首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《New Astronomy Reviews》2002,46(2-7):61-65
In this paper we discuss the early phase of radio source evolution as represented by Gigahertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources. Correlations between their spectral peak and angular size strongly suggest that the spectral turnovers are caused by synchrotron self absorption, and indicate that young radio sources evolve in a self similar way. We argue that the evolution of a radio source during its first 105 years is qualitatively very different from that during the rest of its life-time. This may be caused by the difference in the density gradient of the intra-galactic medium inside and outside the core-radius of the host galaxy.  相似文献   

2.
We present spectroscopic observations of a sample of faint gigahertz peaked‐spectrum (GPS) radio sources drawn from the Westerbork Northern Sky Survey (WENSS). Redshifts have been determined for 19 (40 per cent) of the objects. The optical spectra of the GPS sources identified with low‐redshift galaxies show deep stellar absorption features. This confirms previous suggestions that their optical light is not significantly contaminated by active galactic nucleus-related emission, but is dominated by a population of old (>9 Gyr) and metal-rich (>0.2 [Fe/H]) stars, justifying the use of these (probably) young radio sources as probes of galaxy evolution. The optical spectra of GPS sources identified with quasars are indistinguishable from those of flat-spectrum quasars, and clearly different from the spectra of compact steep‐spectrum (CSS) quasars. The redshift distribution of the GPS quasars in our radio-faint sample is comparable to that of the bright samples presented in the literature, peaking at z ∼2–3. It is unlikely that a significant population of low-redshift GPS quasars is missed as a result of selection effects in our sample. We therefore claim that there is a genuine difference between the redshift distributions of GPS galaxies and quasars, which, because it is present in both the radio-faint and bright samples, cannot be caused by a redshift–luminosity degeneracy. It is therefore unlikely that the GPS quasars and galaxies are unified by orientation, unless the quasar opening angle is a strong function of redshift. We suggest that the GPS quasars and galaxies are unrelated populations and just happen to have identical observed radio spectral properties, and hypothesize that GPS quasars are a subclass of flat-spectrum quasars.  相似文献   

3.
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437−244 and 1025−229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (|RM|<20 rad m−2). The giant sources are defined to be those with overall projected size 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity–size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton loss owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.  相似文献   

4.
《New Astronomy Reviews》2002,46(2-7):71-74
We present radio images of two giant quasars from the Molonglo/1 Jy sample, and make a comparative study of giant radio sources selected from the literature with 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme. The luminosity-size diagram shows that the giant sources are less luminous than smaller-sized sources, consistent with evolutionary scenarios where the giants have evolved from the smaller sources, losing energy as they expand. For the giant sources the equipartition magnetic fields are smaller, and inverse-Compton losses with the microwave background radiation dominates over synchrotron losses, while the reverse is true for the smaller sources. The giant radio sources have core strengths similar to those of smaller sources of similar total luminosity; hence their large sizes are unlikely to be due to stronger nuclear activity. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.  相似文献   

5.
A sample of 47 faint Gigahertz Peaked Spectrum (GPS) radio sources selected from the Westerbork Northern Sky Survey (WENSS) has been imaged in the optical and near-infrared, resulting in an identification fraction of 87 per cent. The R  −  I R  −  K colours of the faint optical counterparts are as expected for passively evolving elliptical galaxies, assuming that they follow the R -band Hubble diagram as determined for radio-bright GPS galaxies. We find evidence that the radio spectral properties of the GPS quasars are different from those of GPS galaxies. The observed distribution of radio spectral peak frequencies for GPS sources optically identified with bright stellar objects (presumably quasars) is shifted compared with GPS sources identified with faint or extended optical objects (presumably galaxies), in the sense that a GPS quasar is likely to have a higher peak frequency than a GPS galaxy. This means that the true peak frequency distribution is different for the GPS galaxies and quasars, because the sample selection effects are independent of optical identification. The correlation between peak frequency and redshift that has been suggested for bright sources has not been found in this sample; no correlation exists between R magnitude (and therefore redshift) and peak frequency for the GPS galaxies. We therefore believe that the claimed correlation is actually caused by the dependence of the peak frequency on optical host, because the GPS galaxies are generally at lower redshifts than the quasars. The difference in the peak frequency distributions of the GPS galaxies and quasars is further evidence against the hypothesis that they form a single class of object.  相似文献   

