首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The drowning of carbonate platforms is a fascinating topic because it may be induced by several concomitant factors. A key setting to investigate carbonate platform drowning is a foreland basin. The Nummulitic Limestone ramp developed in the foreland of the western Alps during the Bartonian, while the Lithothamnion and Bryozoan Limestone ramp deposited in the foreland of the central Apennines between the Burdigalian and Serravallian. The drowning of Nummulitic Limestone is related to the reduction in light for the photo‐dependent biota according to the progressively increasing depth and poor efficiency of aphotic carbonate factory. The drowning of the Lithothamnion and Bryozoan Limestone ramp is attributed to the deterioration of the environmental conditions that predate tectonic subsidence related to the Apennine orogenesis. Eutrophication triggered by upwelling events induced a crisis in the shallow‐water carbonate production, while during the following tectonic subsidence the shallow‐water carbonate factory was definitively inactive.  相似文献   

2.
The Eocene Nummulitic Limestone of the Dauphinois domain in the Argentina Valley (Maritime Alps, Liguria, Italy) is characterized by the local presence of carbonate ramp facies rich in acervulinid macroids, rhodoliths and larger foraminifera. The development of these particular facies is mainly controlled by palaeomorphology of the substratum, tectonics, type and amount of terrigenous supply and global sea level changes.
The Upper Cretaceous to Eocene succession outcropping in the Argentina Valley shows differences in facies and age if compared to the typical succession of the Maritime Alps:
  • the Cretaceous substratum is younger (early Maastrichtian) and is followed by an unconformity that is interpreted as a submarine discontinuity surface;
  • the first Eocene carbonate deposits are older (late Lutetian);
  • the Nummulitic Limestone is characterized by the development of carbonate facies deposited in a deep infralittoral-circalittoral setting of a carbonate ramp, sheltered from terrigenous input; in these facies encrusting foraminifera (Solenomeris) replace calcareous red algae in nodules similar to rhodoliths (acervulinid macroids);
  • the Nummulitic Limestone is thicker than usual, reaching 110–160 m of thickness.
The Eocene tectonostratigraphic evolution can be summarized as follow: (1) synsedimentary tectonic activity that causes the development of a carbonate ramp with an adjacent structural trough where ramp-derived bioclastic material is deposited (late Lutetian); (2) interruption of the tectonic activity and uniform deposition of deep circalittoral sediments, characterized by deepening upward trend (late Lutetian?); (3) regression indicated by an abrupt shallowing of the depositional setting (Bartonian); and (4) deepening of the depositional setting, ending with the drowning of the carbonate ramp (late Bartonian).The evolution of the Eocene Argentina Valley succession is strongly influenced by tectonics related to the Alpine foreland basin development, but locally, and during definite time intervals, the global sea level changes could be recorded by the sediments during periods of stasis in tectonic activity. The regressive events recognized in the studied succession could be related to the sea level fall reported in the global sea level curve during the Bartonian.  相似文献   

3.
Since their first occurrence in the late Cretaceous, seagrasses have played a major role in carbonate production and sedimentation across shallow-water and nearshore environments, sustaining a prolific carbonate factory and contributing to sediment accumulation through the combination of baffling and trapping effects. Most reported Palaeogene seagrass occurrences developed in oligo?mesotrophic shallow warm-water habitats and are characterized by distinct associations of small and larger benthic foraminifers adapted to low terrigenous influence. This study describes a number of seagrass episodes interbedded in the Bartonian (middle Eocene) of San Fausto–Lazkua area (Navarra region, North Spain), within a nearshore to inner-ramp succession that, in spite of being deposited under general transgressive conditions, was highly influenced by terrigenous supply from the adjacent land. Up to twelve different seagrass bed intervals occur interbedded in a cyclical manner with high-energy nearshore siliciclastics and inner ramp bioclastic carbonates rich in mesophotic?oligophotic foraminifers and heterozoan biota (red algae, echinoderms, bryozoans). Seagrass deposits exhibit typical unsorted textures, abundant bioturbation and moderate to high terrigenous content, and comprise a characteristic skeletal association of epiphytic foraminifers, red algae and, most particularly, of abundant encrusting acervulinids, commonly with distinct hooked and tubular growth forms. This abundance of suspension-feeders relative to autotrophs and mixotrophs may be indicative of temperate waters, although the taxonomic diversity of the foraminiferal assemblages in both seagrass and non-seagrass embedding deposits supports the interpretation of shallow, warm-water conditions. The studied seagrass deposits provide evidence that high siliciclastic supply and associated nutrient input may determine the occurrence of temperate-like seagrass deposits in warm-water settings, analogous to extensive heterozoan carbonate production in modern shallow-tropical environments. Thus, the identification and correct interpretation of past seagrass-vegetated environments are crucial for reconstructing palaeoecological conditions in ancient shallow-marine environments. Therefore, in comparison with carbonate-dominated environments, the mixed terrigenous?carbonate seagrass deposits are volumetrically less important, presenting a more irregular, patchy distribution, and a skeletal assemblage dominated by heterotrophs, regardless of the water temperature.  相似文献   

