首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The Miocene Kaikomagatake pluton is one of the Neogene granitoid plutons exposed in the Izu Collision Zone, which is where the juvenile Izu-Bonin oceanic arc is colliding against the mature Honshu arc. The pluton intrudes into the Cretaceous to Paleogene Shimanto accretionary complex of the Honshu arc along the Itoigawa-Shizuoka Tectonic Line, which is the collisional boundary between the two arcs. The pluton consists of hornblende–biotite granodiorite and biotite monzogranite, and has SiO2 contents of 68–75 wt%. It has high-K series compositions, and its incompatible element abundances are comparable to the average upper continental crust. Major and trace element compositions of the pluton show well-defined chemical trends. The trends can be interpreted with a crystal fractionation model involving the removal of plagioclase, biotite, hornblende, quartz, apatite, and zircon from a potential parent magma with a composition of ~68 wt% SiO2. The Sr isotopic compositions, together with the partial melting modeling results, suggest that the parent magma is derived by ~53% melting of a hybrid lower crustal source comprising ~30% Shimanto metasedimentary rocks of the Honshu arc and ~70% K-enriched basaltic rocks of the Izu-Bonin rear-arc region. Together with previous studies on the Izu Collision Zone granitoid plutons, the results of this study suggest that the chemical diversity within the parental magmas of the granitoid plutons reflects the chemical variation of basaltic sources (i.e., across-arc chemical variation in the Izu-Bonin arc), as well as a variable contribution of the metasedimentary component in the lower crustal source regions. In addition, the petrogenetic models of the Izu Collision Zone granitoid plutons collectively suggest that the contribution of the metasedimentary component is required to produce granitoid magma with compositions comparable to the average upper continental crust. The Izu Collision Zone plutons provide an exceptional example of the transformation of a juvenile oceanic arc into mature continental crust.  相似文献   

2.
Petrographic and geochemical studies of peridotites from the South Sandwich forearc region provide new evidence for the evolution of the South Sandwich arc–basin system and for the nature of interactions between arc magma and oceanic lithosphere. Peridotites from the inner trench wall in the north-east corner of the forearc vary from clinopyroxene-bearing harzburgites, through samples transitional between harzburgites and dunites or wehrlites, to dunites. The harzburgites are LREE depleted with low incompatible element abundances and have chromites with intermediate Cr# (ca. 0.40). Modelling shows that they represent the residues from 15–20% melting at oxygen fugacities close to the QFM buffer. The dunites have U-shaped REE patterns, low incompatible element abundances and high Cr# (0.66–0.77). Petrography and geochemistry indicate that the latter are the product of intense interaction between peridotite and melt saturated with olivine under conditions of high oxygen fugacity (QFM + 2). The transitional samples are the product of lesser interaction between peridotite and melt saturated with olivine ± clinopyroxene. The data demonstrate that the harzburgites originated as the residue from melting at a ridge (probably the early East Scotia Sea spreading centre), and were subsequently modified to transitional peridotites and dunites by interaction with South Sandwich arc magmas. The second dredge locality, near the South Sandwich Trench–Fracture Zone intersection, yielded rocks ranging from lherzolite to harzburgite that could similarly have resulted from a two-stage melting and enrichment process, but involving a more fertile mantle residue and a reacting melt that is transitional between MORB and island arc tholeiite. The South Sandwich peridotites have a similar petrogenetic history to those from Conical Seamount in the Mariana forearc in the sense that both involved interaction between arc magma and pre-existing mantle lithosphere of different provenance. However, the precise compositions of the magma and mantle components vary from location to location according to the precise tectonic setting and tectonic history. Overall, therefore, data from the South Sandwich and Izu–Bonin–Mariana systems emphasise the potential significance of peridotite geochemistry in unravelling the complex tectonic histories of forearcs past and present. Received: 31 August 1999 / Accepted: 3 December 1999  相似文献   

