首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quaternary lavas from the NE Japan arc show geochemical evidenceof mixing between mantle-derived basalts and crustal melts atthe magmatic front, whereas significant crustal signals arenot detected in the rear-arc lavas. The along-arc chemical variationsin lavas from the magmatic front are attributable almost entirelyto geochemical variations in the crustal melts that were mixedwith a common mantle-derived basalt. The mantle-derived basaltshave slightly enriched Sr–Pb and depleted Nd isotopiccompositions relative to the rear-arc lavas, but the variationis less pronounced if crustal contributions are eliminated.Therefore, the source mantle compositions and slab-derived fluxesare relatively uniform, both across and along the arc. Despitethis, incompatible element concentrations are significantlyhigher in the rear-arc basalts. We examine an open-system, fluid-fluxedmelting model, assuming that depleted mid-ocean ridge basalt(MORB)-source mantle melted by the addition of fluids derivedfrom subducted oceanic crust (MORB) and sediment (SED) hybridsat mixing proportions of 7% and 3% SED in the frontal- and rear-arcsources, respectively. The results reproduce the chemical variationsfound across the NE Japan arc with the conditions: 0·2%fluid flux with degree of melting F = 3% at 2 GPa in the garnetperidotite field for the rear arc, and 0·7% fluid fluxwith F = 20% at 1 GPa in the spinel peridotite field beneaththe magmatic front. The chemical process operating in the mantlewedge requires: (1) various SED–MORB hybrid slab fluidsources; (2) variable amounts of fluid; (3) a common depletedmantle source; (4) different melting parameters to explain across-arcchemical variations. KEY WORDS: arc magma; crustal melt; depleted mantle; NE Japan; Quaternary; slab fluid  相似文献   

2.
The arc-front volcanoes of Sumisu (31·5°N, 140°E)and Torishima (30·5°N, 140·3°E) in thecentral Izu–Bonin arc are similar in size and rise asrelatively isolated edifices from the seafloor. Together theyprovide valuable along-arc information about magma generationprocesses. The volcanoes have erupted low-K basalts originatingfrom both wet and dry parental basaltic magmas (low-Zr basaltsand high-Zr basalts, respectively). Based on models involvingfluid-immobile incompatible element ratios (La/Sm), the parentalbasalts appear to result from different degrees of partial meltingof the same source mantle (20% and 10% for wet and dry basaltmagmas, respectively). Assuming that the wet basalts containgreater abundances of slab-derived components than their drycounterparts, geochemical comparison of these two basalt typespermits the identification of the specific elements involvedin fluid transport from the subducting slab. Using an extensiveset of new geochemical data from Torishima, where the top ofthe downgoing slab is about 100 km deep, we find that Cs, Pb,and Sr are variably enriched in the low-Zr basalts, which cannotbe accounted for by fractional crystallization or by differencesin the degree of mantle melting. These elements are interpretedto be selectively concentrated in slab-derived metasomatic fluids.Variations in K, high field strength element and rare earthelement concentrations are readily explained by variations inthe degree of melting between the low- and high-Zr basalts;these elements are not contained in the slab-derived fluids.Rb and Ba exhibit variable behaviour in the low-Zr basalts,ranging from immobile, similar to K, to mildly enriched in somelow-Zr basalts. We suggest that the K-rich mica, phengite, playsan important role in determining the composition of fluids releasedfrom the downgoing slab. In arc-front settings, where slab depthis 100 km, phengite is stable, and the fluids released fromthe slab contain little K. In back-arc settings, however, wherethe slab is at 100–140 km depth, phengite is unstable,and K-rich fluids are released. We conclude that cross-arc variationsin the K content of arc basalts are probably related to differingcompositions of released fluids or melts rather than the widelyheld view that such variations are controlled by the degreeof partial melting. KEY WORDS: arc volcano; degrees of melting; mantle wedge; water; wet and dry basalts  相似文献   