4.
The nature of Phanerozoic carbonate factories is strongly controlled by the composition of carbonate‐producing faunas. During the Permian–Triassic mass extinction interval there was a major change in tropical shallow platform facies: Upper Permian bioclastic limestones are characterized by benthic communities with significant richness, for example, calcareous algae, fusulinids, brachiopods, corals, molluscs and sponges, while lowermost Triassic carbonates shift to dolomicrite‐dominated and bacteria‐dominated microbialites in the immediate aftermath of the Permian–Triassic mass extinction. However, the spatial–temporal pattern of carbonates distribution in high latitude regions in response to the Permian–Triassic mass extinction has received little attention. Facies and evolutionary patterns of a carbonate factory from the northern margin of peri‐Gondwana (palaeolatitude ca 40°S) are presented here based on four Permian–Triassic boundary sections that span proximal, inner to distal, and outer ramp settings from South Tibet. The results show that a cool‐water bryozoan‐dominated and echinoderm‐dominated carbonate ramp developed in the Late Permian in South Tibet. This was replaced abruptly, immediately after the Permian–Triassic mass extinction, by a benthic automicrite factory with minor amounts of calcifying metazoans developed in an inner/middle ramp setting, accompanied by transient subaerial exposure. Subsequently, an extensive homoclinal carbonate ramp developed in South Tibet in the Early Triassic, which mainly consists of homogenous dolomitic lime mudstone/wackestone that lacks evidence of metazoan frame‐builders. The sudden transition from a cool‐water, heterozoan dominated carbonate ramp to a warm‐water, metazoan‐free, homoclinal carbonate ramp following the Permian–Triassic mass extinction was the result of the combination of the loss of metazoan reef/mound builders, rapid sea‐level changes across Permian–Triassic mass extinction and profound global warming during the Early Triassic.  相似文献   

5.
Tertiary sequences in the Elazig and Malatya Basins, eastern part of Taurus Orogenic Belt, are investigated with the aim of defining the benthic foraminiferal biozones. Tertiary geological units from bottom to top are as follows: Basement rocks, Zorban Formation, Yildiztepe Formation, Suludere Formation, Gedik Formation (Malatya Basin); Elazig Magmatics, Keban Metamorphics, Harami Formation, Kuscular Formation, Seske Formation, Kirkgecit Formation (Elazig Basin). Middle-Upper Eocene Yildiztepe, Suludere and Gedik Formations; Upper Paleocene-Lower Eocene Seske Formation and Middle-Upper Eocene Kirkgecit Formation are all characterized by interbedded clastics and carbonate rocks. Six stratigraphic sections are studied in detail for foraminiferal biostratigraphy. Eight benthic foraminiferal biozones are reported. These are; Coskinolina rajkae biozone in the Late Paleocene (Thanetian), Assilina yvettae, Idalina sinjarica biozones in the Late Paleocene; Asterocyclina alticostata gallica biozone in the Early Eocene (Late Cuisian), Nummulites millecaput biozone in the Middle Eocene (Middle Lutetian), Nummulites aturicus biozone in the Middle Eocene (Late Lutetian), Nummulites perforatus biozone in the Middle Eocene (Bartonian), Nummulites fabianii biozone in the Late Eocene (Priabonian). Some key taxa are illustrated.  相似文献   

