特征能提供成矿流体的演化信息.长江中下游成矿带鄂东南矿集区龙角山矿床是近年发现的大型矽卡岩钨矿床,为区域找矿勘查和成科学研究提供了新的方向.龙角山矿床的流体演化和矿床成因亟待开展系统研究.文章在详细的野外工作和前人研究基础上,通过对矿床中矽卡岩阶段、退蚀变阶段和石英硫化物阶段的白钨矿和石榴...  相似文献   

18.
Scheelite-bearing calc-silicate gneisses (CSG) oceur in the Montagne Noire within a series of dominant micaschists. Detailed petrographical and mineralogical studies reveal three successive stages of metamorphism and hydrothermal alteration: (1) stage 1, a regional metamorphism at 550°C and 4.5 kb where no mineralization is formed; (2) stage 2a, a hydrothermal alteration at 500 to 450°C and 4 to 3 kb which is characterized by an intense sericitization of feldpars and deposition of Sn in Sn-bearing cale-silicates; and (3) stage 2b, a hydrothermal alteration characterized by the crystallization of idocrasegrossular in CSG with concomittant precipitation of scheelite. Tungsten was transported through the micaschist environment and deposited as scheelite only in the CSG of stage 2b at relatively low pressures. To characterize the mechanism of tungsten transport, tungsten speciation at high P-T and scheelite solubility in aqueous solations buffered by the CSG and by the micaschists assemblages were calculated. It was found that H2WO 0 4 , HWO - 4 and WO 2- 4 are the dominant tungsten aqueous species in H2O–NaCl (one molal) solutions at 500°C and 2–4 kb. Calculations also indicate that scheelite deposition is controlled by decreasing pressure and increasing activity of aqueous calcium in this system. This is consistent with the petrographical and mineralogical observations. The consequences of the presence of volatiles (N2, CH4, CO2) in the regional fluids were examined by determining the effect of N2 on tungsten speciation and scheelite solubility. The addition of N2 (up to 10 mol%) to the mineralizing fluids results in a marked increase in H2WO 0 4 and HWO - 4 concentrations relative to WO 2- 4 and in a large decrease of scheelite solubility. This mechanism favours scheelite precipitation and accounts for the commonly observed association of W (and Sn) deposits with graphitic series generating mixed volatiles fluids.  相似文献   

19.
沃溪矿床位于湘西雪峰隆起区的转折部位,是该区金锑钨矿床的典型代表。该矿床成矿元素及成矿期次较为复杂,各成矿阶段的形成时代长期存在争议。本次研究在对沃溪矿床详细野外调查及岩相学观察的基础上,对深部中段矿体中的白钨矿、磷灰石及浅部中段矿体中的黑钨矿开展了U-Pb同位素分析。依据本次所获年龄数据,结合观察到的矿脉交切关系、矿物共生组合等特征,本文认为沃溪矿床除了加里东期成矿作用之外,还存在燕山期成矿作用。其中,白钨矿形成相对较早,成矿年龄为149.0±12Ma、144.8±1.7Ma、139.8±6.1Ma;黑钨矿与白钨矿同时生成(或稍晚),成矿年龄为137.8±3.9Ma、134.8±5.1Ma;自然金、辉锑矿主要在白钨矿、黑钨矿形成以后通过沉淀而成,且自然金在晚阶段(125.8±5.6Ma、123.8±4.6Ma)石英-碳酸盐脉中仍有少量产出。综合已有年代学资料推测,沃溪矿床可能在经历了加里东期陆内造山成矿作用之后,还经受了燕山期伸展构造背景下深部流体不同程度的叠加改造作用。而该矿床发现的矿脉原地破裂后被后期矿物胶结等现象,则指示其矿脉的形成与液压致裂作用有关,这种作用导致矿脉反复裂开-愈合,有利于成矿元素(尤其是金)的活化迁移和再富集沉淀。  相似文献   

20.
Downstream dispersion curves for certain trace metals were obtained from two mineralized areas in the southeastern United States. Fe-Mn oxide coating on lithic fragments and quartz pebbles, as well as the minus 80-mesh fraction of the coexisting stream sediment were analyzed for a variety of metals. In Lincoln County, Georgia, 8 sample sets were collected along a stream draining the Magruder mine, a polymetallic sulfide deposit (Zn-Cu-Pb-Ag-Au) in metavolcanic rocks. Five sample sets were collected along Joe Mill Creek in Grainger County, Tennessee, downstream from a zone of zinc mineralization in carbonate rocks (Mississippi Valley-type). In addition, 5 sample sets were collected from an unmineralized area near Athens, Georgia.The results indicate the following: (1) the anomaly/background ratio for zinc and copper is markedly higher in the Fe-Mn oxide coatings in the mineralized drainages; (2) in drainages containing lead mineralization, the anomaly/background ratio is markedly higher in the minus 80-mesh fraction for lead which is not concentrated in the coatings; and (3) the ratios Zn/Mn and Cu/Mn, as well as Zn/Co and Cu/Co, in the Fe-Mn oxide coatings enhance downstream detectability of mineralization.There are several potential advantages of using coatings versus the conventional minus 80-mesh fraction in stream sediment geochemical surveys. Because soluble metal is brought into the stream mainly in groundwater, deeper anomaly sources may be detectable from the oxide coatings than from clastic fractions of alluvium where much of the metal is derived from surficial erosion. Variability due to sampling may also be reduced, providing better discrimination of anomalies. In areas of glacial or alluvial cover, coating surveys may be particularly applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号