首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The southern East African Orogen is a collisional belt where the identification of major suture zones has proved elusive. In this study, we apply U–Pb isotopic techniques to date detrital zircons from a key part of the East African Orogen, analyse their possible source region and discuss how this information can help in unravelling the orogen.U–Pb sensitive high-mass resolution ion microprobe (SHRIMP) and Pb evaporation analyses of detrital zircons from metasedimentary rocks in eastern Madagascar reveal that: (1) the protoliths of many of these rocks were deposited between 800 and 550 Ma; and (2) these rocks are sourced from regions with rocks that date back to over 3400 Ma, with dominant age populations of 3200–3000, 2650, 2500 and 800–700 Ma.The Dharwar Craton of southern India is a potential source region for these sediments, as here rocks date back to over 3400 Ma and include abundant gneissic rocks with protoliths older than 3000 Ma, sedimentary rocks deposited at 3000–2600 Ma and granitoids that crystallised at 2513–2552 Ma. The 800–700 Ma zircons could potentially be sourced from elsewhere in India or from the Antananarivo Block of central Madagascar in the latter stages of closure of the Mozambique Ocean. The region of East Africa adjacent to Madagascar in Gondwana reconstructions (the Tanzania craton) is rejected as a potential source as there are no known rocks here older than 3000 Ma, and no detrital grains in our samples sourced from Mesoproterozoic and early Neoproterozoic rocks that are common throughout central east Africa. In contrast, coeval sediments 200 km west, in the Itremo sheet of central Madagascar, have detrital zircon age profiles consistent with a central East African source, suggesting that two late Neoproterozoic provenance fronts pass through east Madagascar at approximately the position of the Betsimisaraka suture. These observations support an interpretation that the Betsimisaraka suture separates rocks that were derived from different locations within, or at the margins of, the Mozambique Ocean basin and therefore, that the suture is the site of subduction of a strand of Mozambique Ocean crust.  相似文献   

2.
New data on the metamorphic petrology and zircon geochronology of high‐grade rocks in the central Mozambique Belt (MB) of Tanzania show that this part of the orogen consists of Archean and Palaeoproterozoic material that was structurally reworked during the Pan‐African event. The metamorphic rocks are characterized by a clockwise P–T path, followed by strong decompression, and the time of peak granulite facies metamorphism is similar to other granulite terranes in Tanzania. The predominant rock types are mafic to intermediate granulites, migmatites, granitoid orthogneisses and kyanite/sillimanite‐bearing metapelites. The meta‐granitoid rocks are of calc‐alkaline composition, range in age from late Archean to Neoproterozoic, and their protoliths were probably derived from magmatic arcs during collisional processes. Mafic to intermediate granulites consist of the mineral assemblage garnet–clinopyroxene–plagioclase–quartz–biotite–amphibole ± K‐feldspar ± orthopyroxene ± oxides. Metapelites are composed of garnet‐biotite‐plagioclase ± K‐feldspar ± kyanite/sillimanite ± oxides. Estimated values for peak granulite facies metamorphism are 12–13 kbar and 750–800 °C. Pressures of 5–8 kbar and temperatures of 550–700 °C characterize subsequent retrogression to amphibolite facies conditions. Evidence for a clockwise P–T path is provided by late growth of sillimanite after kyanite in metapelites. Zircon ages indicate that most of the central part of the MB in Tanzania consists of reworked ancient crust as shown by Archean (c. 2970–2500 Ma) and Palaeoproterozoic (c. 2124–1837 Ma) protolith ages. Metamorphic zircon from metapelites and granitoid orthogneisses yielded ages of c. 640 Ma which are considered to date peak regional granulite facies metamorphism during the Pan‐African orogenic event. However, the available zircon ages for the entire MB in East Africa and Madagascar also document that peak metamorphic conditions were reached at different times in different places. Large parts of the MB in central Tanzania consist of Archean and Palaeoproterozoic material that was reworked during the Pan‐African event and that may have been part of the Tanzania Craton and Usagaran domain farther to the west.  相似文献   