6.
Lower and middle Eocene ironstone sequences of the Naqb and Qazzun formations from the north‐east Bahariya Depression, Western Desert, Egypt, represent a proxy for early Palaeogene climate and sea‐level changes. These sequences represent the only Palaeogene economic ooidal ironstone record of the Southern Tethys. These ironstone sequences rest unconformably on three structurally controlled Cenomanian palaeohighs (for example, the Gedida, Harra and Ghorabi mines) and formed on the inner ramp of a carbonate platform. These palaeohighs were exposed and subjected to subaerial lateritic weathering from the Cenomanian to early Eocene. The lower and middle Eocene ironstone sequences consist of quiet water ironstone facies overlain by higher energy ironstone facies. The distribution of low‐energy ironstone facies is controlled by depositional relief. These deposits consist of lagoonal, burrow‐mottled mud‐ironstone and laterally equivalent tidal flat, stromatolitic ironstones. The agitated water ironstone facies consist of shallow subtidal–intertidal nummulitic–ooidal–oncoidal and back‐barrier storm‐generated fossiliferous ironstones. The formation of these marginal marine sequences was associated with major marine transgressive–regressive megacycles that separated by subaerial exposure and lateritic weathering. The formation of lateritic palaeosols with their characteristic dissolution and reprecipitation features, such as colloform texture and alveolar voids, implies periods of humid and warm climate followed major marine regressions. The formation of the lower to middle Eocene ironstone succession and the associated lateritic palaeosols can be linked to the early Palaeogene global warming and eustatic sea‐level changes. The reworking of the middle Eocene palaeosol and the deposition of the upper Eocene phosphate‐rich glauconitic sandstones of the overlying Hamra Formation may record the initial stages of the palaeoclimatic transition from greenhouse to icehouse conditions.  相似文献   

7.
Middle Eocene Fulra Limestone and Oligocene Maniyara Fort Formation represent platform carbonate deposits of Kutch at the north-western margin of India. These carbonates contain larger benthic foraminifera, including Alveolina, Assilina, Discocyclina, Lepidocyclina, Miogypsina, Nummulites and Spiroclypeus. This study presents paleodepositional and paleobathymetric interpretations for both formations using benthic foraminifera in combination with lithological association, sedimentary structures and early diagenetic features. The six carbonate facies comprising the Fulra Limestone indicate a depositional spectrum ranging from bar-lagoon to mid-ramp depositional conditions. It records several shallowing upward cycles, leading to emergence and formation of paleokarst. The four carbonate facies of the Maniyara Fort Formation represents deposition within the inner ramp setting in bar-lagoon and patch-reef environment, while intervening fine siliciclastics correspond to episodes of relative sea level fall. Nummulitic accumulations form low-relief bars within the fair weather wave base in both the formations. The depositional setting of the Paleogene carbonate in Kutch broadly resembles Eocene platformal deposits in the circum-Tethys belt.  相似文献   

8.
Orthophragminids from the Bartonian Fulra Limestone in Kutch, India and the coeval units in Sulaiman Range in Pakistan suggest the establishment of a significant number of endemic species in the Indian subcontinent (Eastern Tethys). Among a total of fifteen species of Discocyclina, Orbitoclypeus and Asterocyclina, six of them appear to be confined to Indian subcontinent while seven species are common both to the peri-Mediterranean/Europe region (Western Tethys) and Indian subcontinent. Two species, Asterocyclina sireli, a four-ribbed species of possibly Indo-Pacific origin, and Orbitoclypeus haynesi that form large populations in Fulra Limestone, appear to have spread into North Africa and Turkey but not into European platforms as a response to Middle Eocene Climatic Optimum (MECO). The lack of Lutetian and Priabonian fauna in the studied sections, either due to a hiatus or unsuitable depositional environments, hampers the establishment of the actual stratigraphic ranges of the identified taxa. Our record provides us to characterize the orthophragminids in shallow benthic zone (SBZ) 17 for Eastern Tethys in detail by comparing the data from the above localities with those from the North Africa, Europe and Turkey, showing the change in diversity.  相似文献   