3.
DUFEK  J.; BERGANTZ  G. W. 《Journal of Petrology》2005,46(11):2167-2195
We present a quantitative assessment of the thermal and dynamicresponse of an amphibolitic lower crust to the intrusion ofbasaltic dike swarms in an arc setting. We consider the effectof variable intrusion geometry, depth of intrusion, and basaltflux on the production, persistence, and interaction of basalticand crustal melt in a stochastic computational framework. Distinctmelting and mixing environments are predicted as a result ofthe crustal thickness and age of the arc system. Shallow crustal(30 km) environments and arc settings with low fluxes of mantle-derivedbasalt are likely repositories of isolated pods of mantle andcrustal melts in the lower crust, both converging on daciticto rhyodacitic composition. These may be preferentially rejuvenatedin subsequent intrusive episodes. Mature arc systems with thickercrust (50 km) produce higher crustal and residual basaltic meltfractions, reaching 0·4 for geologically reasonable basaltfluxes. The basaltic to basaltic andesite composition of bothcrustal and mantle melts will facilitate mixing as the networkof dikes collapses, and Reynolds numbers reach 10–4–1·0in the interiors of dikes that have been breached by ascendingcrustal melts. This may provide one mechanism for melting, assimilation,storage and homogenization (MASH)-like processes. Residual mineralassemblages of crust thickened by repeated intrusion are predictedto be garnet pyroxenitic, which are denser than mantle peridotiteand also generate convective instabilities where some of thecrustal material is lost to the mantle. This reconciles thethinner than predicted crust in regions that have undergonea large flux of mantle basalt for a prolonged period of time,and helps explain the enrichment of incompatible elements suchas K2O, typical of mature arc settings, without the associatedmass balance problem. KEY WORDS: crustal anatexis; delamination; lower crust; magma mixing; thermal model  相似文献   

4.
This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of 7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9–6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.  相似文献   

5.
The Early to Middle Jurassic Talkeetna Arc section exposed inthe Chugach Mountains of south–central Alaska is 5–18km wide and extends for over 150 km. This accreted island arcincludes exposures of upper mantle to volcanic upper crust.The section comprises six lithological units, in order of decreasingdepth: (1) residual upper mantle harzburgite (with lesser proportionsof dunite); (2) pyroxenite; (3) basal gabbronorite; (4) lowercrustal gabbronorite; (5) mid-crustal plutonic rocks; (6) volcanicrocks. The pyroxenites overlie residual mantle peridotite, withsome interfingering of the two along the contact. The basalgabbronorite overlies pyroxenite, again with some interfingeringof the two units along their contact. Lower crustal gabbronorite(10 km thick) includes abundant rocks with well-developed modallayering. The mid-crustal plutonic rocks include a heterogeneousassemblage of gabbroic rocks, dioritic to tonalitic rocks (30–40%area), and concentrations of mafic dikes and chilled mafic inclusions.The volcanic rocks (7 km thick) range from basalt to rhyolite.Many of the evolved volcanic compositions are a result of fractionalcrystallization processes whose cumulate products are directlyobservable in the lower crustal gabbronorites. For example,Ti and Eu enrichments in lower crustal gabbronorites are mirroredby Ti and Eu depletions in evolved volcanic rocks. In addition,calculated parental liquids from ion microprobe analyses ofclinopyroxene in lower crustal gabbronorites indicate that theclinopyroxenes crystallized in equilibrium with liquids whosecompositions were the same as those of the volcanic rocks. Thecompositional variation of the main series of volcanic and chilledmafic rocks can be modeled through fractionation of observedphase compositions and phase proportions in lower crustal gabbronorite(i.e. cumulates). Primary, mantle-derived melts in the TalkeetnaArc underwent fractionation of pyroxenite at the base of thecrust. Our calculations suggest that more than 25 wt % of theprimary melts crystallized as pyroxenites at the base of thecrust. The discrepancy between the observed proportion of pyroxenites(less than 5% of the arc section) and the proportion requiredby crystal fractionation modeling (more than 25%) may be bestunderstood as the result of gravitational instability, withdense ultramafic cumulates, probably together with dense garnetgranulites, foundering into the underlying mantle during thetime when the Talkeetna Arc was magmatically active, or in theinitial phases of slow cooling (and sub-solidus garnet growth)immediately after the cessation of arc activity. KEY WORDS: island arc crust; layered gabbro; Alaska geology; island arc magmatism; lower crust  相似文献   

