首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We survey the recent progress in studies of North Pacific Intermediate Water (NPIW) in SAGE (SubArctic Gyre Experiment), including important results obtained from related projects. Intensive observations have provided the transport distributions relating to NPIW and revealed the existence of the cross-wind-driven gyre Oyashio water transport that flows directly from the subarctic to subtropical gyres through the western boundary current as well as the diffusive contribution across the subarctic front. The anthropogenic CO2 transport into NPIW has been estimated. The northern part of NPIW in the Transition Domain east of Japan is transported to the Gulf of Alaska, feeding the mesothermal (intermediate temperature maximum) structure in the North Pacific subarctic region where deep convection is restricted by the strong halocline maintained by the warm and salty water transport originating from NPIW. This heat and salt transport is mostly balanced by the cooling and freshening in the formation of dense shelf water accompanied by sea-ice formation and convection in the Okhotsk Sea. Intensive observational and modeling studies have substantially altered our view of the intermediate-depth circulation in the North Pacific. NPIW circulations are related to diapycnal-meridional overturning, generated around the Okhotsk Sea due to tide-induced diapycnal mixing and dense shelf water formation accompanied by sea-ice formation in the Okhotsk Sea. This overturning circulation may possibly explain the direct cross-gyre transport through the Oyashio along the western boundary from the subarctic to subtropical gyres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
This study investigated temporal variations in the vertical structure and water properties of a warm-core ring that migrated into the western subarctic gyre of the North Pacific, based on analyses of temperature and salinity data derived from two profiling floats, together with shipboard and satellite observation data. The floats were initially deployed into cold and fresh Oyashio water in September 2003, and were entrained into a warm-core ring in October 2003, remaining within the ring until detrainment in December 2004. Drastic cooling and freshening of the upper core water of the ring were observed during the above entrainment of the floats with cold and fresh water into the ring, whereas moderate variations in structure and water properties were observed during a quasi-isolated phase from November 2003 to November 2004 when the ring did not experience major interactions with ambient hydrographic features. The upper part of the core water (upper core), with relatively warm/saline water above 26.6 σ θ , was under the influence of the atmosphere in winter via the formation of a deep mixed layer exceeding 300 dB, and had a prominent pycnostad below the seasonal pycnocline from spring to autumn. In contrast, the lower core, with relatively cold and fresh water below 26.6 σ θ , was not ventilated throughout the observation period. Isopycnal surfaces showed a shoaling trend of about 50 dB/year during the quasi-isolated phase, suggesting viscous decay over a timescale of several years. Markedly cold and thick water was also frequently observed within the ring, indicating the intrusion of water from the Sea of Okhotsk.  相似文献   

3.
Size distributions of Neocalanus cristatus, N. flemingeri and N. plumchrus were investigated in the eastern and the western subarctic gyres and three marginal seas of the North Pacific during the diapause period to examine the geographical variation in body size of Neocalanus species and to clarify the origin of the large biennial N. flemingeri which has been observed in the Oyashio region. There were significant among region variations in body sizes for all three species of Neocalanus. Generally, the body sizes of the copepods were larger in the marginal seas and marginal areas of the open ocean. In the open ocean, the body sizes increased westward. These patterns of variation in the body sizes roughly correlated with local food availability. Distribution of biennial N. flemingeri was restricted to the Sea of Japan, the Okhotsk Sea and the Oyashio region. The large-sized biennial N. flemingeri were abundantly observed in the Okhotsk Sea, and the medium-sized biennial individuals were observed in the Sea of Japan. These facts strongly suggest that the large biennial N. flemingeri in the Oyashio region are advected from the Okhotsk Sea.  相似文献   