9.
This paper regards the lower Pleistocene temperate-water carbonate deposits disconformably overlying an escarpment made up of faulted Cretaceous to Miocene limestones of the Apulia Foreland (southern Italy). Study deposits discontinuously crop out along the present-day eastern Salento sea cliff, and form isolated fan-shaped bodies, up to 1 km wide and up to 40 to 50 m thick, each of them covering an area of a few square kilometres. The internal arrangement of beds is represented by up to 25° to 30° lobate, seaward dipping clinobeds thinning and onlapping onto a rocky foreslope in the proximal sector and passing to gently inclined to sub-horizontal strata in the distal sector. Seven facies were distinguished, mainly composed of coarse-grained skeletal carbonates made up of a heterozoan association including coralline algae, large and small benthic foraminifera, echinoids, molluscs, bryozoans and serpulids. Since clinobeds were formed thanks to hyperconcentrated density flows (grain flows) bypassing the upper part of the inherited escarpment, these skeletal grains represent ex situ deposits whose shallow-marine factory was located upward (landward) with respect to the bypassed zone, likely in the almost flat area on top of the Salento Peninsula. Clinobeds are often affected by tens of metres wide and long channel-like structures interpreted as landslide scars. Inside these gullies, contorted beds (slumps) or matrix-supported intra-bioclastic floatstone/rudstone (massive deposits) are present. The occurrence of supercritical-flow structures (for example, backset-bedded beds) indicates the development of hydraulic jumps along the steep slope of gullies. Since these clinostratified, fan-shaped carbonate bodies represent carbonate slopes, and that the latter are known as aprons, normally related to linear sourced sediments, an acceptable oxymoron for studied fan-shaped carbonate bodies is suggested: ‘isolated base-of-slope aprons’.  相似文献   

10.
Petrographic and petrophysical properties of 42 carbonate rock samples from the Tushka Area, Egypt have been investigated. The samples originate from the Upper Cretaceous taken from seven shallow wells and were subdivided into three microfacies. The petrographic characterization of the glauconite-rich, fossiliferous limestones was carried out over 17 thin sections and an additional measurement of the glauconite content by color differentiation. The facies were characterized as (1) oolithic, low-dolomitic, and low-glauconitic, fossil-rich packstone with a tendency towards floatstone or rudstone; (2) glauconite-rich, low-dolomitic floatstone with a tendency towards rudstone; and (3) glauconite and iron mineral-rich, sparry calcitic cemented, and low-dolomitic rudstone. The petrophysical investigation providing grain density, porosity, electrical conductivity, specific internal surface, permeability, magnetic susceptibility, and the pore throat geometry supports the classification into three facies. A strong relation between permeability and formation factor is observed. The median pore radius derived from mercury porosimetry proves to be a good estimate of the effective hydraulic radius. An increased content of iron oxides was identified in facies 3. The increased iron content is related to higher values of both magnetic susceptibility and specific internal surface.  相似文献   

11.
The Oligocene represents a key interval during which coralline algae became dominant on carbonate ramps and luxuriant coral reefs emerged on a global scale. So far, few studies have considered the impact that these early reefs had on ramp development. Consequently, this study aimed at presenting a high‐resolution analysis of the Attard Member of the Lower Coralline Limestone Formation (Late Oligocene, Malta) in order to decipher the internal and external factors controlling the architecture of a typical Late Oligocene platform. Excellent exposures of the Lower Coralline Limestone Formation occurring along continuous outcrops adjacent to the Victoria Lines Fault reveal in detail the three‐dimensional distribution of the reef‐associated facies. A total of four sedimentary facies have been recognized and are grouped into two depositional environments that correspond to the inner and middle carbonate ramp. The inner ramp was characterized by a very high‐energy, shallow‐water setting, influenced by tide and wave processes. This setting passed downslope into an inner‐ramp depositional environment which was colonized by seagrass and interfingered with adjacent areas containing scattered corals. The middle ramp lithofacies were deposited in the oligophotic zone, the sediments being generated from combined in situ production and sediments swept from the shallower inner ramp by currents. Compositional characteristics and facies distributions of the Attard ramp are more similar to the Miocene ramps than to those of the Eocene. An important factor controlling this similarity may be the expansion of the seagrass colonization within the euphotic zone. This expansion may have commenced in the Late Oligocene and was associated with a concomitant reduction in the aerial extent of the larger benthonic foraminifera facies. Stacking‐pattern analysis shows that the depositional units (parasequences) at the study section are arranged into transgressive–regressive facies cycles. This cyclicity is superimposed on the overall regressive phase recorded by the Attard succession. Furthermore, a minor highstand (correlated with the Ru4/Ch1 sequence) and subsequent minor lowstand (Ch2 sequence) have been recognized. The biota assemblages of the Attard Member suggest that carbonate sedimentation took place in subtropical waters and oligotrophic to slightly mesotrophic conditions. The apparent low capacity of corals to form wave‐resistant reef structures is considered to have been a significant factor affecting substrate stability at this time. The resulting lack of resistant mid‐ramp reef frameworks left this zone exposed to wave and storm activity, thereby encouraging the widespread development of coralline algal associations dominated by rhodoliths.  相似文献   