3.
Calculation of sedimentation rates of Neoarchaean and Palaeoproterozoic siliciclastic and chemical sediments covering the Kaapvaal craton imply sedimentation rates comparable to their modern facies equivalents. Zircons from tuff beds in carbonate facies of the Campbellrand Subgroup in the Ghaap Plateau region of the Griqualand West basin, Transvaal Supergroup, South Africa were dated using the Perth Consortium Sensitive High Resolution Ion Microprobe II (SHRIMP II). Dates of Ma and Ma for the middle and the upper part of the Nauga Formation indicate that the decompacted sedimentation rate for the peritidal flat to subtidal below-wave-base Stratifera and clastic carbonate facies, southwest of the Ghaap Plateau at Prieska, was of up to 10 m/Ma, when not corrected for times of erosion and non-deposition. Dates of Ma for the upper Gamohaan Formation and for the upper Monteville Formation, indicate that some 2000 m of carbonate and subordinate shale sedimentation occurred during 16 Ma to 62 Ma on the Ghaap Plateau. For these predominantly peritidal stromatolitic carbonates, decompacted sedimentation rates were of 40 m/Ma to over 150 m/Ma (Bubnoff units). The mixed siliciclastic and carbonate shelf facies of the Schmidtsdrif Subgroup and Monteville Formation accumulated with decompacted sedimentation rates of around 20 B. For the Kuruman Banded Iron Formation a decompacted sedimentation rate of up to 60 B can be calculated. Thus, for the entire examined deep shelf to tidal facies range, Archaean and Phanerozoic chemical and clastic sedimentation rates are comparable. Four major transgressive phases over the Kaapvaal craton, followed by shallowing-upward sedimentation, can be recognized in the Prieska and Ghaap Plateau sub-basins, in Griqualand West, and partly also in the Transvaal basin, and are attributed to second-order cycles of crustal evolution. First-order cycles of duration longer than 50 Ma can also be identified. The calculated sedimentation rates reflect the rate of subsidence of a rift-related basin and can be ascribed to tectonic and thermal subsidence. Comparison of the calculated sedimentation rates to published data from other Archaean and Proterozoic basins allows discussion of general Precambrian basin development. Siliciclastic and carbonate sedimentation rates of Archaean and Palaeoproterozoic basins equivalent to those of younger systems suggest that similar mechanical, chemical and biological processes were active in the Precambrian as found for the Phanerozoic. Particularly for stromatolitic carbonates, matching modern and Neoarchaean sedimentation rates are interpreted as a strong hint of a similar evolutionary stage of stromatolite-building microbiota. The new data also allow for improved regional correlations across the Griqualand West basin and with the Malmani Subgroup carbonates in the Transvaal basin. The Nauga Formation carbonates in the southwest of the Griqualand West basin are significantly older than the Gamohaan Formation in the Ghaap Plateau region of this basin, but are in part, correlatives of the Oaktree Formation in the Transvaal and of parts of the Monteville Formation on the Ghaap Plateau.  相似文献   

4.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   

5.
The Qichun granitoids exposed in the Dabie Orogen of China are composed of two types of rocks: porphyritic monzogranite (with variable schistosity) and syenogranite (without schistosity). The two types show large differences in geochemical characteristics. The porphyritic monzogranite is characterized by high Al2O3 content (15.73%), relatively high CaO (2.46%) and Na2O contents (Na2O/K2O=1.27), strong depletion in HREE and strong fractionation between LREE and HREE ((La/Yb)N=46.8), similar to some high Al2O3 Archaean TTG gneisses. Conversely, the syenogranite is characterized by relatively low Al2O3 (14.05%) and CaO (0.82%) contents, and higher K2O than Na2O (Na2O/K2O=0.81). The degree of fractionation between LREE and HREE is minor. The U–Pb SHRIMP zircon age of the porphyritic monzogranite is 841±15 and 824±27 Ma for the syenogranite. These ages are similar to the protolith emplacement ages of granitic gneisses in the Dabie Orogenic Belt. The existence of weakly to unmetamorphosed granitoids in the Dabie Orogen shows that the granitoids were situated in the back part of the subducted plate during collision and subduction between the Yangtze and the North China cratons, and may represent outcrops of the Yangtze basement.  相似文献   