4.
The south-flowing waters of the Kamchatka and Oyashio Currents and west-flowing waters of the Alaskan Stream are key components of the western sub-Arctic Pacific circulation. We use CTD data, Argo buoys, WOCE surface drifters, and satellite-derived sea-level observations to investigate the structure and interannual changes in this system that arise from interactions among anticyclonic eddies and the mean flow. Variability in the temperature of the upstream Oyashio and Kamchatka Currents is evident by warming in mesothermal layer in 1994–2005 compared to 1990–1991. A major fraction of the water in these currents is derived directly from the Alaskan Stream. The stream also sheds large anticyclonic (Aleutian) eddies, averaging approximately 300 km in diameter with a volume transport significant in comparison with that of the Kamchatka Current itself. These eddies enclose pools of relatively warm and saline water whose temperature is typically 4 °C warmer and salinity is 0.4 greater than that of cold-core Kamchatka eddies in the same density range. Aleutian eddies drift at approximately 1.2 km d−1 and retain their distinctive warm and salty characteristics for at least 2 years. Selected westward pathways during 1990–2004 are identified. If the shorter northern route is followed, Aleutian eddies remain close to the stream and persist sufficiently long to carry warm and saline water directly to the Kamchatka Current. This was observed during 1994–1997 with substantial warming of the waters in the Kamchatka Current and upstream Oyashio. If the eddies take a more southern route they detach from the stream but can still contribute significant quantities of warm and saline water to the upstream Oyashio, as in 2004–2005. However, the eddies following this southern route may dissipate before reaching the western boundary current region.  相似文献   

5.
The temperature minimum layer, called “dichothermal water”, is a characteristic feature of the North Pacific subarctic gyre. In particular, dichothermal water having a density of approximately 26.6 sigma-theta (σθ), which corresponds to the densest water outcropping in winter in the North Pacific, is seen in the Bering Sea. In order to clarify the water properties, and the area in which and the process by which the dichothermal water is formed, a new seasonal mean gridded climatological dataset with a fine resolution for the Bering Sea and adjacent seas has been prepared using historically accumulated hydrographic data. Although the waters of the Alaskan Stream have temperature minimum layers, their temperature inversions are very weak in climatologies and the core densities of the temperature minimum layers are much lighter than 26.6σθ. On the other hand, in the Bering Sea one can see the robust structure of temperature minimum layers, the core density of the dichothermal water being around 26.6σθ. In addition, it has been found that the properties of the dichothermal water observed in the warming season are almost the same as those in the winter mixed layer. That is, the dichothermal waters are formed in the winter mixed layer in the Bering Sea. Since these waters are found in the Kamchatka Strait, i.e., the main exit of the Bering Sea waters, it can be supposed that the dichothermal waters are exported from the Bering Sea to the Pacific Ocean by the Kamchatka Current. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Many of the changes observed during the last two decades in the Arctic Ocean and adjacent seas have been linked to the concomitant abrupt decrease of the sea level pressure in the central Arctic at the end of the 1980s. The decrease was associated with a shift of the Arctic Oscillation (AO) to a positive phase, which persisted throughout the mid 1990s. The Arctic salinity distribution is expected to respond to these dramatic changes via modifications in the ocean circulation and in the fresh water storage and transport by sea ice. The present study investigates these different contributions in the context of idealized ice-ocean experiments forced by atmospheric surface wind-stress or temperature anomalies representative of a positive AO index.Wind stress anomalies representative of a positive AO index generate a decrease of the fresh water content of the upper Arctic Ocean, which is mainly concentrated in the eastern Arctic with almost no compensation from the western Arctic. Sea ice contributes to about two-third of this salinification, another third being provided by an increased supply of salt by the Atlantic inflow and increased fresh water export through the Canadian Archipelago and Fram Strait. The signature of a saltier Atlantic Current in the Norwegian Sea is not found further north in both the Barents Sea and the Fram Strait branches of the Atlantic inflow where instead a widespread freshening is observed. The latter is the result of import of fresh anomalies from the subpolar North Atlantic through the Iceland-Scotland Passage and enhanced advection of low salinity waters via the East Icelandic Current. The volume of ice exported through Fram Strait increases by 20% primarily due to thicker ice advected into the strait from the northern Greenland sector, the increase of ice drift velocities having comparatively less influence. The export anomaly is comparable to those observed during events of Great Salinity Anomalies and induces substantial freshening in the Greenland Sea, which in turn contributes to increasing the fresh water export to the North Atlantic via Denmark Strait. With a fresh water export anomaly of 7 mSv, the latter is the main fresh water supplier to the subpolar North Atlantic, the Canadian Archipelago contributing to 4.4 mSv.The removal of fresh water by sea ice under a positive winter AO index mainly occurs through enhanced thin ice growth in the eastern Arctic. Winter SAT anomalies have little impact on the thermodynamic sea ice response, which is rather dictated by wind driven ice deformation changes. The global sea ice mass balance of the western Arctic indicates almost no net sea ice melt due to competing seasonal thermodynamic processes. The surface freshening and likely enhanced sea ice melt observed in the western Arctic during the 1990s should therefore be attributed to extra-winter atmospheric effects, such as the noticeable recent spring-summer warming in the Canada-Alaska sector, or to other modes of atmospheric circulations than the AO, especially in relation to the North Pacific variability.  相似文献   