12.
During the Aptian, some carbonate platforms of the sub‐tropical realm (for example, on the northern Tethys margin or in the Gulf of Mexico) were affected repeatedly by severe perturbations in the carbonate production factory and drowning, preferentially during global warming events such as the Early Aptian Oceanic Anoxic Event 1a and a prominent mid‐Late Aptian warming interval. These platform growth crises have been explained mainly by strongly increased coastal runoff (for example, siliciclastics and nutrients) in combination with pronounced eustatic sea‐level rises. In the last few years, increasing evidence suggests that carbonate platforms of lower latitudes were generally less or even not affected by environmental perturbations during these events. This raises the question as to the responsible factors that promoted platform growth or decline in different latitudinal areas. In this study, Upper Aptian (Middle Gargasian to Uppermost Clansayesian) inner‐tropical carbonate ramp deposits of the Serdj Formation at Djebel Serdj, north‐central Tunisia are studied in detail with regard to microfacies, lithology, biostratigraphy and chemostratigraphy. These data allow reconstruction of the palaeoenvironmental evolution of the Tunisian carbonate platform margin and investigation of its response to the prominent mid‐Late Aptian warming interval. The unusually expanded, 600 m thick Serdj Formation consists of limestones, marlstones and siltstones, suggesting deposition within mid‐ramp to inner‐ramp palaeoenvironments. Deposits of the mid‐Late Aptian are represented by quartz‐rich platform carbonates and siltstones, probably resulting from increased coastal runoff on the Tunisian shelf as a response to global warming and accelerated water cycling. The siliciclastic input was accompanied by elevated nutrient levels as indicated by a partial decline in the abundance of oligotrophic biota and mass occurrences of orbitolines and green algae. Carbonate platform drowning during the mid‐Late Aptian, as reported from the sub‐tropical realm, has not been identified. A comparison with other tropical river‐influenced platforms suggests that none of them drowned during the mid‐Late Aptian. One important reason might be widespread arid to semi‐arid climatic conditions within lower latitudes during that time, promoting platform growth due to comparably low nutrient runoff.  相似文献   

13.
The orthophragminids in lower Bartonian Reineche Limestone member, a fossiliferous shallow-marine unit exposed in Cap Bon peninsula in Tunisia, are represented by 17 species assigned to Discocyclinidae Galloway 1928 and Orbitoclypeidae Brönnimann 1946. These taxa, associated with nummulitids and alveolinids, belong to the lineages of Discocyclina Gümbel 1870, Nemkovella, 1987, Orbitoclypeus Silvestri 1907, and Asterocyclina Gümbel 1870, described for the first time from north Africa lying at the southern margin of Tethyan ocean during Paleogene. We identified Nemkovella evae, previously not recorded in upper Lutetian/lower Bartonian and younger Eocene deposits of northern Tethyan platforms, and erected a new subspecies, N. evae reinechensis n. ssp. A comparison of Reineche orthophraminids, assigned to orthophragmines zone (OZ) 12 and shallow benthic zone (SBZ 17), to the well-described coeval assemblages at northern Tethyan platforms in Italy, Hungary, Turkey, and to those in Kutch Basin in the Indian subcontinent suggests that some species are confined to certain paleogeographic domains. Orbitoclypeus haynesi, the only orbitoclypeid and the most abundant orthophragminid in lower Bartonian deposits in Kutch, appears to be the most common orbitoclypeid in Reineche Limestone. In Europe, this species is not known and is replaced by Orbitoclypeus varians, the most common orbitoclypeid in middle Eocene of central Europe. Both species occur in varying proportions in marine successions in Turkey. Asterocyclina sireli, identified so far only in Turkey, occurs in Reineche Limestone and in lower Bartonian deposits in Kutch. This species is recorded for the first time in the Indian subcontinent. Relying on present study, as well as our recent studies in Kutch Basin, we conclude that the generic and specific diversity of orthophragminids decreases eastward from the peri-Mediterranean region to Indian subcontinent and to the western Pacific.  相似文献   

