共查询到20条相似文献,搜索用时 15 毫秒
1.
分析在基于最小二乘支持向量机的卫星钟差预报中样本数据预处理的必要性,列举了归一化、标准化和相邻历元一次差3种数据预处理方法。然后结合实例,对比分析不同数据预处理方法对基于最小二乘支持向量机的钟差预报精度的影响,得出不同方法对钟差预报精度的影响不同,其中,基于一次差方法的预报精度最高。最后,将基于一次差方法的最小二乘支持向量机预报模型与常用的二次多项式模型和灰色系统模型进行比较,结果表明,最小二乘支持向量机模型的预报效果明显优于两种常规模型。 相似文献
2.
针对应用单一方法预报卫星钟差的局限性,文章提出了基于最小二乘支持向量机回归的卫星钟差非线性组合预报方法:首先根据历史钟差数据建立二次多项式模型和灰色模型,然后利用这些模型进行钟差预报,最后采用最小二乘支持向量机回归算法对两种模型的预报结果进行非线性组合,以获得最终预报值;对比了RBF核函数、线性核函数和多项式核函数对组合预报性能的影响,并将本文组合预报方法与经典权组合方法进行比较。结果表明,本文方法优于经典权法,且线性核函数更适合组合预报。 相似文献
3.
提出了一种基于小波变换和最小二乘支持向量机的卫星钟差预报方法 首先通过小波变换把钟差时间序列分解成具有不同频率特征的分量然后根据各分量的特点构建不同的最小二乘支持向量机模型进行预报最后将各分量的预报结果进行叠加得到最终的钟差预报值 实验结果表明该方法的预报效果优于单一的最小二乘支持向量机模型以及常规的二次多项式模型和灰色系统模型 相似文献
4.
针对提高导航卫星钟差预报精度的研究不足的现状,文章结合灰色预报模型和最小二乘向量机预报模型的特点,研究建立灰色系统与最小二乘向量机的结合预报模型:引入惯性权值和加速度因子随优化代数变化的改进粒子群算法,以提高算法的优化能力;并用其对模型惩罚因子和核函数参数选取过程进行优化;选取具有代表性的卫星钟差数据,建立改进粒子群优化的GM-LSSVM模型进行短期钟差预报分析,并与传统的GM(1,1)预报模型和BP神经网络预报模型进行精度比较。仿真结果表明,优化后的模型预报精度优于GM(1,1)预报模型和BP神经网络模型。 相似文献
5.
6.
针对大样本集的训练问题和动态训练样本的模型更新问题,提出了动态最小二乘支持向量机学习算法。该算法充分利用已建好的模型,逐渐加入新样本,并可删除位于任何位置的非支持向量,避免了矩阵求逆运算,保证了算法的高效率。大坝变形及电离层延迟两个时间序列的预报实例表明,该算法具有计算时间短、预报精度高的特点。 相似文献
7.
为了更好地反映钟差特性并提高其预报精度,采用抗差最小二乘配置方法建立一种能够同时考虑星载原子钟物理特性、钟差周期性变化与随机性变化特点的钟差预报模型。首先使用附有周期项的二次多项式模型进行拟合提取卫星钟差的趋势项与周期项,然后针对剩余的随机项及其可能存在的粗差,采用抗差最小二乘配置的原理进行建模,其中最小二乘配置的协方差函数通过对比协方差拟合的方法并结合试验进行确定。使用IGS精密钟差数据进行预报试验,将本文方法与二次多项式模型、灰色模型进行对比,预报精度分别提高了0.457 ns和0.948 ns,而预报稳定性则分别提高了0.445 ns和1.233 ns,证明了本文方法能够更好地预报卫星钟差,同时说明本文的协方差函数确定方法的有效性。 相似文献
8.
9.
10.
11.
12.
13.
15.
16.
17.
18.
19.
20.