共查询到20条相似文献,搜索用时 9 毫秒
1.
针对高光谱数据预处理中传统降维算法的不足,文章提出采用线性局部切空间排列(LLTSA)算法进行降维,并在低维空间中,以数据点到背景流形的最小距离为度量进行异常目标检测。面向异常目标检测问题的降维算法,需要考虑计算量和异常污染两个问题:为减少计算量,选择图像中一部分具有代表性的训练数据进行LLTSA降维并求取用于泛化的投影矩阵;为避免异常信息对背景特性的影响,应该选择不含异常的背景训练数据建立背景流形。背景训练点的选择基于递归多层分割算法,结合分割块的大小和分割块被近邻点重构的误差,去除分割结果中可能包含异常的区域并尽可能多地保留背景信息。实验结果表明LLTSA可以利用少数特征有效区分背景和异常,基于LLTSA的检测算法比经典RX和核RX算法具有更好的异常检测性能。 相似文献
2.
3.
针对传统的基于主成分分析的光谱降维法的缺点,提出一种新的面向颜色复制的光谱降维方 法———构建对立信号的光谱降维法( borsd)。该方法将人 眼 视 觉 特 性 与 光 谱 线 性 降 维 模 型 相 结 合,通 过 应 用 对 立学说构建低维线性模型的前三个基向量,并用这三个基向量表征色度信息,其余基向量通过对残余光谱的主成分分析推导来增加光谱精度。实验结果表明,用 borsd 方法构建的低维线性模型相比于主成分法可在不降低模型光谱精度的情况下具有更高的色度精度和变光照下的色差稳定性.a 相似文献
4.
5.
在无需先验标签样本的情况下,非监督降维可以有效简化高光谱图像的特征空间,避免目标分类中的霍夫效应。本文提出JM非线性变换优化的自适应降维模型来研究面向图像目标分类的高光谱波段选择问题。该方法考虑波段的信息量和独立性等两个重要因子,针对其测度方法的差异性问题,引入JM变换函数进行规范化优化。选用线阵高光谱和面阵显微光谱等两个图像数据集,在k最邻近和随机森林分类器下,进行了多组监督分类实验,结果表明,在Kappa系数、总体分类精度和平均分类精度上,本文方法均优于3种非监督方法MABS、InfFS和LSFS。说明本文提出的JM变换的自适应降维模型能够有效降低特征维度,满足高光谱图像分类的高精度要求。 相似文献
6.
7.
8.
提出一种基于局部判别正切空间排列(local discriminative tangent space alignment,LDTSA)的高光谱影像降维方法。LDTSA源于局部正切空间排列(LTSA)中的排列机制,在一个局域块内利用线性局部正切平面对类内样本的流形结构建模,同时还考虑到类间判别信息以最大化判别边界。利用多幅高光谱数据进行降维和分类试验。结果表明,LDTSA主要有三个优点:①在小样本问题上性能稳定;②在降维过程中保持类别间的判别信息;③有效挖掘数据集的几何流形结构。 相似文献
9.
为了实现地物精准分类,需要有效地提取与分析高光谱遥感图像中丰富的空—谱信息。提出一种适用于高光谱遥感图像分类的变异系数与卷积神经网络相结合(CV-CNN)的方法。这种新方法引入变异系数的思想来衡量高光谱遥感图像不同波段之间的相似性和差异性,从而提出类间变异系数(CVIE)和类内变异系数(CVIA)的概念。通过计算(CVIE)~2/CVIA的值来剔除高光谱遥感图像中的低效波段,然后提取每个像素的空一谱信息,并对其进行2维矩阵化操作,转化为便于卷积神经网络(CNN)输入的灰度图像,最后采用自行构建的适合于高光谱遥感图像分类的CNN模型进行分类。Indian Pines和Pavia University两组数据的实验结果表明,该方法在两种数据集下的总体精度分别达到98.69%和99.66%,有效地改善了高光谱遥感图像的分类精度。 相似文献
10.
高光谱遥感影像数据降维在降低数据处理代价的同时,保留了大量必要的地物信息,对后续地物识别与分类等应用提供了重要保障。为探究线性降维方法与加入核函数的非线性降维方法间的差异,利用编程实现了主成分分析(PCA)和基于多项式核函数的核主成分分析(KPCA)两种降维算法。通过设定累计贡献率的阈值,利用降维结果进行内部差异性对比,利用MLP分类器分类后的结果进行外部差异性比较。实验结果表明:(1)KPCA算法在数据压缩、降维效果方面具有较大优势;(2)利用KPCA算法降维后的数据,经MLP分类器分类后的总体精度、Kappa系数均高于PCA算法;(3)PCA算法的算法复杂度较低,计算量小且计算时间短,在时间复杂度方面具有更大优势。 相似文献
11.