6.
We present the results of 5-GHz observations with the VLA A-array of a sample of candidate compact steep‐spectrum (CSS) sources selected from the S4 survey. We also estimate the symmetry parameters of high-luminosity CSS sources selected from different samples of radio sources, and compare these with the larger sources of similar luminosity to understand their evolution and the consistency of the CSS sources with the unified scheme for radio galaxies and quasars. The majority of CSS sources are likely to be young sources advancing outwards through a dense asymmetric environment. The radio properties of CSS sources are found to be consistent with the unified scheme, in which the axes of the quasars are observed close to the line of sight, while radio galaxies are observed close to the plane of the sky.  相似文献   

7.
This paper presents a detailed analysis of the radio properties for the sample of faint radio sources introduced by Magliocchetti et al. in 2000. The sample comprises mainly intrinsically low-power sources, the majority of which (≳70 per cent) are FR I radio galaxies. These objects show some degree (at 1 σ confidence level) of luminosity evolution, which is also needed to reproduce correctly the total number and shape of the counts distribution at 1.4 GHz. Analysis of the de-evolved local radio luminosity function shows a good agreement between data and model predictions for this class of sources. Particular care has been devoted to the issue of 'lined' galaxies (i.e. objects presenting in their spectra a continuum typical of early-type galaxies plus emission lines of different nature), which appear as an intermediate class of sources between AGN-dominated and starburst galaxies. Different evolutionary behaviour is seen in the two subpopulations of lined and non-lined low-power radio galaxies, the first class indicating a tendency for the radio luminosity to decrease with look-back time, the second one showing positive evolution. We note that different evolutionary properties also seem to characterize BL Lacs selected in different bands, so that one might envisage an association between lined FR I and the subclass of BL Lacs selected in the X-ray band. Lastly, we find evidence for a negligible contribution of starburst galaxies at these low flux levels.  相似文献   

8.
In this paper, we study the galactic distribution and luminosity function of OH/IR maser sources. All the selected OH/IR sources have optical or infrared identification. Most of them are associated with late-type (>M5) Mira variables. Their derived density distribution shows a steep peak at a galactocentric distance of r0-7.5 kpc and decreases rapidly at smaller and larger R0. The FWHM of the distribution curve is 2.1 kpc. This is similar to the galactic distribution of Mira variables investigated by Glass et al.

We also derive the luminosity function of the identified OH/IR maser sources from their distances, their detection probabilities, and their corrected OH radio peak flux densities. The luminosity function ρ(L) varies as LOH−1.79. This is similar to that of unidentified maser sources. The range of luminosity of identified OH/IR sources is approximately from 0.16 Jy · kpc2 to 1000 Jy · kpc2. It is quite different from that of unidentified OH sources.

Finally, we discuss some differences and relations between identified and unidentified OH/IR maser sources.  相似文献   


9.
On the redshift cut-off for steep-spectrum radio sources   总被引:1,自引:0,他引:1  
We use three samples (3CRR, 6CE and 6C*) selected at low radio frequency to constrain the cosmic evolution in the radio luminosity function (RLF) for the 'most luminous' steep-spectrum radio sources. Though intrinsically rare, such sources give the largest possible baseline in redshift for the complete flux-density-limited samples currently available. Using parametric models to describe the RLF, incorporating distributions in radio spectral shape and linear size, as well as the usual luminosity and redshift, we find that the data are consistent with a constant comoving space density between     and     . We find that this model is favoured over a model with similar evolutionary behaviour to that of optically selected quasars (i.e., a roughly Gaussian distribution in redshift) with probability ratios of     and     for spatially flat cosmologies with     and     respectively. Within the uncertainties, this evolutionary behaviour may be reconciled with the shallow decline preferred for the comoving space density of flat-spectrum sources by Dunlop & Peacock and Jarvis & Rawlings, in line with the expectations of unified schemes.  相似文献   

10.
An empirical relation between the observable properties radio surface brightness and radio index on the one hand, and the intrinsic properties linear diameter of the radio source, radio luminosity, and optical luminosity on the other hand is found and shown in a diagram. The relation is strong enough to yield useful distance estimates. In this manner, distances of 8 quasars and 17 unidentified radio sources are obtained.  相似文献   

11.
Observations of compact symmetric double sources suggest that these objects with physical scales of order tens of parsecs to kiloparsecs are young radio active galactic nuclei. There is, in general, a striking similarity between the structures of these compact objects and the structures of large evolved radio galaxies although the latter are two to three orders of magnitude larger. This has led to the use of self-similar models of the evolution of radio sources as a framework for interpreting observational data. However, the assumptions on which the self-similar models are based become increasingly less valid on the physical scales which are probed by the observations of the smallest sources. In this paper, the dynamics of sources on these small scales is examined and a model developed which extends earlier work in a self-consistent way to small physical scales. The limit of applicability of the models is identified as is the transition from an early evolutionary phase to the self-similar phase of expansion.  相似文献   