3.
We establish the ‘subduction initiation rule’ (SIR) which predicts that most ophiolites form during subduction initiation (SI) and that the diagnostic magmatic chemostratigraphic progression for SIR ophiolites is from less to more HFSE-depleted and LILE-enriched compositions. This chemostratigraphic evolution reflects formation of what ultimately becomes forearc lithosphere as a result of mantle melting that is progressively influenced by subduction zone enrichment during SI. The magmatic chemostratigraphic progression for the Izu–Bonin–Mariana (IBM) forearc and most Tethyan ophiolites is specifically from MORB-like to arc-like (volcanic arc basalts or VAB ± boninites or BON) because SI progressed until establishment of a mature subduction zone. MORB-like lavas result from decompression melting of upwelling asthenosphere and are the first magmatic expression of SI. The contribution of fluids from dehydrating oceanic crust and sediments on the sinking slab is negligible in early SI, but continued melting results in a depleted, harzburgitic residue that is progressively metasomatized by fluids from the sinking slab; subsequent partial melting of this residue yields ‘typical’ SSZ-like lavas in the latter stages of SI. If SI is arrested early, e.g., as a result of collision, ‘MORB-only’ ophiolites might be expected. Consequently, MORB- and SSZ-only ophiolites may represent end-members of the SI ophiolite spectrum. The chemostratigraphic similarity of the Mariana forearc with that of ophiolites that follow the SIR intimates that a model linking such ophiolites, oceanic forearcs, and SI is globally applicable.  相似文献   

4.
Site 1201D of Ocean Drilling Program Leg 195 recovered basalticand volcaniclastic units from the West Philippine Basin thatdocument the earliest history of the Izu–Bonin–Marianaconvergent margin. The stratigraphic section recovered at Site1201D includes 90 m of pillow basalts, representing the WestPhilippine Basin basement, overlain by 459 m of volcaniclasticturbidites that formed from detritus shed from the Eocene–Oligoceneproto-Izu–Bonin–Mariana island arc. Basement basaltsare normal mid-ocean ridge basalt (N-MORB), based on their abundancesof immobile trace elements, although fluid-mobile elements areenriched, similar to back-arc basin basalts (BABB). Sr, Nd,Pb and Hf isotopic compositions of the basement basalts aresimilar to those of basalts from other West Philippine Basinlocations, and show an overall Indian Ocean MORB signature,marked by high 208Pb/204Pb for a given 206Pb/204Pb and high176Hf/177Hf for a given 143Nd/144Nd. Trace element and isotopicdifferences between the basement and overlying arc-derived volcaniclasticsare best explained by the addition of subducted sediment orsediment melt, together with hydrous fluids from subducted oceaniccrust, into the mantle source of the arc lavas. In contrastto tectonic models suggesting that a mantle hotspot was a sourceof heat for the early Izu–Bonin–Mariana arc magmatism,the geochemical data do not support an enriched, ocean islandbasalt (OIB)-like source for either the basement basalts orthe arc volcanic section. KEY WORDS: back-arc basalts; Izu–Bonin–Marianas; Philippine Sea; subduction initiation; Ocean Drilling Program Leg 195  相似文献   

5.
ABSTRACT

A Paleogene accretionary complex, the Mineoka–Setogawa belt is distributed adjacent to the northern portion of the collision zone between Honshu and Izu–Bonin–Mariana (IBM) arcs in central Japan, comprising a mélange of ophiolitic fragments of various sizes. The Eocene-Oligocene plutonic rocks in this belt (gabbro, diorite, and tonalite) have been interpreted as fragments brought from the deep crust beneath the IBM arc through tectonic collisions. The geochemical characteristics of the gabbro and associated basaltic dike are similar to those of the Eocene IBM tholeiitic basalt; thus, the gabbro was likely formed via the crystallization of the Eocene tholeiitic basaltic magmas, which was produced by the partial meltings of a depleted mantle wedge. A comparison with experimental results and geochemical modeling indicates that the tonalite was generated by 10–30% dehydration melting of the gabbro. Actually, Eocene–Oligocene felsic veins, which are coeval with the plutonic rocks, occur in the Mineoka–Setogawa gabbro. Plagioclase crystals in the diorite comprise Ca-rich and -poor parts in a single crystal. Their compositional characteristics are consistent with those of plagioclase in the gabbro and tonalite, respectively. The textures and chemical composition of plagioclase indicate that the diorite was formed by the mixing between mafic and silicic magmas. The whole-rock composition of the diorite also indicates the evidence for the mixing between basaltic magmas which were fractionated to variable degrees and homogeneous silicic magma. The mixing model proposed from the first direct observations of the IBM middle crust exposed on the Mineoka–Setogawa belt is applied to the genesis of the Eocene to present intermediate rocks in the IBM arc. If the continental crust were created at intra-oceanic arc settings such as the IBM arc, the magma mixing model would be one of the most likely mechanisms for the genesis of the continental crust.  相似文献   