6.
The Variscan basement of the Central Iberian Zone contains abundantCambro-Ordovician calc-alkaline to peraluminous metagranitesand metavolcanic rocks with two notable features: first, theywere apparently produced with no connection to any major tectonicor metamorphic event; second, they have an unusually high zirconinheritance. U–Pb dating combined with cathodoluminescenceimaging reveals that about 70–80%, in some samples nearer100%, of the zircon grains contain inherited pre-magmatic cores,despite the temperature reached by the magmas (about 900°C,calculated using the Ti-in-zircon thermometer) being high enoughto dissolve all the available zircon (from the rock's zirconsaturation temperature, 770–860°C). The fact thatthe dissolution of zircon was so incomplete can only be attributedto the kinetics of heat transfer to and from the magmas. Three-dimensionalmodeling of zircon dissolution behavior in melts with a compositionsimilar to the Iberian Cambro-Ordovician magmas indicates thatthe survival of zircons from the suggested late Pan-Africanprotolith would be possible only if melt production was rapid,specifically less than 104 years, and probably about 2 x 103years, from the beginning of melting (700°C) to the thermalpeak (900°C). Melt production was followed by fast magmatransfer to upper crustal levels resulting either in surfaceeruption or in the emplacement of small (< 400 m thick) sillsor laccoliths. We suggest that these elevated rates of crustalmelting could only have been caused by intrusion of mantle-derivedmafic magmas, most probably at the base of the crust. This scenariois consistent with a rifting regime in which crust and mantlewere mechanically decoupled; this would explain the scarcityof contemporaneous crustal deformation. Furthermore, fast meltingrates in the lower crust followed by fast melt transportationto the upper crust could also explain the lack of contemporaneousmetamorphism. The speed of the partial melting process resultedin the production of felsic magmas that inherited the geochemicalcharacteristics of their granitoid crustal protolith. This explainsthe apparent contradiction between the calc-alkaline to peraluminousgeochemical characteristics of the magmas and the inferred extensional(i.e. rift-related) tectonic setting. Our model is compatiblewith the hypothesis of fragmentation and dispersal of terranesfrom the northern margin of Gondwana that led to the openingof the Rheic and Galicia–South Brittany oceans and, ultimately,caused the detachment of the Iberian microplate from Armoricaand Gondwana during the early Paleozoic. KEY WORDS: igneous petrology; migmatite; granite; geochemistry; crustal contamination; ICP-MS; laser ablation  相似文献   

7.
We have conducted experiments on dissolution of quartz, albite,orthoclase, and corundum into H2O-saturated haplogranite meltat 800°C and 200 MPa over a duration of 120–1488 hwith the aim of ascertaining the diffusive transport propertiesof granitic melts at crustal anatectic temperatures. Cylindersof anhydrous starting glass and a single mineral phase (quartzor feldspar) were juxtaposed along flat and polished surfacesinside gold or platinum capsules with 10 wt % added H2O. Concentrationprofiles in glass (quenched melt) perpendicular to the mineral–glassinterfaces and comparison with relevant phase diagrams suggestthat melts at the interface are saturated in the dissolvingphases after 384 h, and with longer durations the concentrationprofiles are controlled only by diffusion of components in themelt. The evolution of the concentration profiles with timeindicates that uncoupled diffusion in the melt takes place alongthe following four linearly independent directions in oxidecomposition space: SiO2, Na2O, and K2O axes (Si-, Na-, and K-eigenvectors,respectively), and a direction between the Al2O3, Na2O, andK2O axes (Al-eigenvector), such that the Al/Na molar ratio isequal to that of the bulk melt and the Al/(Na + K) molar ratiois equal to the equilibrium ASI (= mol. Al2O3/[Na2O + K2O])of the melt. Experiments in which a glass cylinder was sandwichedbetween two mineral cylinders—quartz and albite, quartzand K-feldspar, or albite and corundum—tested the validityof the inferred directions of uncoupled diffusion and exploredlong-range chemical communication in the melt via chemical potentialgradients. The application of available solutions to the diffusionequations for the experimental quartz and feldspar dissolutiondata provides diffusivities along the directions of the Si-eigenvectorand Al-eigenvector of (2·0–2·8) x 10–15m2/s and (0·6–2·4) x 10–14 m2/s, respectively.Minimum diffusivities of alkalis [(3–9) x 10–11m2/s] are orders of magnitude greater than the tetrahedral componentsof the melt. The information provided here determines the rateat which crustal anatexis can occur when sufficient heat issupplied and diffusion is the only mass transport (mixing) processin the melt. The calculated diffusivities imply that a quartzo-feldspathicsource rock with initial grain size of 2–3 mm undergoinghydrostatic, H2O-saturated melting at 800°C (infinite heatsupply) could produce 20–30 vol. % of homogeneous meltin less than 1–10 years. Slower diffusion in H2O-undersaturatedmelts will increase this time frame. KEY WORDS: chemical diffusion; haplogranite; mineral dissolution experiments; crustal anatexis  相似文献   