12.
By combining a model for the evolution of the radio luminosity of an individual source with the radio luminosity function, we perform a multidimensional Monte Carlo simulation to investigate the cosmological evolution of the Fanaroff–Riley type II (FR II) radio galaxy population by generating large artificial samples. The properties of FR II sources are required to evolve with redshift in the artificial samples to fit the observations. Either the maximum jet age or the maximum density of the jet environment or both evolve with redshift. We also study the distribution of FR II source properties as a function of redshift. From currently available data we cannot constrain the shape of the distribution of environment density or age, but jet power is found to follow a power-law distribution with an exponent of approximately −2. This power-law slope does not change with redshift out to   z = 0.6  . We also find the distribution of the pressure in the lobes of FR II sources to evolve with redshift up to   z ∼ 1.2  .  相似文献   

13.
The numerical method for obtaining the luminosity-dependent evolution function of radio sources is presented and applied to the flat spectrum radio sources selected at 5 GHz.The method constructed on the basis of the iterative one given by Robertson, which requires assuming a specific type of the searched function enables one to obtain the evolution function of sources with radio flux densityS 5.01 mJy.The influence of the shape of the local RLF, of the luminosity distributionN(P) and of the spectral index function on the resulting evolution function is investigated. The results presented show that the luminosity dependence of the evolution function of flat-spectrum radio sources is significant and should not be neglected. The obtained evolution function, which allows one to reproduce the source counts curve, the redshift distribution, and the spectral index distribution, may exhibit the redshift cut-off at z03.  相似文献   

14.
We use the observed polarization properties of a sample of 26 powerful radio galaxies and radio-loud quasars to constrain the conditions in the Faraday screens local to the sources. We adopt the cosmological redshift, low-frequency radio luminosity and physical size of the large-scale radio structures as our 'fundamental' parameters. We find no correlation of the radio spectral index with any of the fundamental parameters. The observed rotation measure is also independent of these parameters, suggesting that most of the Faraday rotation occurs in the Galactic foreground. The difference between the rotation measures of the two lobes of an individual source, as well as the dispersion of the rotation measure, shows significant correlations with the source redshift, but not with the radio luminosity or source size. This is evidence that the small-scale structure observed in the rotation measure is caused by a Faraday screen local to the sources. The observed asymmetries between the lobes of our sources show no significant trends with each other or other source properties. Finally, we show that the commonly used model for the depolarization of synchrotron radio emission by foreground Faraday screens is inconsistent with our observations. We apply alternative models to our data and show that they require a strong increase of the dispersion of the rotation measure inside the Faraday screens with cosmological redshift. Correcting our observations with these models for redshift effects, we find a strong correlation of the depolarization measure with redshift and a significantly weaker correlation with radio luminosity. We do not find any (anti-)correlation of depolarization measure with source size. All our results are consistent with a decrease in the order of the magnetic field structure of the Faraday screen local to the sources for increasing cosmological redshift.  相似文献   

15.
We present a summary results of the study of radio sources showing significant variations of integral flux density using the data from the RATAN-600 surveys of 1980–1994 at a frequency of 7.6 cm. The majority of the detected variable sources have flat radio spectra, although there are also all other spectrum types found. Point and compact sources predominate, although all known morphological structures are found in the sample. Variability is detected both in quasars and galaxies. Using the catalog data, we found brightness variations in the optical and/or infrared ranges for a half of host objects of radio sources. We analyzed the properties of nonvariable and variable RCR sources. We compared the ratio of absolute magnitude to radio luminosity for sources with the active nucleus types determined from the optical data. It is found that this parameter is approximately the same for quasars with different radio luminosity. It isminimum for the strongest radio galaxies and grows up to the level characteristic of quasars with the decrease of radio luminosity. Considering that the ratio depends on obscuring properties of a dust torus, such behavior can be explained if we assume that the torus geometry and its optical depth depend on the source long. This parameter is slightly higher among variable sources than among nonvariable ones which counts in favor of the nucleus more open to an observer.  相似文献   