6.
The Izu–Bonin volcanic arc is an excellent example ofan intra-oceanic convergent margin. A total of 1011 chemicalanalyses of 17 Quaternary volcanoes of the arc are reviewedto estimate relative proportions of magmas erupted. Basalt andbasic andesite (SiO2 < 57 wt %) are the predominant eruptiveproducts of the Izu–Bonin arc, and rhyolite (SiO2 >70 wt %) forms another peak in volume. Such rhyolites possesscompositions identical to those of partial melts produced bydehydration-melting of calc-alkaline andesites at low pressure(<7 kbar). Meanwhile, the major element variation of theShirahama Group Mio-Pliocene volcanic arc suite, Izu Peninsula,completely overlaps that of the Quaternary Izu–Bonin arcvolcanoes, and groundmasses of Shirahama Group calc-alkalineandesites have compositions similar to those of Izu–Boninrhyolites. Moreover, phenocryst assemblages of calc-alkalineandesites of the Shirahama Group resemble restite phase assemblagesof dehydration-melting of calc-alkaline andesite. These linesof evidence suggest that the rhyolite magmas may have been producedby dehydration-melting of calc-alkaline andesite in the upperto middle crust. If so, then the presence of large amounts ofcalc-alkaline andesite (3–5 times more abundant than therhyolites) within the oceanic arc crust would be expected, whichis consistent with a recently proposed structural model acrossthe Izu–Bonin arc. The calc-alkaline andesite magmas maybe water saturated, and would crystallize extensively and solidifywithin the crust. The model proposed here suggests that rhyoliteeruptions could be triggered by an influx of hot basalt magmafrom depth, reheating and partially melting the calc-alkalineandesite component of the crust. KEY WORDS: bimodal magmatism; calc-alkaline andesite; oceanic arcs; rhyolite  相似文献   

7.
阿尔泰造山带阿巴宫花岗岩体年代学及地球化学研究   总被引:15,自引:8,他引:7  
花岗岩的成因和演化一直是颇受关注的科学问题。新疆阿尔泰阿巴宫岩体位于北阿尔泰喀纳斯-可可托海古生代岩浆弧南界;利用锆石SHRIMP U-Pb法测得该岩体的形成年龄为462.5±3.6Ma (MSDW=1.4),即侵入时代为奥陶纪中期。岩石地球化学特征显示高硅、富钾,Rb、Th、U、La等富集,Ba、Sr、P、Ti、Nb强烈亏损, LREE富集、HREE分馏不明显,较强负铕异常以及铝过饱和特征;铝过饱和指数1.09~1.39,属于高钾钙碱性强过铝质花岗岩(SP)。综合前人有关阿尔泰造山带发展、演化的研究成果,认为阿巴宫岩体形成于大陆岩浆弧环境,是陆壳物质部分熔融的结果。  相似文献   

8.
K. Kitamura  M. Ishikawa  M. Arima   《Tectonophysics》2003,371(1-4):213-221
Ultrasonic compressional wave velocities (Vp) and shear wave velocities (Vs) were measured with varying pressure up to 1.0 GPa in a temperature range from 25 to 400 °C for a suite of tonalitic–gabbroic rocks of the Miocene Tanzawa plutonic complex, central Japan, which has been interpreted as uplifted and exposed deep crust of the northern Izu–Bonin–Mariana (IBM) arc. The Vp values of the tonalitic–gabbroic rocks increase rapidly at low pressures from 0.1 to 0.4 GPa, and then become nearly constant at higher pressures above 0.4 GPa. The Vp values at 1.0 GPa and 25 °C are 6.3–6.6 km/s for tonalites (56.4–71.1 wt.% SiO2), 6.8 km/s for a quartz gabbro (53.8 wt.% SiO2), and 7.1–7.3 km/s for a hornblende gabbro (43.2–47.7 wt.% SiO2). Combining the present data with the P wave velocity profile of the northern IBM arc, we infer that 6-km-thick tonalitic crust exists at mid-crustal depth (6.1–6.3 km/s Vp) overlying 2-km-thick hornblende gabbroic crust (6.8 km/s Vp). Our model shows large differences in acoustic impedance between the tonalite and hornblende gabbro layers, being consistent with the strong reflector observed at 12-km-depth in the IBM arc. The measured Vp of Tanzawa hornblende-bearing gabbroic rocks (7.1–7.3 km/s) is significantly lower than that Vp modeled for the lowermost crustal layer of the northern IBM arc (7.3–7.7 km/s at 15–22 km depth). We propose that the IBM arc consists of a thick tonalitic middle crust and a mafic lower crust.  相似文献   