14.
Cross‐bedded grainstones on carbonate ramps and shelves are commonly related to the locus of major wave energy absorption such as shorelines, shoals or shelf breaks. In contrast, on the Early Tortonian carbonate platform of Menorca (Balearic Islands), coarse‐grained, cross‐bedded grainstones are found at a distance from the palaeoshoreline where they were deposited below the wavebase. Excellent exposures along continuous outcrops on the sea cliffs of Menorca reveal the depositional profile and three‐dimensional distribution of the different facies belts of the Tortonian ramp depositional system. Basinward from the palaeoshoreline, fan deltas and beach deposits pass into 5‐km‐wide gently dipping bioturbated dolopackstone (inner and middle ramp), then into 12–20°‐dipping dolograinstone/rudstone clinobeds (ramp slope) and, finally, into subhorizontal fine‐grained basinal dolowackestone to dolopackstone (outer ramp). In this Miocene example, coarse‐grained grainstones exist in five different settings other than beach deposits: (1) on the middle ramp, where cross‐bedded grainstones were deposited by currents roughly parallel to the shoreline at 40–70 m estimated water depth and are interbedded with gently dipping bioturbated dolomitized packstones; (2) on the upper slope, where clinobeds are composed mostly of in situ rhodoliths and red‐algae fragments; (3) on the lower slope, as small‐scale bedforms (small three‐dimensional subaqueous dunes) migrating parallel to the slope; (4) at the transition between the lower slope and the outer ramp, where mollusc‐rich and rhodolithic rudstones and grainstones, interbedded in dolomitized laminated wackestones containing abundant planktonic foraminifera, infill slide/slump scars as upslope‐backstepping bodies (backsets); (5) at the toe of the slope, where coarse skeletal grainstones indicate bedform migration parallel to the platform margin, induced by currents at more than 150 m estimated water depth. This Late Miocene example also illustrates how changes in intrabasinal environmental conditions (nutrients and/or temperature) may produce changes in stratal patterns and facies architecture if they affect the biological system. Two depositional sequences compose the Miocene platform on Menorca, where a reef‐rimmed platform prograded onto an earlier distally steepened ramp. The transition from the ramp to the reef‐rimmed platform was effected by an increase in accommodation space caused by ecological changes, promoting a shift from a grain‐ to a framework‐producing biota.  相似文献   

15.
The Oligocene–Miocene Asmari Formation of the Zagros Basin is a thick sequence of shallow water carbonate. In the study area, it is subdivided into 14 microfacies that are distinguished on the basis of their depositional textures, petrographic analysis and fauna. Based on the paleoecology and lithology, four distinct depositional settings can be recognized: tidal flat, lagoon, barrier, and open marine. The Asmari Formation represents sedimentation on a carbonate ramp. In the inner ramp, the most abundant lithofacies are medium grained wackestone–packstone with imperforated foraminifera. The middle ramp is represented by packstone–grainstone to floatstone with a diverse assemblage of larger foraminifera with perforate wall, red algae, bryozoa, and echinoids. The outer ramp is dominated by argillaceous wackestone characterized by planktonic foraminifera and large and flat nummulitidae and lepidocyclinidae. Three third-order depositional sequences are recognized from deepening and shallowing trends in the depositional facies, changes in cycle stacking patterns, and sequence boundary features.  相似文献   