6.
The West Amazon Craton consists of rocks of the Sunsás Orogen and the Rondônia-Juruena Province. The Sunsás Orogen comprises the western part of the Amazon Craton in South America and is best exposed in eastern Bolivia and western Rondônia and Mato Grosso states of Brazil. The integration of available maps and isotopic data together with new U–Pb and Sm–Nd analyses from 20 samples (plus 55 earlier dates), establish the timing of geologic events in the West Amazon Craton from 1840 to 1110 Ma. To unravel the complex geologic history of the study area, we primarily sampled granitoids and gneisses to develop a better stratigraphy and secondarily to narrow the age gaps between known discordances. Four periods of orogenic activity are identified within the Sunsás Orogen: 1465–1427 Ma (Santa Helena orogeny), 1371–1319 Ma (Candeias orogeny), ca. 1275 Ma (San Andrés orogeny), and 1180–1110 Ma (Nova Brasilândia orogeny). Notable is the absence of an Ottawan orogeny (1080–1020 Ma) equivalent. In the Rondônia-Juruena Province three main orogenies are recognized: the Juruena (1840–1780 Ma), the Jamari (1760–1740 Ma) and the Quatro Cachoeiras (1670–1630 Ma). Post-Sunsás rocks include Rondônia tin granites, Palmeiral sandstones, Nova Floresta basalt, and alkalic pipes.All inherited U–Pb ages of zircon and all exposed pre-Sunsás rocks in Bolivia have ages that correlate well to the neighbouring Rondônia-Juruena Province. This fact, together with the absence of fragments of older, Archean and Trans-Amazonian crust, suggests that the Sunsás Orogen is autochthonous and evolved over a continental margin formed dominantly by rocks of the Jamari (1760–1740 Ma) and Quatro Cachoeiras (1670–1630 Ma) orogenies plus rocks of the post-tectonic Serra Providência Suite (1560–1540 Ma). Almost all granulites known in Eastern Bolivia and in neighbouring area in Brazil are not basement rocks, but were formed during the Mesoproterozoic and are mainly associated with the Candeias orogeny (1371–1319 Ma). Dated samples of the Chiquitania and Lomas Manechi Complexes in Bolivia revealed a variety of ages and types of ages (metamorphic, magmatic, and inherited) indicating that those two units require more study. There is no evidence for the existence of a Paraguá Craton or Paraguá Block, which is almost totally composed of arc-related granites also formed during the Candeias orogeny.The main difference between the Sunsás Orogen and the Grenville Orogen of Laurentia is the absence in Amazonia of an Ottawan-equivalent orogeny (1080–1020 Ma). The existence of age-equivalents of the Candeias and Santa Helena orogenies in Laurentia (Pinwarian orogeny and rocks of the Eastern Granite-Rhyolite Province and the Composite Arc Belt) indicates that the connection of the two continents may have started from about 1450 Ma. In addition, the two belts may not have been directly juxtaposed, but instead, that one may have been the extension of the other during the Mesoproterozoic. The possibility that Amazonia joined the southwestern part of Laurentia also provides a good fit for the Hudson-Tapajós and Mazatzal-Yapavai-Rondônia-Juruena Provinces. This possible link to Laurentia may have started during the formation of the Trans-Hudson Orogen and its correlative Rondônia-Juruena and Tapajós provinces from about 1900 Ma.  相似文献   