9.
Gabbro-tonalite-granodiorite-granite (GTGG) plutons productive for gold are suprasubduction intrusive bodies formed at an Andean-type active continental margin 410–380, 365–355, and 320–290 Ma ago. The Devonian plutons are situated in the southeastern marginal continental zone, whereas the Carboniferous plutons occur in the northwestern zone. All GTGG plutons are mantle-crustal. Their formation started with hydrous basic magmatism and was accompanied by such magmatism up to the final stage. Mantle-derived amphibole gabbro and diorite experienced partial melting (anatexis) in the lower crust under a pressure of 6–10 kbar, giving birth to the tonalite-granodiorite members of the GTGG series. The latter, in turn, were involved in anatexis with the formation of adamellite and granite, immediately accompanied by hydrothermal gold mineralization. The multistep anatexis is the main petrogenetic process responsible for the gold resource potential of GTGG plutons. In the process of anatexis occurring under high fluid saturation, gold was repeatedly removed from rocks into fluid, facilitating its concentration in ore deposits.  相似文献   

10.
Quartz-rich xenoliths in lavas and pyroclastic rocks from VulcanoIsland, part of the Aeolian arc, Italy, contain silicic meltinclusions with high SiO2 (73–80 wt %) and K2O (3–6wt %) contents. Two types of inclusions can be distinguishedbased on their time of entrapment and incompatible trace element(ITE) concentrations. One type (late, ITE-enriched inclusions)has trace element characteristics that resemble those of themetamorphic rocks of the Calabro-Peloritano basement of theadjacent mainland. Other inclusions (early, ITE-depleted) havevariable Ba, Rb, Sr and Cs, and low Nb, Zr and rare earth element(REE) contents. Their REE patterns are unfractionated, witha marked positive Eu anomaly. Geochemical modelling suggeststhat the ITE-depleted inclusions cannot be derived from equilibriummelting of Calabro-Peloritano metamorphic rocks. ITE-enrichedinclusions can be modelled by large degrees (>80%) of meltingof basement gneisses and schists, leaving a quartz-rich residuerepresented by the quartz-rich xenoliths. Glass inclusions inquartz-rich xenoliths represent potential contaminants of Aeolianarc magmas. Interaction between calc-alkaline magmas and crustalanatectic melts with a composition similar to the analysed inclusionsmay generate significant enrichment in potassium in the magmas.However, ITE contents of the melt inclusions are comparablewith or lower than those of Vulcano calc-alkaline and potassicrocks. This precludes the possibility that potassic magmas inthe Aeolian arc may originate from calc-alkaline parents throughdifferent degrees of incorporation of crustal melts. KEY WORDS: melt inclusions; crustal anatexis; magma assimilation; xenoliths; Vulcano Island  相似文献   

11.
Roof-to-floor exposures of mid-Miocene plutons in tilt blocks south of Las Vegas, NV, reveal distinct but strongly contrasting magma chamber statigraphy. The Searchlight and Aztec Wash plutons are well-exposed, stratified intrusions that show a similar broad range in composition from 45–75 wt.% SiO2. Homogeneous granites that comprise about one-third of each intrusion are virtually identical in texture and elemental and isotopic chemistry. Mafic rocks that are present in both plutons document basaltic input into felsic magma chambers. Isotopic compositions suggest that mafic magmas were derived from enriched lithospheric mantle with minor crustal contamination, whereas more felsic rocks are hybrids that are either juvenile basaltic magma+crustal melt mixtures or products of anatexis of ancient crust+young (Mesozoic or Miocene?) mafic intraplate.