7.
In this study we used two stable isotopes, δ13C and δ18O, for water mass classification in the coastal region off eastern Hokkaido. δ13C* values, which were corrected for the biological effect, and δ 18O values up to 300 m depth suggested that the isotopic character of the onshore and offshore water in the southern Okhotsk Sea, the Nemuro Strait and the western North Pacific could be explained by the mixing of three source waters: the Oyashio water (OYW), Soya Warm Current water (SWCW) and East Sakhalin Current water (ESCW). In summer, δ 13C*-δ 18O plots indicated mixing between SWCW from the southern Okhotsk Sea and OYW in the Pacific coast of southeastern Hokkaido, while temperature-salinity plots of the onshore water showed minimal difference from the offshore OYW. In winter, on the other hand, the mixed water of ESCW and OYW (or SWCW) appeared in the Pacific coastal region, distributed as cold, low salinity onshore water. Finally, we estimated mixing ratios of OYW, SWCW and ESCW in the coastal region of western North Pacific using their mean values of δ 13C* and δ 18O as endmembers. These results suggest seasonal and yearly changes of water mass combination en route from the southern Okhotsk Sea to the western North Pacific.  相似文献   

8.
The upper Oyashio intermediate water, one of the source waters for the Sea of Okhotsk intermediate water, is exhibiting a warming trend. The historical data show that the upper Oyashio temperature increased by 2.4°C during 1953 to 2007 at the potential density of 26.75 at depths of approximately 170 m. This rate of warming is much faster than that of the global ocean and the Sea of Okhotsk. The upper Oyashio warming is likely linked to the penetration of warm water of the Alaskan Stream westward. One mechanism of this warm Alaskan Stream water penetration is associated with large Aleutian eddies.  相似文献   

9.
The 137°E repeat hydrographic section for 50 winters during 1967–2016 has been analyzed to examine interannual to interdecadal variations and long-term changes of salinity and temperature in the surface and intermediate layers of the western North Pacific, with a particular focus on freshening in the subtropical gyre. Rapid freshening on both isobars and isopycnals began in the mid-1990s and persisted for the last 20 years in the upper main thermocline/halocline in the western subtropical gyre. In addition, significant decadal variability of salinity existed in the subtropical mode water (STMW), as previously reported for the shallower layers. An analysis of the 144°E repeat hydrographic section during 1984–2013 supplemented by Argo profiling float data in 2014 and 2015 revealed that the freshening trend and decadal variability observed at 137°E originated in the winter mixed layer in the Kuroshio Extension (KE) region and was transmitted southwestward to 137°E 1–2 years later in association with the subduction and advection of STMW. The mechanism of these changes and variations in the source region was further investigated. In addition to the surface freshwater flux in the KE region pointed out by previous studies, the decadal KE variability in association with the Pacific Decadal Oscillation likely contributes to the decadal salinity variability through water exchange between the subtropics and the subarctic across the KE. Interdecadal change in both the surface freshwater flux and the KE state, however, failed to explain the rapid freshening for the last 20 years.  相似文献   

10.
Diel changes in vertical distribution and feeding conditions of the chaetognath Parasagitta elegans (Verill) were observed in three regions of the subarctic North Pacific in the summer of 1997. Samples were collected by repeated vertical hauls with a Vertical Multiple Plankton Sampler (VMPS) for 15–45 hours by demarcating the 0–500 m water column into four sampling layers. Integrated abundance through the entire water column and the proportion of juveniles were higher in the Bering Sea than the western and eastern subarctic Pacific. Juveniles always inhabited the surface layer in the western subarctic Pacific and Bering Sea, but they inhabited the underlying layer in the eastern subarctic Pacific. Stages I–III concentrated into the upper 150 m in the western subarctic Pacific but were distributed widely from 20–300 m in the Bering Sea. Among them, Stages II and III migrated rather synchronously over a wide vertical range in the eastern subarctic Pacific. The feeding rate of P. elegans was calculated to be 0.18 prey/chaetognath/day in the western subarctic Pacific, 0.27 prey/chaetognath/day in the Bering Sea and 0.07 prey/chaetognath/day in the eastern subarctic Pacific.  相似文献   

