首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Anchovy (Engraulis encrasicolus) is an important commercial species and one of the most abundant pelagic fish in the Gulf of Lions and the Catalan Sea. The factors influencing its recruitment are crucial to fisheries and ecological research. Among those factors transport of larvae by hydrodynamics (currents) is important because it determines whether the organisms can reach areas favourable to recruitment or are dispersed. Therefore, the first step in anchovy recruitment modelling is to simulate North-western Mediterranean Sea circulation. Several years (2001–2008) of hydrodynamics were simulated with the MARS-3D code. The resulting simulated currents and salinity are used by Lagrangian tool, Ichthyop, to transport anchovy eggs and larvae to the Western Mediterranean Sea. The aim of this study is to understand the main hydrodynamic processes that control anchovy transport and the effects of diel vertical migration on the transport and final distribution of anchovy.  相似文献   

2.
The impact of the choice of high-resolution atmospheric forcing on ocean summertime circulation in the Gulf of Lions (GoL; Mediterranean Sea) is evaluated using three different datasets: AROME (2.5 km, 1 h), ALADIN (9.5 km, 3 h), and MM5 (9 km, 3 h). A short-term ocean simulation covering a 3-month summer period was performed on a 400-m configuration of the GoL. The main regional features of both wind and oceanic dynamics were well-reproduced by all three atmospheric models. Yet, at smaller scales and for specific hydrodynamic processes, some differences became apparent. Inertial oscillations and mesoscale variability were accentuated when high-resolution forcing was used. Sensitivity tests suggest a predominant role for spatial rather than temporal resolution of wind. The determinant influence of wind stress curl was evidenced, both in the representation of a mesoscale eddy structure and in the generation of a specific upwelling cell in the north-western part of the gulf.  相似文献   

3.
This paper describes an integrated study of a typical Mediterranean flood event in the Gulf of Lions. A flood with a 5-year return interval occurred in the Têt River basin and adjacent inner-shelf in the Gulf of Lions, northwest Mediterranean, during April 2004. Data were collected during this flood as part of event-response investigations of the EU-funded Eurostrataform (European Margin Strata Formation) project. Southeasterly storm winds led to a flood which directly modified the inner-shelf hydrodynamics. Sediment delivery to the coastal zone during this flood represented more than half of the mean annual discharge of the Têt River to the Gulf of Lions. This river transported a large amount of sand in suspension, representing 25% of the total suspended load, and as bedload representing 8% of the total load, during this event. Sand introduced in the nearshore was transported northwards during the peak storm and nourished a small delta. Fine sediments were separated from coarse sediments at the river mouth, and were advected southwards and seawards by the counter-clockwise general circulation. Fine-grained sediments were transported via a hypopycnal plume along the coast towards the southern tip of the Gulf of Lions and the Cap Creus canyon. The along-shore currents, which intensified from north to south of the Gulf of Lions, particularly between the Cap Creus promontory and the Cap Creus canyon, favoured the transfer of fine-grained sediments from the continental shelf of the Gulf of Lions towards the continental slope. Our results show that floods with a few-year return interval in small coastal rivers can play a significant role in the transport of sediments on microtidal continental margins and their export from the shelf through canyons.  相似文献   

4.
The Mediterranean Sea is a region of intense air–sea interactions, with in particular strong evaporation over sea which drives the thermohaline circulation. The Mediterranean region is also prone to strong precipitation events characterized by low spatial extent, short duration, and high temporal variability. The impacts of intense offshore precipitation over sea, in the Gulf of Lions which is a spot for winter deep convection, are investigated using four sensitivity simulations performed at mesoscale resolution with the eddy-resolving regional ocean model NEMO-MED12. We use various atmospheric fields to force NEMO-MED12, downscaled from reanalyses with the non-hydrostatic mesoscale Weather Research and Forecasting model but differing in space resolutions (20 and 6.7 km) or in time frequencies (daily and three-hourly). This numerical study evidences that immediate, intense, and rapid freshening occurs under strong precipitation events. The strong salinity anomaly induced extends horizontally (≃50 km) as vertically (down to 50 m) and persists several days after strong precipitation events. The change in the space resolution of the atmospheric forcing modifies the precipitating patterns and intensity, as well as the shape and the dynamics of the low-salinity layer formed are changed. With higher forcing frequency, shorter and heavier precipitation falls in the ocean in the center of the Gulf of Lions, and due to a stronger vertical shear and mixing, the low-salinity anomaly propagates deeper.  相似文献   