Despite general similarities, the two plutons differ markedly in dimensions and lithologic stratigraphy. The Searchlight pluton is much thicker (10 vs. 3 km) and has thick quartz monzonite zones at its roof and floor that are absent in the Aztec Wash pluton. Isotopic and elemental data from Searchlight pluton suggest that the upper and lower zones are cogenetic with the granite; we interpret the finer grained, slightly more felsic upper zone to represent a downward migrating solidification front and the lower zone to be cumulate. In contrast, the upper part of the Aztec Wash pluton is granite, and a heterogeneous, mafic-rich injection zone with distinct isotopic chemistry forms the lower two-thirds of the intrusion. Similar mafic rocks are relatively sparse in Searchlight pluton and do not appear to have played a central role in construction of the pluton. Large felsic and composite dikes that attest to repeated recharging and intrachamber magma transfer are common in the Aztec Wash pluton but absent in the Searchlight pluton. Thus, although both intrusions were filled by similar magmas and both developed internal stratification, the two intrusions evolved very differently. The distinctions may be attributable to scale and resulting longevity and/or to subtle differences in tectonic setting.  相似文献   


12.
In north-east Brazil, Archean and Paleoproterozoic cratonicblocks are enclosed within a network of Brasiliano-age (0·7–0·55Ga) metasedimentary foldbelts. The unfoliated Coronel JoãoSá granodiorite pluton, which contains magmatic epidoteand strongly resorbed clinopyroxene, intrudes the SergipanoFoldbelt. Zircons yield a concordant U–Pb crystallizationage of 625 ± 2 Ma; titanite ages are approximately 621Ma. Discordant zircons suggest inheritance from at least twomagma sources of ages <1·8 and >2·2 Ga.Model calculations based on diffusion parameters and Rb–Srisotope data from separated minerals indicate that the plutoncooled at a rate of 36°C/Myr. Whole-rock element compositionsand initial Sr–Nd isotopic compositions that are heterogeneouson all length scales suggest magma mixing. Trace-element concentrationsand Nd isotope data argue against a contribution from a contemporaneousmantle-derived magma. Values of magmatic Nd (at 625 Ma) resemblecontemporary Nd for local supracrustal rocks and basement, compatiblewith anatexis of a crustal source. In north-east Brazil, cratonicblocks could have amalgamated with foldbelts that originatedas: (1) a mosaic of island arcs and arc basins (traditionalallochthonous model), or as (2) extensional continental sedimentarybasins (but not oceanic crust) later involved in collision (autochthonousmodel). The Coronel João Sá isotopic and chemicaldata support an autochthonous origin. KEY WORDS: Brasiliano Orogeny; granodiorite pluton; Rb–Sr isotopes, Sm–Nd isotopes; U–Pb isotopes, magma cooling rate  相似文献   

13.
Early Eocene to Early Miocene magmatic activity in northwestern Anatolia led to the emplacement of a number of granitoid plutons with convergent margin geochemical signatures. Granitoid plutons in the area are mainly distributed within and north of the suture zone formed after the collision of the Anatolide-Tauride platform with the Pontide belt. We present geochemical characteristics of three intrusive bodies in the region in order to identify their source characteristics and geodynamic significance. Among these, the Çataldağ and Ilıca-Şamlı plutons are located to the north and the Orhaneli pluton is located to the south of the IAESZ (Izmir-Ankara-Erzincan Suture Zone). The plutons are calc-alkaline, metaluminous, and I-type with compositions from granite to monzonite. They display clear enrichments in LILE and LREE and depletions in HFSE relative to N-MORB compositions and have high 87Sr/86Sr and low 143Nd/144Nd ratios.The results of theoretical Fractional Crystallization (FC) model show that the samples are affected by fractionation of K-feldspar, plagioclase, biotite and amphibole. Assimilation and Fractional Crystallization (AFC) modeling indicates that the r value, the proportion of variable contamination to fraction, is high, indicating significant crustal contamination in the genesis of granitoid magmas. Combined evaluation of isotopic and trace element data indicates that the granitoids are the products of mantle-derived mafic magmas variably differentiated by simultaneous crustal contamination and fractional crystallization in lower to middle crustal magma chambers in a post-collisional setting.  相似文献   