16.
晚三叠世龙门山前陆盆地分布于扬子克拉通西缘,属于印支期造山楔构造负载驱动的挠曲型前渊凹陷.其中卡尼期马鞍塘组是分布于底部不整合面之上的第一套地层单元,记录了前缘隆起边缘碳酸盐缓坡和海绵礁的构建和淹没过程.据钻孔揭示马鞍塘组的最大厚度超过250m,显示为西北厚东南薄的楔形结构,从北西向南东依次分布了深水盆地、碳酸盐缓坡和海绵礁和浅水滨岸带等沉积物类型.其中碳酸盐缓坡和海绵礁分布于前陆盆地的远端,呈面向西的条带状展布,其走向线与龙门山冲断带的走向大致平行.碳酸盐缓坡和海绵礁的厚度介于30~100m之间,由北西向南东变薄.在垂向上,马鞍塘组由3部分构成,下部为鲕粒滩和生物碎屑滩,中部为海绵礁,上部为黑色页岩,显示为向上变细、变深的沉积序列.在Li et al.(2003)盆地模拟的基础上,本次对卡尼期前陆盆地的沉降速率、沉积速率、海绵礁生长速率、相对海平面上升速率进行了定量计算,其中沉降速率为0.10mm·a-1、沉积速率为0.04mm·a-1、海绵礁生长速率为0.03mm·a-1、相对海平面上升速率介于0.01mm·a-1~0.05mm · a-1之间.研究结果表明:在卡尼期早期,相对海平面处于初始上升阶段,相对海平面上升速率较小,盆地处于欠补偿状态,沉积了碳酸盐缓坡型鲕粒滩和生物碎屑滩;在卡尼期中期,相对海平面上升速率等于海绵礁生长速率,海绵礁持续保持垂直向上的生长状态,形成了高度达100余米的塔礁;在卡尼期晚期,相对海平面上升速率大于海绵礁生长速率,礁顶的水深逐步变大,导致礁体被淹溺致死,从而在卡尼期形成了鲕粒灰岩滩-生物碎屑滩-海绵礁灰岩-页岩的向上变细、变深的沉积序列,显示了前陆盆地早期碳酸盐缓坡和海绵礁生长并被淹没的特有模式.本次研究成果表明龙门山前陆盆地的底部不整合面和碳酸盐缓坡、海绵礁的淹没过程是扬子板块西缘印支期造山楔逆冲构造负载的挠曲变形的产物,显示了在卡尼期松潘-甘孜残留洋盆的迅速闭合和造山楔构造负载向扬子板块的推进过程.  相似文献   

17.
C. Scheibner  R.P. Speijer   《Earth》2008,90(3-4):71-102
The early Paleogene experienced the most pronounced long-term warming trend of the Cenozoic, superimposed by transient warming events such as the Paleocene–Eocene Thermal Maximum (PETM). The consequences of climatic perturbations and associated changes on the evolution of carbonate platforms are relatively unexplored. Today, modern carbonate platforms, especially coral reefs are highly sensitive to environmental and climatic change, which raises the question how (sub)tropical reef systems of the early Paleogene reacted to gradual and sudden global warming, eutrophication of shelf areas, enhanced CO2 levels in an ocean with low Mg/Ca ratios. The answer to this question may help to investigate the fate of modern coral reef systems in times of global warming and rising CO2 levels.Here we present a synthesis of Tethyan carbonate platform evolution in the early Paleogene (~ 59–55 Ma) concentrating on coral reefs and larger foraminifera, two important organism groups during this time interval. We discuss and evaluate the importance of the intrinsic and extrinsic factors leading to the dissimilar evolution of both groups during the early Paleogene. Detailed analyses of two carbonate platform areas at low (Egypt) and middle (Spain) paleolatitudes and comparison with faunal patterns of coeval platforms retrieved from the literature led to the distinction of three evolutionary stages in the late Paleocene to early Eocene Tethys: Stage I, late Paleocene coralgal-dominated platforms at low to middle paleolatitudes; stage II, a transitional latest Paleocene platform stage with coralgal reefs dominating at middle paleolatitudes and larger foraminifera-dominated (Miscellanea, Ranikothalia, Assilina) platforms at low paleolatitudes; and stage III, early Eocene larger foraminifera-dominated (Alveolina, Orbitolites, Nummulites) platforms at low to middle paleolatitudes. The onset of the latter prominent larger foraminifera-dominated platform correlates with the Paleocene/Eocene Thermal Maximum.The causes for the change from coral-dominated platforms to larger foraminifera-dominated platforms are multilayered. The decline of coralgal reefs in low latitudes during platform stage II is related to overall warming, leading to sea-surface temperatures in the tropics beyond the maximum temperature range of corals. The overall low occurrence of coral reefs in the Paleogene might be related to the presence of a calcite sea. At the same time larger foraminifera started to flourish after their near extinction at the Cretaceous/Paleogene boundary. The demise of coralgal reefs at all studied paleolatitudes in platform stage III can be founded on the effects of the PETM, resulting in short-term warming, eutrophic conditions on the shelves and acidification of the oceans, hampering the growth of aragonitic corals, while calcitic larger foraminifera flourished. In the absence of other successful carbonate-producing organisms, larger foraminifera were able to take over the role as the dominant carbonate platform inhabitant, leading to a stepwise Tethyan platform stage evolution around the Paleocene/Eocene boundary. This szenario might be also effective for threatened coral reef sites.  相似文献   