11.
Using the data obtained from CTD stations and hydrochemical measurements (oxygen, silicates, and phosphates) performed by the Pacific Scientific Research Fishery Center (TINRO Center) in 2001–2004, vertical structures of water masses were considered for the western Bering Sea and for the deep-water depression of the Sea of Okhotsk. It was shown that definite values of the Si/P molar ratio were characteristic for the water mass boundaries within which linear relationships between these two elements were observed. The lower boundaries of cold intermediate layers in both seas are characterized by a value of Si/P = 23. The ratio for the main halocline (the layer of nutrient concentration jump) is equal to 32, while that for the intermediate layer is equal to 43 (47 in the Sea of Okhotsk). In the Bering Sea, linear relationships between the concentrations of these elements are determined by mixing of waters of different origin. The deep convection, regeneration of phosphates in the lower part of the surface layer, and the significant oxygen deficiency in the intermediate layer determine the doubled inclination of their ratio compared to the Redfield’s parameter. At the same time, in the Sea of Okhotsk, the determining role in linear relationships between the elements considered is played by the aeration of intermediate layer with near-bottom shelf waves, and by tidal mixing.  相似文献   

12.
Excess CO2 and pHexcess showing an increase in dissolved inorganic carbon and a decrease in pH from the beginning of the industrial epoch (middle of the 19th century) until the present time have been calculated in the intermediate water layer of the northwestern Pacific and the Okhotsk Sea. It is concluded that: (1) The Kuril Basin (Okhotsk Sea) and the Bussol' Strait areas are characterized by the greatest concentrations of excess CO2 at isopycnal surfaces due to the processes of formation and transformation of intermediate water mass. (2) The largest difference in excess CO2 concentration between the Okhotsk Sea and the western subarctic Pacific (about 8 µmol/kg) is found at the = 27.0. (3) The difference in excess CO2 between the western subarctic Pacific and subtropical regions is significant only in the upper part of the intermediate water layer ( = 26.7–27.0). (4) About 10% of the excess CO2 accumulation in the subtropical north Pacific is determined by water exchange with the subarctic Pacific and the Okhotsk Sea.  相似文献   

13.
Property structure and variability of the Indonesian Throughflow Water in the major outflow straits (Lombok, Ombai and Timor) are revised from newly available data sets and output from a numerical model. Emphasis is put on the upper layers of the Indonesian Throughflow that impacts the heat and freshwater fluxes of the South Equatorial Current in the Indian Ocean. During the April–June monsoon transition the salinity maximum signature of the North Pacific thermocline water is strongly attenuated. This freshening of the thermocline layer is more intense in Ombai and is related to the supply of fresh near-surface Java Sea water that is drawn eastward by surface monsoon currents and subject to strong diapycnal mixing. The freshwater exits to the Indian Ocean first through Lombok Strait and later through Ombai and Timor, with an advective phase lag of between one and five months. Because of these phase lags, the fresher surface and thermocline water is found in the southeast Indian Ocean from the beginning of the monsoon transition period in April through until the end of the southeast monsoon in September, a much longer time period than previously estimated.  相似文献   

14.
Regeneration of a warm anticyclonic ring as a result of interaction with cold water masses was observed within the western subarctic gyre of the North Pacific. Satellite, profiling float, and shipboard observations revealed that a warm-core ring originated from the Kuroshio Extension, propagating northeastwards, entrained cold and fresh water masses from the coastal area of Hokkaido, which are typically recognized within the ring as water that is colder than 2.5 °C. The potential temperature and planetary contribution of potential vorticity of the cold water in the coastal area of Hokkaido were <2 °C and 15 × 10?11 m?1s?1, respectively, suggesting that it originated from the Sea of Okhotsk. After the intrusion, the warm core of the ring cooled, freshened, and contracted, while the outer and lower parts became occupied by the cold and fresh water; however, even after the cooling, the positive surface elevation and downward depression of the main pycnocline, typical of an anticyclonic ring, were still evident. The ring continued to propagate northeastwards, with the main part of its structure occupied by the cold water, but changed its direction of travel from northwest to west-southwest 8 months after the cold-water event, and was finally absorbed into another warm-core ring. It is suggested that these anticyclonic rings, which transported and mixed warm and cold water masses, play important roles in the cross-gyre exchange of subtropical and subarctic waters in the North Pacific.  相似文献   