14.
The Western Kunlun Orogen occupies a key tectonic position at the junction between the Tarim block and the Tethyan domain. However, the late Paleozoic to early Mesozoic, especially the middle to late Triassic tectonic evolution history of the Western Kunlun Orogen remains controversial. This study reports SHRIMP zircon U–Pb ages and geochemical as well as Sr–Nd–Hf isotopic data for middle to late Triassic Taer pluton in Western Kunlun Orogen, Northwest China. The Taer pluton shows a strong bimodal distribution of compositions, with the felsic rocks dominant and the mafic rocks subordinate. Zircon U–Pb dating reveals that the coexisting mafic and felsic rocks are coeval, both emplacing in a period between 234 and 225 Ma. Most of the studied rocks are potassium rich and can be classified into high-K calc-alkaline to shoshonitic series. They are also strongly enriched in LREE, LILE and depleted in HFSE with strong negative Ti and Nb anomalies, and characterized by enriched Sr–Nd–Hf isotopic signatures. Detailed geochemical and isotopic studies indicate that the Taer pluton was emplaced in a post-collisional extensional setting, with the mafic rocks derived from partial melting of the enriched continental lithospheric mantle in the spinel facies field, and the felsic rocks formed by anatexis of newly underplated basaltic rocks. The existence of middle to late Triassic post-collisional magmas in Western Kunlun region suggests that the final closure of Paleo-Tethys and the initial collision between the Western Kunlun and the Qiangtang terranes may have happened before ~234 Ma, most probably in late Permian, rather than in late Triassic or early Jurassic. In assistance with other geological evidences, such as the presence of early Triassic to late Triassic/early Jurassic S-type magmatism, terrestrial molasse depositions, regional unconformities, and strong deformation, we propose that the Western Kunlun Orogen may have undergone a long post-collisional intracontinental process from early Triassic to late Triassic/early Jurassic.  相似文献   

15.
We report major and trace element abundances and Sr, Nd andPb isotopic data for Miocene (16·5–11 Ma) calc-alkalinevolcanic rocks from the western segment of the Carpathian arc.This volcanic suite consists mostly of andesites and dacites;basalts and basaltic andesites as well as rhyolites are rareand occur only at a late stage. Amphibole fractionation bothat high and low pressure played a significant role in magmaticdifferentiation, accompanied by high-pressure garnet fractionationduring the early stages. Sr–Nd–Pb isotopic dataindicate a major role for crustal materials in the petrogenesisof the magmas. The parental mafic magmas could have been generatedfrom an enriched mid-ocean ridge basalt (E-MORB)-type mantlesource, previously metasomatized by fluids derived from subductedsediment. Initially, the mafic magmas ponded beneath the thickcontinental crust and initiated melting in the lower crust.Mixing of mafic magmas with silicic melts from metasedimentarylower crust resulted in relatively Al-rich hybrid dacitic magmas,from which almandine could crystallize at high pressure. Theamount of crustal involvement in the petrogenesis of the magmasdecreased with time as the continental crust thinned. A strikingchange of mantle source occurred at about 13 Ma. The basalticmagmas generated during the later stages of the calc-alkalinemagmatism were derived from a more enriched mantle source, akinto FOZO. An upwelling mantle plume is unlikely to be presentin this area; therefore this mantle component probably residesin the heterogeneous upper mantle. Following the calc-alkalinemagmatism, alkaline mafic magmas erupted that were also generatedfrom an enriched asthenospheric source. We propose that bothtypes of magmatism were related in some way to lithosphericextension of the Pannonian Basin and that subduction playedonly an indirect role in generation of the calc-alkaline magmatism.The calc-alkaline magmas were formed during the peak phase ofextension by melting of metasomatized, enriched lithosphericmantle and were contaminated by various crustal materials, whereasthe alkaline mafic magmas were generated during the post-extensionalstage by low-degree melting of the shallow asthenosphere. Thewestern Carpathian volcanic areas provide an example of long-lastingmagmatism in which magma compositions changed continuously inresponse to changing geodynamic setting. KEY WORDS: Carpathian–Pannonian region; calc-alkaline magmatism; Sr, Nd and Pb isotopes; subduction; lithospheric extension  相似文献   