5.
Secondary flows induced by the blocking effect of a river plume on a transverse upwelling are investigated in a microtidal region of freshwater influence (ROFI). A nested version of the SYMPHONIE primitive-equation free-surface model for 3-D baroclinic coastal flows has been developed for the Rhône ROFI. The main characteristics of the model are a generalized sigma coordinate system in finite differences, using a time splitting for external and internal modes and high-order numerical advection schemes for density fields in combination with an modified turbulence closure scheme. The nesting system consists of two grids forced by the high-resolution ALADIN model atmospheric data. The coarse grid of 3 km resolution for the whole Gulf of Lions allows the forcing of the Liguro-Provençal large-scale current when the fine mesh of 1-km resolution is centred on the river mouth of the Grand Rhône. Documented field experiments from the Biodypar 3 field campaign performed during March 1999 are used for validation. Numerical results, CTD profiles and a SPOT TSM visible image are in good agreement concerning the shape and structure of the river plume. Other coastal flow features can be observed from satellite imagery. Computations of realistic situations recover these main secondary structures. Complementary process-oriented runs give an explanation of how the coastal upwelling induced by an inhomogeneous offshore wind is destabilized by the combination of the river plume and along-shelf current-blocking effects. In the end, a factor-separation analysis provides evidence that the locally non-linear effects in momentum contribute to the occurrence of secondary vortices.Responsible Editor: Phil Dyke  相似文献   

6.
Three rapid-response Lagrangian particle-tracking dispersion models have been developed for southern Spain coastal waters. The three domains cover the Gulf of Cádiz (Atlantic Ocean), the Alborán Sea (Mediterranean), and the Strait of Gibraltar with higher spatial resolution. The models are based on different hydrodynamic submodels, which are run in advance. Tides are calculated using a 2D barotropic model in the three cases. Models used to obtain the residual circulation depend on the physical oceanography of each region. Thus, two-layer models are applied to Gibraltar Strait and Alborán Sea and a 3D baroclinic model is used in the Gulf of Cádiz. Results from these models have been compared with observations to validate them and are then used by the particle-tracking models to calculate dispersion. Chemical, radioactive and oil spills may be simulated, incorporating specific processes for each kind of pollutant. Several application examples are provided.  相似文献   

7.
The Northern Current (hereafter NC), the major current in the North-Western Mediterranean (hereafter NWM) basin, has been largely investigated in the litterature for its mesoscale features. Its behaviour in the Var region can strongly condition the downstream flow along the Gulf of Lions shelf and Spain coast, making this zone a key area. However, the sub-mesoscale dynamics of the area and its potential impacts on the rest of the flow are not well known. This work reveals the potential interest of better simulating high-resolution dynamics in a restricted area and how this could improve the circulation representation in a larger area. To address this question, a very high resolution configuration (1/192°) nested in an already existing high-resolution configuration (1/64°) has been developed, using the NEMO model. Comparisons with observations show that the very high-resolution changes only weakly the mean NC characteristics but can significantly modify individual mesoscale events such as eddies and meanders occurring in the zoomed area. Furthermore, the coastal dynamics and episodic intrusions of a NC secondary branch inside a semi-enclosed bay appear to be significantly enhanced. In a second stage, the assessment of the feedback of this improved dynamics on the regional mesoscale dynamics is shown, this being allowed by the two-way coupling option of the embedded configuration using AGRIF.  相似文献   

8.
The main objective of the LAgrangian Transport EXperiment (LATEX) project was to study the influence of coastal mesoscale and submesoscale physical processes on circulation dynamics, cross-shelf exchanges, and biogeochemistry in the western continental shelf of the Gulf of Lion, Northwestern Mediterranean Sea. LATEX was a five-year multidisciplinary project based on the combined analysis of numerical model simulations and multi-platform field experiments. The model component included a ten-year realistic 3D numerical simulation, with a 1 km horizontal resolution over the gulf, nested in a coarser 3 km resolution model. The in situ component involved four cruises, including a large-scale multidisciplinary campaign with two research vessels in 2010. This review concentrates on the physics results of LATEX, addressing three main subjects: (1) the investigation of the mesoscale to submesoscale processes. The eddies are elliptic, baroclinic, and anticyclonic; the strong thermal and saline front is density compensated. Their generation processes are studied; (2) the development of sampling strategies for their direct observations. LATEX has implemented an adaptive strategy Lagrangian tool, with a reference software available on the web, to perform offshore campaigns in a Lagrangian framework; (3) the quantification of horizontal mixing and cross-shelf exchanges. Lateral diffusivity coefficients, calculated in various ways including a novel technique, are in the range classically encountered for their associated scales. Cross-shelf fluxes have been calculated, after retrieving the near-inertial oscillation contribution. Further perspectives are discussed, especially for the ongoing challenge of studying submesoscale features remotely and from in situ data.  相似文献   