8.
Numerous, interconnected, granitic dikes (<30 cm in widthand hundeds of meters in length) cut Ferrar dolerite sills ofthe McMurdo Dry Valleys, Antarctica. The source of the graniticdikes is partial melting of granitic country rock, which tookplace in the crust at a depth of about 2–3 km adjacentto contacts with dolerite sills. Sustained flow of doleriticmagma through the sill generated a partial melting front thatpropagated into the granitic country rock. Granitic partialmelts segregated and collected at the contact in a melt-rich,nearly crystal-free reservoir adjacent to the initial doleritechilled margin. This dolerite chilled margin was subsequentlyfractured open in the fashion of a trapdoor by the graniticmelt, evacuating the reservoir to form an extensive complexof granitic dikes within the dolerite sills. At the time ofdike injection the dolerite was nearly solidified. Unusuallycomplete exposures allow the full physical and chemical processesof partial melting, segregation, and dike formation to be examinedin great detail. The compositions of the granitic dikes andthe textures of partially melted granitic wall rock suggestthat partial melting was characterized by disequilibrium mineraldissolution of dominantly quartz and alkali feldspar ratherthan by equilibrium melting. It is also unlikely that meltingoccurred under water-saturated conditions. The protolith granitecontains only 7 vol.% biotite and estimated contact temperaturesof 900–950°C suggest that melting was possible ina dry system. Granite partial melting, under closed conditions,extended tens of meters away from the dolerite sill, yet meltsegregation occurred only over less than one-half a meter fromthe dolerite chilled margin where the degree of partial meltingwas of the order of 50 vol.%. This segregation distance is consistentwith calculated length scales expected in a compaction-drivenprocess. We suggest that the driving force for compaction wasdifferential stress generated by a combination of volume expansionas a result of granite partial melting, contraction during doleritesolidification, and relaxation of the overpressure driving doleriteemplacement. On a purely chemical basis, the extent of meltsegregation necessary under fractional and batch melting tomatch the Rb concentrations between melt and parent rock isa maximum of 48 and 83 vol.% melt, respectively. KEY WORDS: Antarctica; dike injection; disequilibrium; granite partial melting; silicic melt segregation  相似文献   

9.
Quartz-rich xenoliths in lavas and pyroclastic rocks from VulcanoIsland, part of the Aeolian arc, Italy, contain silicic meltinclusions with high SiO2 (73–80 wt %) and K2O (3–6wt %) contents. Two types of inclusions can be distinguishedbased on their time of entrapment and incompatible trace element(ITE) concentrations. One type (late, ITE-enriched inclusions)has trace element characteristics that resemble those of themetamorphic rocks of the Calabro-Peloritano basement of theadjacent mainland. Other inclusions (early, ITE-depleted) havevariable Ba, Rb, Sr and Cs, and low Nb, Zr and rare earth element(REE) contents. Their REE patterns are unfractionated, witha marked positive Eu anomaly. Geochemical modelling suggeststhat the ITE-depleted inclusions cannot be derived from equilibriummelting of Calabro-Peloritano metamorphic rocks. ITE-enrichedinclusions can be modelled by large degrees (>80%) of meltingof basement gneisses and schists, leaving a quartz-rich residuerepresented by the quartz-rich xenoliths. Glass inclusions inquartz-rich xenoliths represent potential contaminants of Aeolianarc magmas. Interaction between calc-alkaline magmas and crustalanatectic melts with a composition similar to the analysed inclusionsmay generate significant enrichment in potassium in the magmas.However, ITE contents of the melt inclusions are comparablewith or lower than those of Vulcano calc-alkaline and potassicrocks. This precludes the possibility that potassic magmas inthe Aeolian arc may originate from calc-alkaline parents throughdifferent degrees of incorporation of crustal melts. KEY WORDS: melt inclusions; crustal anatexis; magma assimilation; xenoliths; Vulcano Island  相似文献   