16.
The 1·88–1·87 Ga post-kinematic granitoidsof the Central Finland Granitoid Complex (CFGC) provide a keygeochemical link to understanding granite formation in Paleoproterozoicorogenic and post-orogenic terrains. Thickness of the crustand intra-crustal differentiation processes played an importantrole in the formation of three granitoid types that shortlyfollowed the peak of the Svecofennian orogeny. In the easternCFGC, pyroxene-bearing plutons with C-type geochemical affinitiespredominate. These were formed from a mixture of low- to moderate-degreepartial melts (30%) of mafic mantle-derived (basaltic, 49% SiO2)source rocks and partial melts of pre-existing mafic granulitelower crust at depth. In the western CFGC, high-silica, iron-rich,fluorite-bearing plutons with A-type granite characteristicspredominate. A higher thermal gradient, thinner upper and lowercrust, and significantly more shallow Moho depth resulted inhigher proportions of crustal melts (0·3–0·4vs 0·1–0·2 in the eastern CFGC) incorporatedinto the partial melts of a mafic mantle-derived source. A geochemicalmodel focusing on the Jämsä and Honkajoki plutonsof the post-kinematic suite is presented, constraining the natureof the source rock(s), the degree of partial melting, proportionsof partial melts and fractionation processes involved. KEY WORDS: magmatic evolution; geochemistry; Proterozoic; granite; Finland  相似文献   

17.
Three Pan-African hypersthene-bearing monzogranitic and quartz–monzonitic plutons from the Eastern terrane of Nigeria have been investigated in detail. New major, trace and REE data, used to constrain their origin and nature, indicate that they display chemical features of ferro-potassic trans-alkaline affinity. Further trace element discrimination suggests (i) production of calc-alkaline medium-K diorite magmas by partial melting of fluid-metasomatised mantle wedge possibly combined with melts from the dehydration partial melting of altered oceanic crust; (ii) simultaneously production of the granite–quartz–monzonite ferro-potassic magmas from partial melting of hornblende-bearing granodioritic crustal sources; (iii) mixing of the two magmas. Sr initial ratios of 0.707 to 0.711 witness that the source of the granite magmas is the lower crust. Ages of the lower crustal granulitic protoliths is bracketed by Nd model ages between 1.9 and 2.2 Ga. Pb evaporation ages on single zircons constrain the emplacement of the three plutons around 580 Ma. 40Ar/39Ar ages of amphiboles at about 560 Ma suggest cooling rates around 15°C/Ma. Extensive field work has established that pluton emplacement occurred during a regional north–south dextral strike-slip tectonics following the 630–610 Ma stage of oblique continent–continent collision in this part of west Africa.  相似文献   

18.
The Štěnovice and Čistá granodiorite–tonalite plutons are small (~27 and ~38 km2, respectively) intrusions that are largely discordant to regional ductile structures in the center of the upper-crustal Teplá–Barrandian unit, Bohemian Massif. Their whole-rock and trace-element compositions are consistent with medium-K calc-alkaline magma, generated above a subducted slab in a continental margin arc setting. The U–Pb zircon age of the Štěnovice pluton, newly determined at 375 ± 2 Ma using the laser ablation ICP-MS technique, is within the error of the previously published Pb–Pb age of 373 ± 1 Ma for the Čistá pluton. The two plutons also share other characteristics that are typical of concentrically expanded plutons (CEPs), such as elliptical cross-section in plan view, steep contacts, inferred downward-narrowing conical shape, faint normal zoning, and margin-parallel magmatic foliation decoupled from the regional host-rock structures. We interpret the Štěnovice and Čistá plutons as representing the initial Late Devonian stage of much more voluminous early Carboniferous arc-related plutonism (represented most typically by the Central Bohemian Plutonic Complex) in the upper crust of the central Bohemian Massif. These two plutons are important tectonic elements in that they indicate an overall shift of the arc-related plutonic activity from the ~NW to the ~SE, accompanied with a general compositional trend of the magmas from medium-K calc-alkaline to shoshonitic/ultrapotassic. Such a pattern is compatible with SE-directed subduction of the Saxothuringian Ocean beneath the Teplá–Barrandian overriding plate as a cause of arc-related magmatism in this part of the Bohemian Massif.  相似文献   