9.
The meanders of a baroclinic coastal current in the Northwestern Mediterranean Sea have already been reported in the literature. These meanders can be surrounded by vortices. Such vortices have been observed in the western part of the Gulf of Lions but the location and the mechanism of their formation are poorly documented. In this paper, we use the current measurements of a one-year experiment, which was conducted in the eastern part of the Gulf of Lions to detect and characterize the vortex activity. A vortex detection algorithm based on few velocity data was developed. Current measurements were available at the sea surface (HF radars) and in the water column from 50 to 140 m depth (four current meter moorings). SST images and hydrologic data were also used. Results focus on observations that are coherent 50 m and at the surface. Vortices are anticyclonic, of submesoscale size and present maximal velocities of 30–50 cm/s. The drift speed of the vortices is comparable to but less than the velocity of the Northern Current. These observations enable to estimate the minimum vortex occurrence in this area. The presence of vortex structures is strongly correlated with a specific sequence of wind patterns.  相似文献   

10.
The Northern current is the main circulation feature of the North-Western Mediterranean Sea. While the large-scale to mesoscale variability of the northern current (NC) is well known and widely documented for the Ligurian region, off Nice or along the Gulf of Lions shelf, few is known about the current instabilities and its associated mesoscale dynamics in the intermediate area, off Toulon. Here, we took advantage of an oceanographic cruise of opportunity, the start of a HF radar monitoring programme in the Toulon area and the availability of regular satellite sea surface temperature and chlorophyll a data, to evaluate the realism of a NEMO-based regional high-resolution model and the added value brought by HF radar. The combined analysis of a 1/64° configuration, named GLAZUR64, and of all data sets revealed the occurrence of an anticyclonic coastal trapped eddy, generated inside a NC meander and passing the Toulon area during the field campaign. We show that this anticyclonic eddy is advected downstream along the French Riviera up to the study region and disturbs the Northern current flow. This study aims to show the importance of combining observations and modelling when dealing with mesoscale processes, as well as the importance of high-resolution modelling.  相似文献   

11.
The Bay of Fundy in eastern Canada has the highest tides in the world. Harnessing the tidal energy in the region has long been considered. In this study, the effects of tidal in-stream energy extraction in the Minas Passage on the three-dimensional (3D) tidal circulation in the Bay of Fundy (BoF) and the Gulf of Maine (GoM) are examined using a nested-grid coastal ocean circulation model based on the Princeton Ocean Model (POM). The nested-grid model consists of a coarse-resolution (~4.5 km) parent sub-model for the GoM and a high-resolution (~1.5 km) child sub-model for the BoF. The tidal in-stream energy extraction in the model is parameterized in terms of nonlinear Rayleigh friction in the momentum equation. A suite of numerical experiments are conducted to determine the ranges of extractable tidal in-stream energy and resulting effects on the 3D tidal circulation over the Bay of Fundy and the Gulf of Maine (BoF-GoM) in terms of the Rayleigh friction coefficients. The 3D model results suggest that the maximum energy extraction in the Minas Passage increases tidal elevations and tidal currents throughout the GoM and reduces tidal elevations and circulation in the upper BoF, especially in the Minas Basin. The far-field effect of tidal energy extraction in the Passage on the 3D tidal circulation in the BoF-GoM is examined in two cases of harnessing tidal in-stream energy from (a) the entire water column and (b) the lower water column within 20 m above the bottom in the Passage. The 3D model results demonstrate that tidal in-stream energy extraction from the lower water column has less impact on the tidal elevations and circulation in the BoF-GoM than the energy extraction from the whole water column in the Minas Passage.  相似文献   