10.
We report the results of a geochemical study of the Jijal andSarangar complexes, which constitute the lower crust of theMesozoic Kohistan paleo-island arc (Northern Pakistan). TheJijal complex is composed of basal peridotites topped by a gabbroicsection made up of mafic garnet granulite with minor lensesof garnet hornblendite and granite, grading up-section to hornblendegabbronorite. The Sarangar complex is composed of metagabbro.The Sarangar gabbro and Jijal hornblende gabbronorite have melt-like,light rare earth element (LREE)-enriched REE patterns similarto those of island arc basalts. Together with the Jijal garnetgranulite, they define negative covariations of LaN, YbN and(La/Sm)N with Eu* [Eu* = 2 x EuN/(SmN + GdN), where N indicateschondrite normalized], and positive covariations of (Yb/Gd)Nwith Eu*. REE modeling indicates that these covariations cannotbe accounted for by high-pressure crystal fractionation of hydrousprimitive or derivative andesites. They are consistent withformation of the garnet granulites as plagioclase–garnetassemblages with variable trapped melt fractions via eitherhigh-pressure crystallization of primitive island arc basaltsor dehydration-melting of hornblende gabbronorite, providedthat the amount of segregated or restitic garnet was low (<5wt %). Field, petrographic, geochemical and experimental evidenceis more consistent with formation of the Jijal garnet granuliteby dehydration-melting of Jijal hornblende gabbronorite. Similarly,the Jijal garnet-bearing hornblendite lenses were probably generatedby coeval dehydration-melting of hornblendites. Melting modelsand geochronological data point to intrusive leucogranites inthe overlying metaplutonic complex as the melts generated bydehydration-melting of the plutonic protoliths of the Jijalgarnet-bearing restites. Consistent with the metamorphic evolutionof the Kohistan lower arc crust, dehydration-melting occurredat the mature stage of this island arc when shallower hornblende-bearingplutonic rocks were buried to depths exceeding 25–30 kmand heated to temperatures above c. 900°C. Available experimentaldata on dehydration-melting of amphibolitic sources imply thatthickening of oceanic arcs to depths >30 km (equivalent toc. 1·0 GPa), together with the hot geotherms now postulatedfor lower island arc crust, should cause dehydration-meltingof amphibole-bearing plutonic rocks generating dense garnetgranulitic roots in island arcs. Dehydration-melting of hornblende-bearingplutonic rocks may, hence, be a common intracrustal chemicaland physical differentiation process in island arcs and a naturalconsequence of their maturation, leading to the addition ofgranitic partial melts to the middle–upper arc crust andformation of dense, unstable garnet granulite roots in the lowerarc crust. Addition of LREE-enriched granitic melts producedby this process to the middle–upper island arc crust maydrive its basaltic composition toward that of andesite, affordinga plausible solution to the ‘arc paradox’ of formationof andesitic continental-like crust in island arc settings. KEY WORDS: island arc crust; Kohistan complex; Jijal complex; amphibole dehydration-melting; garnet granulite; continental crustal growth  相似文献   

