首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper propagation of magnetogasdynamic spherical shock waves is considered in an exponentially increasing medium. The shock wave moves with variable velocity and the total energy of the wave is variable. It is shown that the magnetic field changes the flow velocity, density and pressure.  相似文献   

2.
The propagation of sonic discontinuity in conducting and radiating atmosphere has been discussed under the influence of magnetic field. The velocity of sonic wave and its termination into shock wave has been obtained. We have also obtained the critical time at which sonic wave terminates into shock wave. There is significant effect of magnetic field on sonic velocity and its termination into shock wave.  相似文献   

3.
In this paper propagation of spherical shock waves with radiation heat flux is considered in an exponentially increasing medium. The shock wave moves with variable velocity and the total energy of the wave is variable. For different values of radiation parameter, the numerical solution has been made and the nature of the field variables are illustrated by the tables.  相似文献   

4.
The evolutionary state of slow forward shock waves is examined with the use of two MHD numerical codes. Our study is intended to be exploratory rather than a detailed parametric one. The first code is one-dimensional (with three components of velocity and magnetic field) which is used to follow a slow shock that propagates into a positive gradient of density versus distance. It is found that the slow shock evolves into an extraneous (intermediate) shock wave. The second code has a spherical, one-dimensional, planar geometry (with two velocity and magnetic field components) which is used to follow a spiral interplanetary magnetic field. It is found that a slow shock type perturbation can generate a forward slow shock; a fast forward shock is generated in the front of the slow shock; a contact discontinuity is formed behind the slow shock, and a compound nonlinear MHD wave is formed behind the contact discontinuity with a fast reverse shock formed further behind. Thus, we demonstrate that the evolution of a slow shock into (solely) a fast shock, as suggested by Whang (1987), is much more complicated.  相似文献   

5.
6.
A blast wave, which is headed by a strong spherical shock wave, free or driven, moving into a medium permeated by a magnetic field and having a power law density distribution, is studied. The trajectory and the associated quantities such as velocity of the shock is obtained analytically using a simple approximation technique.  相似文献   

7.
Using the C.C.W. method, propagation of diverging cylindrical shock wave in a self-gravitating and rotating gas under the influence of a constant axial magnetic field has been studied for two cases of weak and strong shocks. Medium ahead of the shock is supposed to be homogeneous. Analytical relations for shock velocity and shock strength along with the expressions for the pressure, density, and particle velocity just behind the shock wave have been also obtained for both cases.  相似文献   

8.
A similarity solution for the flow variables behind a radiation-driven magnetohydrodynamic shock wave has been obtained. Owing to absorption of radiation incident on the shock layer, it is assumed that the total energy contained behind the shock surface is increasing. The ambient medium in which shock wave moves is non-uniform and it is optically thin so that there is no interaction with the incident radiation. A comparison has been made between the results with and without the magnetic field when the density and azimuthal magnetic field distributions are variable.While this paper was in press, Professor Verma passed away on 4 April 1985, without being able to read its proofs.  相似文献   

9.
A point explosion in a spheroid with axially symmetric exponential density distribution is investigated by generalizing the method of Laumbach and Probstein to include the effects of a magnetic field. It is shown that the shock velocity decreases and tends to zero. Also, the elongation of the shock envelope along the axis of symmetry is much reduced and the blowout of the shock wave is removed on account of the magnetic field.  相似文献   

10.
This work treats the matter deceleration in a magnetohydrodynamic radiative shock wave at the surface of a star. The problem is relevant to classical T Tauri stars where infalling matter is channelled along the star's magnetic field and stopped in the dense layers of photosphere. A significant new aspect of this work is that the magnetic field has an arbitrary angle with respect to the normal to the star's surface. We consider the limit where the magnetic field at the surface of the star is not very strong in the sense that the inflow is super-Alfvénic. In this limit, the initial deceleration and heating of plasma (at the entrance to the cooling zone) occurs in a fast magnetohydrodynamic shock wave. To calculate the intensity of radiative losses we use 'real' and 'power-law' radiative functions. We determine the stability/instability of the radiative shock wave as a function of parameters of the incoming flow: velocity, strength of the magnetic field, and its inclination to the surface of the star. In a number of simulation runs with the 'real' radiative function, we find a simple criterion for stability of the radiative shock wave. For a wide range of parameters, the periods of oscillation of the shock wave are of the order of  0.02–0.2 s  .  相似文献   

11.
The propagation of a magnetogasdynamic shock wave originating in a stellar interior, is ocnsidered when it approaches the surfaces of the star. The flow behind the shock wave is assumed isothermal rather than adiabatic to stimulate the conditions of large radiative transfer near the stellar surface. The product solution of McVittie has been used to obtain exact solution of the problem. It has been obtained that velocity, density, pressure and magnetic field increases as we move from shock surface towards the nucleus of the star.  相似文献   