7.
The Turkel anorthosite Complex (TAC) in the Eastern Ghats Belt in India is composed of anorthosites and leuconorites at the centre and ferrodiorites and quartz diorites at the periphery. Here we report whole‐rock geochemistry, and zircon U–Pb data and REE geochemistry from a co‐spatial ferrodiorite and two quartz diorites from the TAC. The diorites have low abundance of High Field Strength Elements (HFSE) and REE, exhibit a flat chondrite‐normalized pattern with slight LREE enrichment and negligible or no Eu anomaly. Our results show weighted mean 207Pb/206Pb ages of 2433 ± 33 Ma for the ferrodiorite. Two quartz diorite samples from Turkel yield mean207Pb/206Pb ages of 2419 ± 32 Ma and 2505 ± 31 Ma. The zircons from all the analysed samples show high REE contents, prominent HREE enrichment and a conspicuous positive Eu anomaly, suggesting a common magmatic source. The prominent Neoarchaean to early Palaeoproterozoic magmatic ages from the anorthosite complex deviate from the late Neoproterozoic ages reported from other anorthosite suites in the Eastern Ghats Belt, and suggest an active convergent margin along SE India during Archaean–Proterozoic transition. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
High Mg–Al granulites from the Sunki locality in the central portion of the Eastern Ghats Province record evidence for the high-temperature peak and retrograde evolution. Peak metamorphic phase assemblages from two samples are garnet + orthopyroxene + quartz + ilmenite + melt and orthopyroxene + spinel + sillimanite + melt, respectively. Isochemical phase diagrams (pseudosections) based on bulk rock compositions calculated in the chemical system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) and Al contents in orthopyroxene indicate peak UHT metamorphic conditions in excess of 960 °C and 9.7 kbar. Microstructures and the presence of cordierite interpreted to record the post-peak evolution show that the rocks underwent decompression and minor cooling from conditions of peak UHT metamorphism to conditions of ~ 900 °C at ~ 7.5 kbar. In situ U–Pb isotope analyses of monazite associated with garnet and cordierite using the Sensitive High Resolution Ion Microprobe (SHRIMP) yield a weighted mean 207Pb/235U age of ca. 980 Ma, which is interpreted to broadly constrain the timing of high-temperature monazite growth during decompression and melt crystallization at ~ 900–890 °C and 7.5 kbar. However, the range of 207Pb/235U monazite ages (from ca. 1014 Ma to 959 Ma for one sample and ca. 1043 Ma to 922 Ma for the second sample) suggest protracted monazite growth during the high-temperature retrograde evolution, and possibly diffusive lead loss during slow cooling after decompression. The results of the integrated petrologic and geochronologic approach presented here are inconsistent with a long time gap between peak conditions and the formation of cordierite-bearing assemblages at lower pressure, as proposed in previous studies, but are consistent with a simple evolution of a UHT peak followed by decompression and cooling.  相似文献   

9.
The Fosdick Mountains migmatite–granite complex in West Antarctica records episodes of crustal melting and plutonism in Devonian–Carboniferous time that acted to transform transitional crust, dominated by immature oceanic turbidites of the accretionary margin of East Gondwana, into stable continental crust. West Antarctica, New Zealand and Australia originated as contiguous parts of this margin, according to plate reconstructions, however, detailed correlations are uncertain due to a lack of isotopic and geochronological data. Our study of the mid-crustal exposures of the Fosdick range uses U–Pb SHRIMP zircon geochronology to examine the tectonic environment and timing for Paleozoic magmatism in West Antarctica, and to assess a correlation with the better known Lachlan Orogen of eastern Australia and Western Province of New Zealand.NNE–SSW to NE–SW contraction occurred in West Antarctica in early Paleozoic time, and is expressed by km-scale folds developed both in lower crustal metasedimentary migmatite gneisses of the Fosdick Mountains and in low greenschist-grade turbidite successions of the upper crust, present in neighboring ranges. The metasedimentary rocks and structures were intruded by calc-alkaline, I-type plutons attributed to arc magmatism along the convergent East Gondwana margin. Within the Fosdick Mountains, the intrusions form a layered plutonic complex at lower structural levels and discrete plutons at upper levels. Dilational structures that host anatectic granite overprint plutonic layering and migmatitic foliation. They exhibit systematic geometries indicative of NNE–SSW stretching, parallel to a first-generation mineral lineation. New U–Pb SHRIMP zircon ages for granodiorite and porphyritic monzogranite plutons, and for leucogranites that occupy shear bands and other mesoscopic-scale structural sites, define an interval of 370 to 355 Ma for plutonism and migmatization.Paleozoic plutonism in West Antarctica postdates magmatism in the western Lachlan Orogen of Australia, but it coincides with that in the central part of the Lachlan Orogen and with the rapid main phase of emplacement of the Karamea Batholith of the Western Province, New Zealand. Emplaced within a 15 to 20 million year interval, the Paleozoic granitoids of the Fosdick Mountains are a product of subduction-related plutonism associated with high temperature metamorphism and crustal melting. The presence of anatectic granites within extensional structures is a possible indication of alternating strain states (‘tectonic switching’) in a supra-subduction zone setting characterized by thin crust and high heat flow along the Devonian–Carboniferous accretionary margin of East Gondwana.  相似文献   