11.
Major and trace element, Sr–Nd–Pb isotope and mineralchemical data are presented for newly discovered ultrapotassiclavas in the Tangra Yumco–Xuruco graben in southern Tibet.The ultrapotassic lavas are characterized by high MgO, K2O andTiO2, low Al2O3 and Na2O contents, and also have high molarK2O/Al2O3, molar (K2O + Na2O)/Al2O3 and K2O/Na2O ratios. Theirhigh abundances of incompatible trace elements such as largeion lithophile elements (LILE) and light rare earth elements(LREE) reach the extreme levels typical of lamproites. The lamproitesshow highly radiogenic 87Sr/86Sr (0· 7166–0·7363) and unradiogenic 143Nd/144Nd (0· 511796–0·511962), low 206Pb/204Pb (18· 459–18· 931),and elevated radiogenic 207Pb/204Pb (15· 6732–15·841) and 208Pb/204Pb (39· 557–40· 058) ratios.On the basis of their geochemical and isotopic systematics,the lamproites in south Tibet have a distinct magma source thatcan be differentiated from the sources of potassic lavas inthe east Lhasa and Qiangtang blocks. Their high Nb/Ta ratios(17· 10–19· 84), extremely high Th/U ratios(5· 70–13· 74) and distinctive isotope compositionsare compatible with a veined mantle source consisting of partialmelts of subducted Tethyan oceanic sediments and sub-continentallithospheric depleted mantle. Identification of the lamproitesand the delineation of their mantle source provide new evidencerelevant for models of the uplift and extension of the Tibetanplateau following the Indo-Asia collision. Metasomatism by partialmelts from isotopically evolved, old sediment subducted on theyoung Tethyan slab is an alternative explanation for PrecambrianNd and Pb model ages. In this model, differences in isotopiccomposition along-strike are attributed to differences in thetype of sediment being subducted, thus obviating the need formultiple metasomatic events over hundreds of million years.The distribution of lamproites, restricted within a north–south-trendinggraben, indicates that the initiation of east–west extensionin south Tibet started at 25 Ma. KEY WORDS: lamproites; subducted oceanic sediment; Tibetan active continental collision belt  相似文献   

12.
Mineral major and trace element data are presented for the mainrock units of the Chilas Complex, a series of lower crustalintrusions emplaced during initial rifting within the MesozoicKohistan (paleo)-island arc (NW Pakistan). Detailed field observationsand petrological analysis, together with geochemical data, indicatethat the two principal units, ultramafic rocks and gabbronoritesequences, originate from a common parental magma, but evolvedalong different mineral fractionation trends. Phase petrologyand mineral trace element data indicate that the fractionationsequence of the ultramafic rocks is dominated by the crystallizationof olivine and clinopyroxene prior to plagioclase, whereas plagioclaseprecedes clinopyroxene in the gabbronorites. Clinopyroxene inthe ultramafic rocks (with Mg-number [Mg/(Fetot + Mg] up to0·95) displays increasing Al2O3 with decreasing Mg-number.The light rare earth element depleted trace element pattern(CeN/GdN 0·5–0·3) of primitive clinopyroxenesdisplays no Eu anomaly. In contrast, clinopyroxenes from thegabbronorites contain plagioclase inclusions, and the traceelement pattern shows pronounced negative anomalies for Sr,Pb and Eu. Trace element modeling indicates that in situ crystallizationmay account for major and trace element variations in the gabbronoritesequence, whereas the olivine-dominated ultramafic rocks showcovariations between olivine Mg-number and Ni and Mn contents,pointing to the importance of crystal fractionation during theirformation. A modeled parental liquid for the Chilas Complexis explained in terms of mantle- and slab-derived components,where the latter component accounts for 99% of the highly incompatibleelements and between 30 and 80% of the middle rare earth elements.The geochemical characteristics of this component are similarto those of a low percentage melt or supercritical liquid derivedfrom subducted mafic crust. However, elevated Pb/Ce ratios arebest explained by additional involvement of hydrous fluids.In accordance with the crystallization sequence, the subsolidusmetamorphic reactions indicate pressures of 0·5–0·7GPa. Our data support a model of combined flux and decompressionmelting in the back-arc. KEY WORDS: Kohistan; Island arc; gabbro; trace element modelling; lower crustal intrusion  相似文献   