15.
We present a compilation of apparent oxygen utilization (AOU) changes observed in the upper pycnocline of the North Pacific Ocean over the last several decades. The goal here is to place previously-published data in a common format, and assess the causes of the observed changes. The general trend along repeat cross sections of the eastern and western subtropical ocean and the subarctic ocean is an increase in AOU from the mid 1980s to the mid 1990s. AOU has also been increasing in a time-series study in the northwest subarctic Ocean off of Japan since the late 1960s. Observed AOU changes south of 35°N in the subtropical ocean are 10–20 μmol kg−1, with much greater changes, reaching 60–80 μmol kg−1 in isolated areas, in the subtropical/subarctic boundary and the subarctic ocean. Analysis of changes in both AOU and salinity on isopycnals suggests that there are significant salinity-normalized increases that must be due to alteration in the rate of ventilation or organic matter degradation. A common feature in the data is that the maximum increase in AOU is centered near the density horizon σθ= 26.6. Time series results from the Oyashio Current region near the winter outcrop area of this density horizon indicate that surface waters there have become fresher with time, which may mean this density surface has ceased to outcrop in the latter decades of the 20th century. Whether this is due to natural decadal-scale changes or anthropogenic influences can be decided by determining future trends in AOU on these density surfaces. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
A comparative analysis was conducted on climate variability in four sub-arctic seas: the Sea of Okhotsk, the Bering Sea shelf, the Labrador Sea, and the Barents Sea. Based on data from the NCEP/NCAR reanalysis, the focus was on air–sea interactions, which influence ice cover, ocean currents, mixing, and stratification on sub-seasonal to decadal time scales. The seasonal cycles of the area-weighted averages of sea-level pressure (SLP), surface air temperature (SAT) and heat fluxes show remarkable similarity among the four sub-arctic seas. With respect to variation in climate, all four seas experience changes of comparable magnitude on interannual to interdecadal time scales, but with different timing. Since 2000 warm SAT anomalies were found during most of the year in three of the four sub-arctic seas, with the exception of the Sea of Okhotsk. A seesaw (out of phase) pattern in winter SAT anomalies between the Labrador and the Barents Sea in the Atlantic sector is observed during the past 50 years before 2000; a similar type of co-variability between the Sea of Okhotsk and the Bering Sea shelf in the Pacific is only evident since 1970s. Recent positive anomalies of net heat flux are more prominent in winter and spring in the Pacific sectors, and in summer in the Atlantic sectors. There is a reduced magnitude in wind mixing in the Sea of Okhotsk since 1980, in the Barents Sea since 2000, and in early spring/late winter in the Bering Sea shelf since 1995. Reduced sea-ice areas are seen over three out of four (except the Sea of Okhotsk) sub-arctic seas in recent decades, particularly after 2000 based on combined in situ and satellite observations (HadISST). This analysis provides context for the pan-regional synthesis of the linkages between climate and marine ecosystems.  相似文献   

17.
The existing high-resolution hydrographic data in the western tropical Pacilit; Ocean are used to explore the spatial distribution and primary characteristics of thermohaline intrusions in the thermocline. Statistics show that the vertical scales of intrusions are 20-40 m in the upper thermocline (22.0-26.0δ0) and 40-80 m in the lower thermocline (26.0-27.2δ0). In the upper thermocline, the most intensive intrusions exist at the equatorial front (EF) where north/sonth Pacilic water masses converge, anti Ihe westward spreading of the north Pacilic tropical waler (NPTW) in the Philippines Sea also produces patches of intrusions surrounding its high-salinity tongue. In the lower thermocline, intrusions are also strong at the tropical front (TF) which is the boundary between the north Pacilic subtropical/tropical waters. At the bottom of the thermocline (at about 27.0δ0), intrusions mainly exist near the western boundary, which are produced by intermediate water convergence through the advection of subthermocline western boundary Ilows. Most strikingly a "C"-shape distribution of intrusions at around 26.4δ0 is revealed, covering the vicinity of the EF the TE and the Mindanao Current (MC), i.e., tile western boundary pathway ol the norlh Pacilic subtrnpical cell (STC). Synoptic section analysis reveals that intrusions are more prominent on the warm/sally flank ot the fronts, implying more cross-front tongues of cold/fresh water. Among the intrusions, those at the EF are of best lateral coherence which implies a unique driving mechanism involving near-inertial velocity perturbations near the equator.  相似文献   