19.
The late Archaean Panozero pluton in Central Karelia (BalticShield) is a multi-phase high-Mg, high-K intrusion with sanukitoidaffinities, emplaced at 2·74 Ga. The magmatic historyof the intrusion may be subdivided into three cycles and includesmonzonitic and lamprophyric magmas. Compositional variationsare most extreme in the monzonite series and these are interpretedas the result of fractional crystallization. Estimates of thecomposition of the parental magmas to the monzonites and lamprophyresshow that they are enriched in light rare earth elements, Sr,Ba, Cr, Ni and P but have low contents of high field strengthelements. Radiogenic isotope data indicate a low U/Pb, highTh/U, high Rb/Sr, low Sm/Nd source. The magmatic rocks of thePanozero intrusion are also enriched in H2O and CO2; carbonisotope data are consistent with mantle values, indicating afluid-enriched mantle source. The similarity in trace elementcharacter of all the Panozero parental magmas indicates thatall the magmas were derived from a similar mantle source. Thepattern of trace element enrichment is consistent with a mantlesource enriched by fluids released from a subducting slab. Nd-isotopedata suggest that this enrichment took place at c. 2·8Ga, during the main episode of greenstone belt and tonalite–trondhjemite–granodioriteformation in Central Karelia. Sixty million years later, at2·74 Ga, the subcontinental mantle melted to form thePanozero magmas. Experimental studies suggest that the monzoniticmagmas originated by the melting of pargasite–phlogopitelherzolite in the subcontinental mantle lithosphere at 1–1·5GPa. The precise cause of the melting event at 2·74 Gais not known, although a model involving upwelling of asthenosphericmantle following slab break-off is consistent with the geochemicalevidence for the enrichment of the Karelian subcontinental mantlelithosphere by subduction fluids. KEY WORDS: Archaean; sanukitoid; monzonite; Karelia; mantle metasomatism  相似文献   

20.
An 40Ar/39Ar age of 45·1 Ma determined for lavas fromnorthern Saipan confirms that these high-silica rhyolites eruptedduring the ‘proto-arc’ stage of volcanism in theIzu–Bonin–Mariana system, which is characterizedelsewhere by eruption of boninitic lavas. Incompatible traceelement concentrations and Sr, Hf, Nd, and Pb isotope ratiosfor these rhyolites are transitional between those of c. 48Ma boninitic lavas and post-38 Ma ‘first-arc’ andesitesand dacites from Saipan and Rota that have typical subduction-relatedcompositions. These transitional compositions are modeled bycrystal fractionation of parental tholeiitic basalt combinedwith assimilation of young boninitic crust. A second stage ofRayleigh fractionation in the upper crust is required by SiO2concentrations that exceed 77 wt % and near-zero compatibleelement concentrations. First-arc magma compositions are consistentwith fractionation of basalt and assimilation of crust similarin composition to the first-arc magmas themselves. The mantlesources of the proto-arc and first-arc lavas from Saipan andRota are similar to those of Philippine back-arc basin basaltsbased on Nd and Hf isotopic compositions. The Pb isotope compositionsof these lavas are between those of Pacific sea-floor basaltsand Jurassic and younger cherty and clay-rich sediments. Thiscontrasts with the boninitic proto-arc volcanic rocks from Guamand Deep Sea Drilling Project Sites 458 and 459 that have Pbisotope compositions similar to Pacific basin basalts and volcaniclasticsediments. The preferred explanation for the difference in thenature of proto-arc volcanism between Saipan and other fore-arclocations is that the crust ceased extending 3–4 Myr earlierbeneath Saipan. This was caused by a change from mantle upwelling,fore-arc extension, and shallow melting to an environment dominatedby more normal mantle wedge convection, stable crust, and deepermelting. KEY WORDS: rhyolite; andesite; Mariana arc; isotope ratios; trace elements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号