13.
The Palaeogene Kangerlussuaq Intrusion (50 Ma) of East Greenlanddisplays concentric zonation from quartz-rich nordmarkite (quartzsyenite) at the margin, through pulaskite, to foyaite (nephelinesyenite) in the centre; modal layering and igneous laminationare locally developed but there are no internal intrusive contacts.This is an apparent violation of the phase relations in Petrogeny'sResidua System. We propose that this intrusion is layered, gradingfrom quartz syenite at the bottom to nepheline syenite at thetop. Mineral and whole-rock major and trace element data andSr–Nd–Hf–Pb isotope data are presented thatprovide constraints on the petrogenesis of the intrusion. Radiogenicisotope data indicate a continuously decreasing crustal componentfrom the quartz nordmarkites (87Sr/86Sr = 0·7061; Ndi= 2·3; Hfi = 5·2; 206Pb/204Pbmeas = 16·98)to the foyaites (87Sr/86Sr = 0·7043–0·7044;Ndi = 3·8–4·9; Hfi = 10·7–11·1;206Pb/204Pbmeas = 17·78–17·88); the foyaitesare dominated by a mantle isotopic signature. The average Mg-numberof amphibole cores becomes increasingly primitive, varying from26·4 in the nordmarkites to 57·4 in the pulaskites.Modal layering, feldspar lamination and the presence of hugebasaltic xenoliths derived from the chamber roof, now restingon the transient chamber floor, demonstrate bottom-upwards crystallization.The intrusion cannot, therefore, have formed in a system closedto magmatic recharge. The lack of gneissic xenoliths in thenordmarkites suggests that most contamination took place deeperin the crust. In the proposed model, the nordmarkitic magmaformed during crustal assimilation in the roof zone of a large,silica-undersaturated alkali basaltic/basanitic, stratifiedmagma chamber, prior to emplacement in the uppermost crust.The more primitive syenites, terminating with foyaite at thetop of the intrusion, formed as a consequence of repeated rechargeof the Kangerlussuaq Intrusion magma chamber by tapping lesscontaminated, more primitive phonolitic melt from deeper partsof the underlying chamber during progressive armouring of theplumbing system. KEY WORDS: Kangerlussuaq; East Greenland; syenite; crustal contamination; magma mixing  相似文献   

14.
15.
Major and trace element compositions and Sr, Nd, Pb, and Hfisotope ratios of Aleutian island arc lavas from Kanaga, Roundhead,Seguam, and Shishaldin volcanoes provide constraints on thecomposition and origin of the material transferred from thesubducted slab to the mantle wedge. 40Ar/39Ar dating indicatesthat the lavas erupted mainly during the last  相似文献   

16.
The mid-Holocene eruptive products of Nevado de Longavívolcano (36·2°S, Chile) are the only reported occurrenceof adakitic volcanic rocks in the Quaternary Andean SouthernVolcanic Zone (33–46°S). Dacites of this volcano arechemically distinct from other evolved magmas of the regionin that they have high La/Yb (15–20) and Sr/Y (60–90)ratios and systematically lower incompatible element contents.An origin by partial melting of high-pressure crustal sourcesseems unlikely from isotopic and trace element considerations.Mafic enclaves quenched into one of the dacites, on the otherhand, constitute plausible parental magmas. Dacites and maficenclaves share several characteristics such as mineral chemistry,whole-rock isotope and trace element ratios, highly oxidizingconditions (NNO + 1·5 to >NNO + 2, where NNO is thenickel–nickel oxide buffer), and elevated boron contents.A two-stage mass-balance crystal fractionation model that matchesboth major and trace elements is proposed to explain magmaticevolution from the least evolved mafic enclave to the dacites.Amphibole is the main ferromagnesian phase in both stages ofthis model, in agreement with the mineralogy of the magmas.We also describe cumulate-textured xenoliths that correspondvery closely to the solid assemblages predicted by the model.We conclude that Nevado de Longaví adakitic dacites arethe products of polybaric fractional crystallization from exceptionallywater-rich parent magmas. These basaltic magmas are inferredto be related to an exceptionally high, but transient inputof slab-derived fluids released from serpentinite bodies hostedin the oceanic Mocha Fracture Zone, which projects beneath Nevadode Longaví. Fractional crystallization that is modallydominated by amphibole, with very minor garnet extraction, isa mechanism for generating adakitic magmas in cold subductionzones where a high flux of slab-derived fluids is present. KEY WORDS: adakite; amphibole; Andes; differentiation; Southern Volcanic Zone  相似文献   