12.
The main oceanographic objective of the future SWOT mission is to better characterize the ocean mesoscale and sub-mesoscale circulation, by observing a finer range of ocean topography dynamics down to 20 km wavelength. Despite the very high spatial resolution of the future satellite, it will not capture the time evolution of the shorter mesoscale signals, such as the formation and evolution of small eddies. SWOT will have an exact repeat cycle of 21 days, with near repeats around 5–10 days, depending on the latitude. Here, we investigate a technique to reconstruct the missing 2D SSH signal in the time between two satellite revisits. We use the dynamical interpolation (DI) technique developed by Ubelmann et al. (2015). Based on potential vorticity (hereafter PV) conservation using a one and a half layer quasi-geostrophic model, it features an active advection of the SSH field. This model has been tested in energetic open ocean regions such as the Gulf Stream and the Californian Current, and has given promising results. Here, we test this model in the Western Mediterranean Sea, a lower energy region with complex small scale physics, and compare the SSH reconstruction with the high-resolution Symphonie model. We investigate an extension of the simple dynamical model including a separated mean circulation. We find that the DI gives a 16–18% improvement in the reconstruction of the surface height and eddy kinetic energy fields, compared with a simple linear interpolation, and a 37% improvement in the Northern Current subregion. Reconstruction errors are higher during winter and autumn but statistically, the improvement from the DI is also better for these seasons.  相似文献   

13.
In this study, a baroclinic coastal trapped wave, with period ~?4.5 days and cross-shore scale ~?3 km, is identified in the outputs of a very-high-resolution ocean circulation model of the Campania coastal system (central Tyrrhenian Sea; including the Gulfs of Salerno, Naples, and Gaeta). The outputs are from a simulation spanning June 2003, a month in which the surface winds were always weak, except for a strong northeasterly wind event that lasted 1 day (20 June). This event is found to generate a strong upwelling along the Campania coasts, whose relaxation—virtually free, because of the weakness of the winds—produces coastal current fluctuations that propagate to the north, spanning the three gulfs. The dynamics (analyzed with a focus on the Gulf of Naples) is found to share important features with baroclinic Kelvin waves in a two-layer model, such as the sharp cross-shore decrease of the perturbation amplitude and the vertical reversal of the long-shore current velocities. The simulated phase speed, cross-shore extension, and wavelength of the perturbation are also close to those obtained using a two-layer approximation of the dynamics. Moreover, the propagation described by the models is shown to be compatible with current measurements that were made in June 2003 at the southern entrance of the Gulf of Naples. Experimental implications related to the specific oceanographic problem are finally discussed, and an experimental strategy—inspired by our modeling approach—aimed at identifying the phenomenon is proposed.  相似文献   

14.
Two prognostic experiments taking into account real atmospheric forcing for 2006 and 2011 were carried out based on the eddy-resolving numerical model with a horizontal resolution of 1.6 km for the Black Sea. The main dynamic features such as the Rim Current, the Sevastopol, and Batumi anticyclones are reproduced in both experiments. The model results are confirmed via observation data. We accomplished the analysis of simulated circulation and energetics. The results demonstrate that both the vertical viscosity and vertical diffusion along with the energy inflow from the wind have been the main contributors to the annual and seasonal budgets of kinetic and potential energies of the Black Sea circulation. It is shown that two regimes of the Black Sea general circulation are implemented depending on a magnitude of wind contribution to the kinetic energy in winter. Intensive mesoscale eddy formation was observed along the Anatolian, Caucasian, and Crimean coasts. The analysis of the Black Sea circulation and eddy energetics allowed us to conclude that the generation and development of the mesoscale coastal eddies is associated with the barotropic instability in case of intensive coastal currents and is associated with both the barotropic and baroclinic instability in case of weak coastal currents.  相似文献   

15.
《Continental Shelf Research》2006,26(12-13):1496-1518
A nested-grid hydrodynamic modelling system is used to study circulation and temperature distributions in Lake Huron (LH) and adjacent areas. This nested system is based on the three-dimensional, primitive-equation z-level ocean model. The nested system consists of two sub-components: a coarse-resolution outer model covering LH and Georgian Bay (GB) with a horizontal resolution of roughly 2.5 km, and the fine-resolution inner model covering eastern LH and northwestern GB with a horizontal resolution of roughly 900 m. Both the outer and inner models have 30 z-levels in the vertical. To assess the model performance, we simulate the three-dimensional circulation and temperature distributions of LH and GB in 1974–1975 and compare the model results with observations made in the lake. We demonstrate that outer model of the nested system simulates reasonably well the large-scale circulation and seasonal evolution of thermal stratifications in LH and GB, and the inner model produces reasonably well the three-dimensional flow and thermal structure over the coastal boundary layer close to the eastern shore of the lake.  相似文献   