18.
To examine whether the regime shift in 1998 that has been variously reported to have occurred in the oceanographic conditions of the central and eastern North Pacific also occurred in the Oyashio region, western North Pacific, we compared data over the period 1990–2003. Oceanographic conditions were compared before 1997 with those after 1998, using the A-line dataset (1990–2003) obtained by the oceanographic surveys of the Hokkaido National Fisheries Research Institute, Fisheries Research Agency (HNFRI/FRA). Seasonal changes of the monthly-mean SST (as temperature in the surface layer) show a significant increase in spring after 1998. After 1998, the mean concentration of chlorophyll a at the surface was higher in spring than that before 1997. This was more remarkable in the main current of the Oyashio. These changes suggest that the spring phytoplankton bloom in the Oyashio region after 1998 was larger in magnitude and initiated earlier. Consumption of nutrients during the spring bloom and standing stock of netplankton also shows a distinct difference between the time period before 1997 and after 1998. These results support the occurrence of the regime shift around 1998 in the Oyashio region. The changes of hydrographical conditions accompanying with the 1998 regime shift are discussed. The hydrographic mechanism of enhancement of primary productivity during the spring phytoplankton bloom was not fully clarified, though. Results in this study may support the usefulness of the A-line dataset for analysis of long-term variability in the western subarctic Pacific.  相似文献   

19.
An overview of the Oyashio ecosystem   总被引:3,自引:0,他引:3  
The Oyashio shelf region and the seasonally ice-covered areas north of Hokkaido are highly productive, supporting a wide range of species including marine mammals, seabirds and commercially important species in the western subarctic Pacific. The fishes include gadids, such as walleye pollock and Pacific cod, and subarctic migratory pelagic fishes such as chum salmon and pink salmon. It is also an important summer feeding ground for subtropical migrants such as the Japanese sardine, Japanese anchovy, Pacific saury, mackerels, Japanese common squid, whales and seabirds. In recent decades, some components of the Oyashio ecosystem (i.e., phytoplankton, mesozooplankton, gadid fish, and subtropical migrants) have shown changes in species abundance or distribution that are correlated with environmental changes such as the 1976/1977 and 1988/1989 regime shifts. The First Oyashio Intrusion moved northward from the mid-1960s until the late 1970s, when it moved southward until the 1980s, after which it returned to the north again after the mid-1990s. The sea-surface temperature in spring decreased after the late 1970s, increased after the late 1980s, and remained high during the 1990s. The extent of ice cover in the Sea of Okhostk also decreased during the latest warming in the 1980–1990s but has increased again since the late 1990s. This and other variabilities affect the Oyashio ecosystem and the surrounding region.  相似文献   

20.
According to the summarized data on the distribution of the Cenozoic siliceous sediments inl the Japanese and Okhotsk seas, the silica accumulation in them initiated in the early Miocene and Oligocene, respectively. This process was preceded by relatively sharp cooling in the Eocene, which stimulated the development of the diatom flora. The global circulation system in the World Ocean favored the upwelling of deep waters in the North Pacific. These nutrient-enriched oceanic waters invaded the marginal seas to determine their high bioproducticvity and intense silica accumulation. In the terminal Pliocene, the share of biogenic silica in the sediments became sharply reduced. This phenomenon corresponds to the onset of the continental glaciations in the Northern Hemisphere 2.6 Ma ago. The water column became stratified to form a distinct halocline, which reduced the bioproductivity. In the present-day Sea of Japan, the water exchange with the Pacific is limited by the shallow and narrow straits between these basins. The Sea of Okhotsk is connected with the ocean by deep straits so that deep nutrient-rich oceanic waters intrude into this basin providing its high bioproductivity. Dissimilar to the Neogene sediments, the Quaternary sequences demonstrate periodicity in the silica accumulation: it was strongly suppressed due to the ice cover during the glaciations and recommenced during the warm interglacial periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号