16.
We study the 37 brightest radio sources in the Subaru/ XMM–Newton Deep Field. We have spectroscopic redshifts for 24 of 37 objects and photometric redshifts for the remainder, yielding a median redshift z med for the whole sample of   z med≃ 1.1  and a median radio luminosity close to the 'Fanaroff–Riley type I/type II (FR I/FR II)' luminosity divide. Using mid-infrared (mid-IR) ( Spitzer MIPS 24 μm) data we expect to trace nuclear accretion activity, even if it is obscured at optical wavelengths, unless the obscuring column is extreme. Our results suggest that above the FR I/FR II radio luminosity break most of the radio sources are associated with objects that have excess mid-IR emission, only some of which are broad-line objects, although there is one clear low-accretion-rate object with an FR I radio structure. For extended steep-spectrum radio sources, the fraction of objects with mid-IR excess drops dramatically below the FR I/FR II luminosity break, although there exists at least one high-accretion-rate 'radio-quiet' QSO. We have therefore shown that the strong link between radio luminosity (or radio structure) and accretion properties, well known at z ∼ 0.1, persists to z ∼ 1. Investigation of mid-IR and blue excesses shows that they are correlated as predicted by a model in which, when significant accretion exists, a torus of dust absorbs ∼30 per cent of the light, and the dust above and below the torus scatters ≳1 per cent of the light.  相似文献   

17.
We probe the relationship between star formation rate (SFR) and radio synchrotron luminosity in galaxies at  0 < z < 2  within the northern Spitzer Wide-area Infrared Extragalactic survey (SWIRE) fields, in order to investigate some of the assumptions that go into calculating the star formation history of the Universe from deep radio observations. We present new 610-MHz Giant Metrewave Radio Telescope (GMRT) observations of the European Large-Area ISO Survey-North 2 (ELAIS-N2) field, and using this data, along with previous GMRT surveys carried out in the ELAIS-N1 (North 1) and Lockman Hole regions, we construct a sample of galaxies which have redshift and SFR information available from the SWIRE survey. We test whether the local relationship between SFR and radio luminosity is applicable to   z = 2  galaxies, and look for evolution in this relationship with both redshift and SFR in order to examine whether the physical processes which lead to synchrotron radiation have remained the same since the peak of star formation in the Universe. We find that the local calibration between radio luminosity and star formation can be successfully applied to radio-selected high-redshift, high-SFR galaxies, although we identify a small number of sources where this may not be the case; these sources show evidence for inaccurate estimations of their SFR, but there may also be some contribution from physical effects such as the recent onset of starburst activity, or suppression of the radio luminosity within these galaxies.  相似文献   

18.
Six complete samples of radio sources have been analysed by the Spearman rank and the Spearman partial-rank correlation coefficients. The relations between the radio luminosities and linear sizes as well as between linear sizes and redshift indicate that the observed angular diameter-redshift diagram may be explained by the changes of linear sizes with radio luminosity of radio sources.  相似文献   

19.
We study the collimation of radio jets in the high-luminosity Fanaroff–Riley class II sources by examining the dependence of the sizes of hotspots and knots in the radio jets on the overall size of the objects for a sample of compact steep-spectrum (CSS) and larger-sized objects. The objects span a wide range in overall size from about 50 pc to nearly 1 Mpc. The mean size of the hotspots increases with the source size during the CSS phase, which is typically taken to be about 20 kpc, and the relationship flattens for the larger sources. The sizes of the knots in the compact as well as the larger sources are consistent with this trend. We discuss possible implications of these trends. We find that the hotspot closer to the nucleus or core component tends to be more compact for the most asymmetric objects where the ratio of separations of the hotspots from the nucleus r d>2. These highly asymmetric sources are invariably CSS objects, and their location in the hotspot size ratio–separation ratio diagram is possibly the result of their evolution in an asymmetric environment. We also suggest that some sources, especially of lower luminosity, exhibit an asymmetry in the collimation of the oppositely directed radio jets.  相似文献   

20.
The results are presented of an extensive programme of optical and infrared imaging of radio sources in a complete subsample of the Leiden–Berkeley Deep Survey. The LBDS Hercules sample consists of 72 sources observed at 1.4 GHz, with flux densities S 1.41.0 mJy, in a 1.2 deg2 region of Hercules. This sample is almost completely identified in the g , r , i and K bands, with some additional data available at J and H . The magnitude distributions peak at r ≃22 mag, K ≃16 mag and extend down to r ≃26 mag, K ≃21 mag. The K -band magnitude distributions for the radio galaxies and quasars are compared with those of other radio surveys. At S 1.4 GHz≲1 Jy, the K -band distribution does not change significantly with radio flux density. The sources span a broad range of colours, with several being extremely red ( r − K ≳6). Though small, this is the most optically complete sample of mJy radio sources available at 1.4 GHz, and is ideally suited for studying the evolution of the radio luminosity function out to high redshifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号