利用流形学习进行高光谱遥感影像的降维与特征提取 总被引:3,自引:1,他引:3
基于最新的非线性降维方法——流形学习的理论,从高光谱遥感数据内在的非线性结构出发,采用全局化的等距映射(Isomap)方法进行降维,取得了优于常用的MNF方法的结果。把光谱角和光谱信息散度与测地距离相结合用于Isomap算法,结果在冗余方差和光谱规范化特征值方面优于采用传统欧氏距离计算邻域的Isomap方法。实验表明,流形学习是一种有效的高光谱遥感数据特征提取方法。 相似文献
12.
高光谱图像的高维数给图像的进一步处理带来了困难,为了解决这一问题,本文提出了一种基于独立成分分析的高光谱图像降维分割方法。首先,利用波段子空间划分和标准差对高光谱图像预处理,选择部分波段的高光谱图像作为实验对象;然后利用基于负熵的快速不动点算法对实验数据解混,再根据平均绝对权重系数对波段排序并选取;最后使用模糊C均值聚类算法对降维后的图像进行分割。实验结果表明,该方法能够有效实现高光谱图像降维,并获得较好的分割结果。 相似文献
13.
波段选择是高光谱遥感图像分类的重要前提,本文提出了一种用于高光谱遥感图像波段选择的改进二进制布谷鸟算法,通过使用混合二进制编码算法更新子代鸟巢和使用遗传算法交叉方式更新被发现鸟巢两个方面对二进制布谷鸟算法进行改进,找出在图像中起主要作用且相关性低的波段,实现对高光谱遥感图像降维。将本文算法运用于PaviaU数据集和AVIRIS数据集,并与二进制布谷鸟算法、二进制粒子群算法、最小冗余最大相关算法、Relief算法等进行对比分析。结果表明,改进二进制布谷鸟算法波段特征选择效率更高,且选取的波段更具代表性,能够较好地提高后续分类精度。 相似文献
14.
高光谱遥感影像数据具有高维特征、信息冗余、不确定性显著、小样本、空谱合一等特征,对其进行数据处理面临巨大挑战,高光谱遥感影像降维是高光谱遥感的重要研究方向之一。本文对当前高光谱遥感影像降维的相关研究进展进行了综述,在介绍高光谱遥感数据特点的基础上,重点从特征提取和特征选择两方面对高光谱遥感影像降维的最新研究和前沿进展进行了系统性综述;并从特征可分性、特征质量评价、特征数目确定、多特征优化以及需求驱动的特征选择等方面分析了高光谱遥感影像降维面临的挑战。随着智能化高光谱遥感的发展,高光谱遥感影像智能降维成为未来的发展方向,同时其发展将兼顾多特征质量评估与优选、搜索策略优化、满足应用需求等多目标的需求。随着高光谱遥感数据获取能力的提升和深入应用,高光谱遥感影像降维将会发挥重要而不可替代的作用。 相似文献
15.
基于逐次投影寻踪的高光谱影像降维方法研究 总被引:1,自引:1,他引:1
提出了一种新的逐次投影寻踪方法,对高光谱数据进行降维处理,采用定量化的指标,通过对高光谱数据的多次一维投影,逐步选取有效成分,构建新的低维正交空间. 相似文献
16.
一种光谱保持型的图像融合方法 总被引:15,自引:0,他引:15
常用的遥感图像融合的方法 ,如HIS变换法、Brovey变换法和主成分变换法等在实施图像融合时 ,存在不同程度的光谱扭曲的现象。针对IRS与TM数据光谱响应范围不同 ,探讨了一种新的光谱保持型的EEIM融合算法。EEIM融合方法是首先对参与融合的全色波段进行滤波 ,然后进行比值变换 ,融合后的图像在信息量、光谱保持性能等方面均较优 相似文献
17.
高光谱图像异常目标检测主要用于检测图像中的区别于背景环境的异常目标,为图像目标的判读提供一个初步的判断,是高光谱图像应用的一个重要内容.本文在研究现有异常目标检测算法的基础上,采用基于主成分抑制和顶点成分分析相结合的方法,对实验图像中的异常目标进行了检测,取得了较好的效果. 相似文献
18.
针对高光谱遥感图像易受噪声干扰,本文提出了一种基于非下采样Contourlet变换NSCT(Nonsubsampled Contourlet Transform)和核主成分分析KPCA(Kernel Principal Component Analysis)的去噪方法。首先对高光谱各波段图像进行NSCT分解;然后利用KPCA对NSCT系数进行处理,并在KPCA重构时依据各类噪声的特性选取合适的主成分;最后用处理过的系数进行逆变换得到去噪图像。实验结果表明,本文方法抑制了高光谱遥感图像中的噪声干扰,较完整地保留了原始数据的有效信息。 相似文献
19.