16.
Coastal mesoscale eddies were evidenced during a high-frequency radar campaign in the Gulf of Lions (GoL), northwestern Mediterranean Sea, from June 2005 to January 2007. These anticyclonic eddies are characterized by repeated and intermittent occurrences as well as variable lifetime. This paper aims at studying the link between these new surface observations with similar structures suggested at depth by traditional acoustic Doppler current profiler measurements and investigates the eddy generation and driving mechanisms by means of an academic numerical study. The influence of the wind forcing on the GoL circulation and the eddy generation is analyzed, using a number of idealized configurations in order to investigate the interaction with river discharge, buoyancy, and bathymetric effects. The wind forcing is shown to be crucial for two different generation mechanisms: A strong northerly offshore wind (Mistral) generates a vortex column due to the bathymetric constraint of a geostrophic barotropic current, which can surface after the wind relaxes; a southerly onshore wind generates a freshwater bulge from the Rhône river discharge, which detaches from the coast and forms a well-defined surface anticyclonic eddy based on buoyancy gradients. These structures are expected to have important consequences in terms of dispersion or retention of biogeochemical material at local scales.  相似文献   

17.
Previous work in the Gulf of Lions (western Mediterranean Sea) has suggested that significant amounts of sediment escape through the western part of this tectonically passive margin, despite it being far removed from the primary sediment source (the Rhone River, ∼160 km to the NE). The primary mechanism behind this export is hypothesized to be the interaction of a regional, southwestward sediment-transport path with a canyon deeply incising the southwestern part of the shelf, Cap de Creus Canyon.  相似文献   

18.
This work deals with analysis of hydrographic observations and results of numerical simulations. The data base includes acoustic Doppler current profilers (ADCP) observations, continuous measurements on data stations and satellite data originating from the medium resolution imaging spectrometer (MERIS) onboard the European Space Agency (ESA) satellite ENVISAT with a spatial resolution of 300 m. Numerical simulations use nested models with horizontal resolutions ranging from 1 km in the German Bight to 200 m in the East Frisian Wadden Sea coupled with a suspended matter transport model. Modern satellite observations have now a comparable horizontal resolution with high-resolution numerical model of the entire area of the East Frisian Wadden Sea allowing to describe and validate new and so far unknown patterns of sediment distribution. The two data sets are consistent and reveal an oscillatory behaviour of sediment pools to the north of the back-barrier basins and clear propagation patterns of tidally driven suspended particulate matter outflow into the North Sea. The good agreement between observations and simulations is convincing evidence that the model simulates the basic dynamics and sediment transport processes, which motivates its further use in hindcasting, as well as in the initial steps towards forecasting circulation and sediment dynamics in the coastal zone.  相似文献   

19.
Two-hundred and twenty seven satellite-tracked drifters were deployed in the Gulf of Maine (GoM) from 1988 to 2007, primarily during spring and summer. The archive of tracks includes over 100,000 km logged thus far. Statistics such as transit times, mean velocities, response to wind events, and preferred pathways are compiled for various areas of the coastal GoM. We compare Lagrangian flow with Eulerian estimates from nearby moorings and evaluate drifter trajectories using Ekman theory and 3-D ocean circulation models.  相似文献   

20.
A three dimensional structure of mesoscale circulation in the Black Sea is simulated using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System. A number of sensitivity tests reveal the response of the model to changes in the horizontal resolution, time steps, and diffusion coefficients. Three numerical grids are examined with x-fine (3.2 km), fine (6.7 km) and coarse (25 km) resolution. It is found that the coarse grid significantly overestimates the energy of the currents and is not adequate even for the study of basin-scale circulation. The x-fine grid, on the other hand, does not give significant advantages compared to the fine grid, and the latter is used for the bulk of simulations. The most adequate parameters are chosen from the sensitivity study and used to model both the basin-scale circulation and day-to-day variability of mesoscale currents for the months of May and June of 2000. The model is forced with actual wind data every 6 h and monthly climatic data for evaporation, precipitation, heat fluxes and river run-off. The results of the fine grid model are compared favourably against the satellite imagery. The model adequately reproduces the general circulation and many mesoscale features including cyclonic and anticyclonic eddies, jets and filaments in different parts of the Black Sea. The model gives a realistic geographical distribution and parameters of mesoscale currents, such as size, shape and evolution of the eddies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号