18.
A well-diversified fauna of stalked crinoids was found in the Eocene series exposed in the quarry of Miretrain at Angoumé (Landes, southwestern Aquitaine, northern edge of the Tercis diapir structure). The most frequent taxa belong to the genera Isselicrinus and Conocrinus. Adaptive stalk characters related to depth in the pentacrinid genus Isselicrinus allow us to document the bathymetric zonation of stalked crinoids during the Eocene. Both stalked crinoids, benthic foraminifera and additional organisms give convergent information on palaeodepths throughout the progradation of sedimentary bathyal slope between the two major tectonic events providing Pyrenean foreland shortening. The depth changes from more than 700 m (maybe about 1000 m) at the base of the series (Middle Lutetian) to about 50 m at the top (Late Bartonian). To cite this article: M. Roux et al., C. R. Geoscience 338 (2006).  相似文献   

19.
The Paleogene sections of Kutch are the reference for the regional chronostratigraphic units of India. The ages of these dominantly shallow marine carbonates are mainly based on larger benthic foraminifera (LBF). The taxonomic revisions of the LBF and the progressively refined shallow benthic zonations (SBZ) have necessitated the present study on updating the stratigraphy of the area. The sedimentation in Kutch commenced with the deposition of volcaniclastics in terrestrial environments in the Paleocene. The marine transgression in SBZ 5/6 deposited finer clastics and carbonates, designated as Naredi Formation, in early Eocene. There is no evidence of marine Paleocene in Kutch. A major hiatus spanning SBZ 12 to SBZ 16 was followed by the development of a carbonate platform and deposition of Harudi Formation – Fulra Limestone during the Bartonian, SBZ 17. The hiatus corresponds to a widespread stratigraphic break in Pakistan and India to Australia, referred as the ‘Lutetian Gap.’ The Maniyara Fort Formation is assigned to SBZ 22 B and SBZ 23, and its age is revised to Chattian. Climate played a major role in building up of the Paleogene stratigraphic succession of Kutch, the carbonates formed during the warming intervals and the stratigraphic gaps were in the intervening cooling periods.  相似文献   

20.
Carbonate mud that accumulated in the deep parts of a late Kimmeridgian carbonate ramp (Iberian Basin, NE Spain) was partly derived by resedimentation from shallow water production areas. High-frequency sea-level changes, probably driven by climatic changes in tune with precession and short-eccentricity cycles, affected carbonate production and the amount of exported sediment. Facies analysis and correlation of three outcrops located in middle and outer ramp settings allows a comparison of high-order sequences (bundles of beds and sets of bundles) across a ramp transect and an assessment of the carbonate factory. Analysis of the storm deposits found in middle ramp settings identifies deepening to shallowing high-frequency cycles based on the level of exported carbonate. In outer ramp areas, many of the bundles exhibit a thinning trend, indicating a progressive decrease of carbonate production and hence, carbonate export during periods of high-frequency sea-level rise. δ13Ccarb values show a gradual increase through the studied long-term transgressive interval ranging from 1·5‰ to 2·8‰. Within this long-term evolutionary trend, short-term δ13Ccarb fluctuations occur that correspond with some of the high-order cycles defined from sedimentary facies analysis. These short-term δ13Ccarb shifts are interpreted as shifts in carbonate export from shallow reef regions to the outer ramp. A consequence of this study is that variation in δ13Ccarb can be used for correlation in outer ramp successions, at least on a basin-wide scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号