首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stability regions are identified in the neighborhood of periodic orbits. Features of motion in these regions are investigated. The structure of stability regions in the neighborhood of the Schubart, Moore, and Broucke orbits, the S-orbit, and the Ducati orbit is studied. The following features of motion are identified near these periodic orbits: libration, precession, symmetrization, centralization, bounce (a transition between types of trajectories), ejections, etc.  相似文献   

2.
It is proved that the vertical critical orbits of the planar circular restricted three-body problem can be used as starting points for finding periodic orbits of the three-dimensional generalN-body problem. A numerical example is given.  相似文献   

3.
4.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

5.
This paper studies the existence and stability of equilibrium points under the influence of small perturbations in the Coriolis and the centrifugal forces, together with the non-sphericity of the primaries. The problem is generalized in the sense that the bigger and smaller primaries are respectively triaxial and oblate spheroidal bodies. It is found that the locations of equilibrium points are affected by the non-sphericity of the bodies and the change in the centrifugal force. It is also seen that the triangular points are stable for 0<μ<μ c and unstable for mc £ m < \frac12\mu_{c}\le\mu <\frac{1}{2}, where μ c is the critical mass parameter depending on the above perturbations, triaxiality and oblateness. It is further observed that collinear points remain unstable.  相似文献   

6.
The restricted (equilateral) four-body problem consists of three bodies of masses m 1, m 2 and m 3 (called primaries) lying in a Lagrangian configuration of the three-body problem i.e., they remain fixed at the apices of an equilateral triangle in a rotating coordinate system. A massless fourth body moves under the Newtonian gravitation law due to the three primaries; as in the restricted three-body problem (R3BP), the fourth mass does not affect the motion of the three primaries. In this paper we explore symmetric periodic orbits of the restricted four-body problem (R4BP) for the case of two equal masses where they satisfy approximately the Routh’s critical value. We will classify them in nine families of periodic orbits. We offer an exhaustive study of each family and the stability of each of them.  相似文献   

7.
The orbits about Lagrangian equilibrium points are important for scientific investigations. Since, a number of space missions have been completed and some are being proposed by various space agencies. In light of this, we consider a more realistic model in which a disk, with power-law density profile, is rotating around the common center of mass of the system. Then, we analyze the periodic motion in the neighborhood of Lagrangian equilibrium points for the value of mass parameter $0<\mu\leq\frac{1}{2}$ . Periodic orbits of the infinitesimal mass in the vicinity of equilibrium are studied analytically and numerically. In spite of the periodic orbits, we have found some other kind of orbits like hyperbolic, asymptotic etc. The effects of radiation factor as well as oblateness coefficients on the motion of infinitesimal mass in the neighborhood of equilibrium points are also examined. The stability criteria of the orbits is examined with the help of Poincaré surfaces of section (PSS) and found that stability regions depend on the Jacobi constant as well as other parameters.  相似文献   

8.
In this article, we investigate the mathematical part of De Sitter’s theory on the Galilean satellites, and further extend this theory by showing the existence of some quasi-periodic librating orbits by application of KAM theorems. After showing the existence of De Sitter’s family of linearly stable periodic orbits in the Jupiter–Io–Europa–Ganymede model by averaging and reduction techniques in the Hamiltonian framework, we further discuss the possible extension of this theory to include a fourth satellite Callisto, and establish the existence of a set of positive measure of quasi-periodic librating orbits in both models for almost all choices of masses among which one sufficiently dominates the others.  相似文献   

9.
The modification of Hill’s problem where the primary is radiating and the secondary is an oblate spheroid is considered. The evolution of the network of the basic families of planar periodic orbits for various values of the parameters of the problem is studied. For specific values of the parameters these families are determined accurately together with their stability properties. The stability of retrograde satellites in an appropriate space of initial conditions is also determined by means of surface of section portraits of the Poíncare map and higher order resonances are studied. Simple asymmetric periodic orbits of the problem are also determined.  相似文献   

10.
Using the continuation method we prove that the circular and the elliptic symmetric periodic orbits of the planar rotating Kepler problem can be continued into periodic orbits of the planar collision restricted 3-body problem. Additionally, we also continue to this restricted problem the so called “comet orbits”. An erratum to this article can be found at  相似文献   

11.
The Hamiltonian for orbits near 4 and mass ratios near 1 is brought into a normal form. A theorem shows that two coefficients in this expansion predict the behavior of the periodic orbits.This research is partially supported by Office of Naval Research Grant N00014-67-A-0113-0019.  相似文献   