12.
A propagation of diverging cylindrical shock in a self-gravitating gas, having an initial density and azimuthal magnetic field distributions variable, has been studied for the two cases (i) when the shock is weak and (ii) when it is strong. Analytical relations for shock velocity and shock strength have been obtained. Lastly, the expressions for the pressure, the density and the particle velocity immediately behind the shock have been also obtained for both cases.  相似文献   

13.
In this paper we have obtained a similarity solution for a spherical magneto-gas dynamic shock wave in a self-gravitating system. It is observed that the total energy of the shock wave is not a constant, but it decreases with time. A remarkable change in radiation flux is also being observed here because of the presence of the magnetic field while there is no change in density, velocity and pressure.  相似文献   

14.
An analytic expression for the velocity of magnetogasdynamic shock wave, propagating in rotating inter stellar atmosphere has been obtained by using the method of characteristics and considering the effect of coriolis force. It has been shown that in the outer convective layer of the star Coriolis force and magnetic field both have significant effect on the shock velocity.  相似文献   

15.
Strong cylindrical magnetogasdynamic shock waves in rotating interplanetary medium has been studied and an analytic solution for their propagation has been obtained. Using characteristic method and considering the effect of Coriolis force, we have shown that magnetic field has significant effect on the velocity of the shock wave.  相似文献   

16.
We numerically investigate Alfvén waves propagating along an axisymmetric and non-isothermal solar flux tube embedded in the solar atmosphere. The tube magnetic field is current-free and diverges with height, and the waves are excited by a periodic driver along the tube magnetic field lines. The main results are that the two wave variables, the velocity and magnetic field perturbations in the azimuthal direction, behave differently as a result of gradients of the physical parameters along the tube. To explain these differences in the wave behavior, the time evolution of the wave variables and the resulting cutoff period for each wave variable are calculated and used to determine regions in the solar chromosphere where strong wave reflection may occur.  相似文献   

17.
Ü.D. Göker 《New Astronomy》2012,17(2):130-136
A Lagrangian Remap (LareXd) Code is employed to investigate the shock wave formation in the current sheet of a solar coronal magnetic loop and its effect on the magnetic reconnection. We constructed the slow shock structure in the presence of viscosity and heat conduction parallel and perpendicular to the magnetic field and pairs of slow shocks propagate away from the central current sheet, the so-called diffusion region. Significant jumps in plasma density, pressure, velocity and magnetic field occur across the main shock while the temperature appears in the foreshock. In the presence of dissipative effects, the distinct jumps disappear and the shock profiles show smooth transition between the downstream and the upstream regions while the plasma density and the pressure show very narrow and a sharp decrease with time. These results can be applied to the heating of the solar corona, the structure of the magnetic reconnection and the solar wind.  相似文献   

18.
Ramaty  R.  Murphy  R. J.  Kozlovsky  B.  Lingenfelter  R. E. 《Solar physics》1983,84(1-2):395-418
An analysis, with a representative (canonical) example of solar-flare-generated equatorial disturbances, is presented for the temporal and spatial changes in the solar wind plasma and magnetic field environment between the Sun and one astronomical unit (AU). Our objective is to search for first order global consequences rather than to make a parametric study. The analysis - an extension of earlier planar studies - considers all three plasma velocity and magnetic field components (V r, Vφ, V0, and B r, B0, Bφ) in any convenient heliospheric plane of symmetry such as the ecliptic plane, the solar equatorial plane, or the heliospheric equatorial plane chosen for its ability (in a tilted coordinate system) to order northern and southern hemispheric magnetic topology and latitudinal solar wind flows. Latitudinal velocity and magnetic field gradients in and near the plane of symmetry are considered to provide higher-order corrections of a specialized nature and, accordingly, are neglected, as is dissipation, except at shock waves. The representative disturbance is examined for the canonical case in which one describes the temporal and spatial changes in a homogeneous solar wind caused by a solar-flare-generated shock wave. The ‘canonical’ solar flare is assumed to produce a shock wave that has a velocity of 1000 km s#X2212;1 at 0.08 AU. We have examined all plasma and field parameters at three radial locations: central meridian and 33° W and 90° W of the flare's central meridian. A higher shock velocity (3000 km s#X2212;1) was also used to demonstrate the model's ability to simulate a strongly-kinked interplanetary field. Among the global (first-order) results are the following: (i) incorporation of a small meridional magnetic field in the ambient magnetic spiral field has negligible effect on the results; (ii) the magnetic field demonstrates strong kinking within the interplanetary shocked flow, even reversed polarity that - coupled with low temperature and low density - suggests a viable explanation for observed ‘magnetic clouds’ with accompanying double-streaming of electrons at directions ~ 90° to the heliocentric radius.  相似文献   

19.
An exact solution for a spherically-symmetric model of a magneto-radiative shock wave in the solar wind caused by the explosive energy release of a solar flare has been, obtained in the case when energy released is an increasing function of the time. It has been shown that due to increasing energy, density, pressure, radiation flux, magnetic field and shock velocity change considerably.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号