17.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

18.
Migmatitic orthogneisses in the Muskoka domain, southwesternGrenville Province, Ontario, formed during the Ottawan stage(c. 1080–1050 Ma) of the Grenvillian orogeny. Stromaticmigmatites are volumetrically dominant, comprising granodioriticgneisses with 2–5 cm thick granitic leucosomes, locallyrimmed by thin melanosomes, that constitute 20–30 vol.%, and locally 40–50 vol. %, of the outcrops. Patch migmatitesin dioritic gneisses form large (>10 m) pinch-and-swell structureswithin the stromatic migmatites, and consist of decimetre-scale,irregular patches of granitic leucosome, surrounded by medium-grainedhornblende–plagioclase melanosomes interpreted as restite.The patches connect to larger networks of zoned pegmatite dykes.Petrographic and geochemical evidence suggests that the patchleucosomes formed by 20–40% fluid-present, equilibriummelting of the dioritic gneiss, followed by feldspar-dominatedcrystallization. The dyke networks may have resulted from hydraulicfracturing, probably when the melts reached water saturationduring crystallization. Field and geochemical data from thestromatic migmatites suggest a similar petrogenesis to the patchmigmatites, but with significant additions of externally derivedmelts, indicating that they acted as conduits for melts derivedfrom deeper structural levels within the orogen. We hypothesizethat the Muskoka domain represents a transfer zone for meltsmigrating to higher structural levels during Grenvillian deformation. KEY WORDS: migmatite geochemistry; partial melting; melt crystallization; melt transport; Grenville orogen  相似文献   

19.
The latest eruption of Haruna volcano at Futatsudake took placein the middle of the sixth century, starting with a Plinianfall, followed by pyroclastic flows, and ending with lava domeformation. Gray pumices found in the first Plinian phase (lowerfall) and the dome lavas are the products of mixing betweenfelsic (andesitic) magma having 50 vol. % phenocrysts and maficmagma. The mafic magma was aphyric in the initial phase, whereasit was relatively phyric during the final phase. The aphyricmagma is chemically equivalent to the melt part of the phyricmafic magma and probably resulted from the separation of phenocrystsat their storage depth of 15 km. The major part of the felsicmagma erupted as white pumice, without mixing and heating priorto the eruption, after the mixed magma (gray pumice) and heatedfelsic magma (white pumice) of the lower fall deposit. Althoughthe mafic magma was injected into the felsic magma reservoir(at 7 km depth), part of the product (lower fall ejecta) precedederuption of the felsic reservoir magma, as a consequence ofupward dragging by the convecting reservoir of felsic magma.The mafic magma injection made the nearly rigid felsic magmaerupt, letting low-viscosity mixed and heated magmas open theconduit and vent. Indeed the lower fall white pumices preservea record of syneruptive slow ascent of magma to 2 km depth,probably associated with conduit formation. KEY WORDS: high-crystallinity felsic magma; magma plumbing system; multistage magma mixing; upward dragging of injected magma; vent opening by low-viscosity magma  相似文献   

20.
郎山组地层是西藏冈底斯带中最具代表性的白垩纪地层,其时代与形成环境对于认识藏南地区的大地构造演化具有重要意义.基于最近在西藏改则县洞错地区郎山组中新发现的火山岩夹层,对该火山岩(英安岩)进行了LA-ICP-MS锆石U-Pb定年,获得年龄值为(88.7±1.1)Ma,指示该区的郎山组地层应属于上白垩统,而非之前认为的下白垩统.进一步通过岩石化学分析发现,该火山岩具有与埃达克岩相似的地球化学特征显示出LREE富集且有轻微的负Eu异常特征,表明冈底斯带北部地区在晚白垩世早期因新特提斯洋的北向俯冲作用曾发生显著的岩浆活动,导致增厚下地壳物质部分熔融形成郎山组地层中的火山岩夹层.对郎山组地层时代的重新认定结果以及其中火山岩夹层所反映的深部构造特征,为研究该区晚白垩世岩浆作用动力学机制提供了新的依据,也表明需要重新认识藏南地区郎山组地层的区域地质与构造意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号