12.
We study the regions of finite motions in the vicinity of three simple stable periodic orbits in the general problem of three equal-mass bodies with a zero angular momentum. Their distinctive feature is that one of the moving bodies periodically passes through the center of mass of the triple system. We consider the dynamical evolution of plane nonrotating triple systems for which the initial conditions are specified in such a way that one of the bodies is located at the center of mass of the triple system. The initial conditions can then be specified by three parameters: the virial coefficient k and the two angles, φ1 and φ2, that characterize the orientation of the velocity vectors for the bodies. We scanned the region of variation in these parameters k∈(0, 1); φ1, φ2∈(0, π) at steps of δk=0.01; δφ1=δφ2=1° and identified the regions of finite motions surrounding the periodic orbits. These regions are isolated from one another in the space of parameters (k, φ1, φ2). There are bridges that correspond to unstable orbits with long lifetimes between the regions. During the evolution of these metastable systems, the phase trajectory can “stick” to the vicinity of one of the periodic orbits or move from one vicinity to another. The evolution of metastable systems ends with their breakup.  相似文献   

13.
Periodic orbits     
Recent results on periodic orbits are presented. Planetary systems can be studied by the model of the general 3-body problem and also some satellite systems and asteroid orbits can be studied by the model of the restricted 3-body problem. Triple stellar systems and planetary systems with two Suns are close to periodic systems. Finally, the motion of stars in various types of galaxies can be studied by finding families of periodic orbits in several galactic models.  相似文献   

14.
Two families of symmetric periodic orbits of the planar, general, three-body problem are presented. The masses of the three bodies include ratios equal to the Sun-Jupiter-Saturn system and the periods of the orbits of Jupiter and Saturn are in a 25 resonance. The (linear) stability of the orbits are studied in relation to eccentricity and mass variations. The generation of the two families of periodic orbits follows a systematic approach and employs (numerical) continuation from periodic orbits of the first and second kind in the circular restricted problem to the elliptic restricted problem and from the circular and elliptic problems to the general problem through bifurcation phenomena relating the three dynamical systems. The approach also provides insight into the evolutionary process of periodic orbits continued from the restricted problems to the general problem.  相似文献   

15.
A systematic approach to generate periodic orbits in the elliptic restricted problem of three bodies in introduced. The approach is based on (numerical) continuation from periodic orbits of the first and second kind in the circular restricted problem to periodic orbits in the elliptic restricted problem. Two families of periodic orbits of the elliptic restricted problem are found by this approach. The mass ratio of the primaries of these orbits is equal to that of the Sun-Jupiter system. The sidereal mean motions between the infinitesimal body and the smaller primary are in a 2:5 resonance, so as to approximate the Sun-Jupiter-Saturn system. The linear stability of these periodic orbits are studied as functions of the eccentricities of the primaries and of the infinitesimal body. The results show that both stable and unstable periodic orbits exist in the elliptic restricted problem that are close to the actual Sun-Jupiter-Saturn system. However, the periodic orbit closest to the actual Sun-Jupiter-Saturn system is (linearly) stable.  相似文献   

16.
17.
In this paper, the periodic orbits around triangular points in the range of linear stability of the restricted three body problem, when the smaller primary and the test particle have the shape of an oblate spheroid and the larger primary is a radiation emitter with the allowance for the gravitational potential from the belt, is studied. It is observed that the orbits around these points are elliptical and have long and short periodic orbits. The period, orientation, eccentricities, the semi-major and semi-minor axis of the elliptic orbits are found. The study includes some numerical examples in the case of the Sun-Earth and Sun-Jupiter systems.  相似文献   

18.
Recent calculations (analytical and semi-analytical), indicating that thermal effects in the relativistic regime may enhance the stability of spherically-symmetric models, are confirmed in a new example.  相似文献   

19.
We study the motions of an infinitesimal mass in the Sitnikov four-body problem in which three equal oblate spheroids (called primaries) symmetrical in all respect, are placed at the vertices of an equilateral triangle. These primaries are moving in circular orbits around their common center of mass. The fourth infinitesimal mass is moving along a line perpendicular to the plane of motion of the primaries and passing through the center of mass of the primaries. A relation between the oblateness-parameter ‘A’ and the increased sides ‘ε’ of the equilateral triangle during the motion is established. We confine our attention to one particular value of oblateness-parameter A=0.003. Only one stability region and 12 critical periodic orbits are found from which new three-dimensional families of symmetric periodic orbits bifurcate. 3-D families of symmetric periodic orbits, bifurcating from the 12 corresponding critical periodic orbits are determined. For A=0.005, observation shows that the stability region is wider than for A=0.003.  相似文献   

20.
Sequences of periodic, consecutive-collision orbits in the restricted problem of three bodies have been found for cases where the two primaries are not of equal mass. Each sequence is imbedded in a family of consecutive-collision orbits. There seems to be an infinite number of such families and an infinite number of members in each sequence. Some of the orbits are shown graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号