10.
Shrimp U–Pb zircon dating of structurally constrained felsic orthogneiss samples in the western Musgrave Block has been used to delineate discrete magmatic and metamorphic events at c . 1300 and c . 1200  Ma. The dating of pre-D1 and post-D1 felsic orthogneiss constrains D1 to have occurred at 1312±16 to 1324±4  Ma. This is the first geochronological study to identify such a metamorphic and deformation event in the Musgrave Block. D1 was accompanied by a major magmatic event involving the emplacement of voluminous felsic orthogneiss between 1296 and 1324  Ma. Zircon overgrowths on numerous igneous zircon cores give a consistent age of c . 1200  Ma, reflecting zircon growth during a second high-grade metamorphic event (D2). This c . 1200  Ma metamorphic event was followed by the intrusion of a c . 1190  Ma megacrystic granite. The c . 1300 and c . 1200  Ma events in the Musgrave Block can be tentatively correlated with metamorphic events in the Albany-Fraser Orogen, and the Windmill Islands and Bunger Hills in east Antarctica. A major continuous Grenville-age orogenic belt joining these areas may have represented a plate boundary between the pre-Rodinian proto-Australian continent and proto-Antarctica during the formation of Rodinia in the Mesoproterozoic.  相似文献   

11.
The Ross orogen of Antarctica is an extensive (>3000 km‐long) belt of deformed and metamorphosed sedimentary rocks and granitoid batholiths, which formed during convergence and subduction of palaeo‐Pacific lithosphere beneath East Gondwana in the Neoproterozoic–early Palaeozoic. Despite its prominent role in Gondwanan convergent tectonics, and a well‐established magmatic record, relatively little is known about the metamorphic rocks in the Ross orogen. A combination of garnet Lu–Hf and monazite U–Pb (measured by laser‐ablation split‐stream ICP‐MS) geochronology reveals a protracted metamorphic history of metapelites and garnet amphibolites from a major segment of the orogen. Additionally, direct dating of a common rock‐forming mineral (garnet) and accessory mineral (monazite) allows us to test assumptions that are commonly used when linking accessory mineral geochronology to rock‐forming mineral reactions. Petrography, mineral zoning, thermobarometry and pseudosection modelling reveal a Barrovian‐style prograde path, reaching temperatures of ~610–680 °C. Despite near‐complete diffusional resetting of garnet major element zoning, the garnet retains strong rare earth element zoning and preserves Lu–Hf dates that range from c. 616–572 Ma. Conversely, monazite in the rocks was extensively recrystallized, with concordant dates that span from c. 610–500 Ma, and retain only vestigial cores. Monazite cores yield dates that overlap with the garnet Lu–Hf dates and typically have low‐Y and heavy rare earth element (HREE) concentrations, corroborating interpretations of low‐Y and low‐HREE monazite domains as records of synchronous garnet growth. However, ratios of REE concentrations in garnet and monazite do not consistently match previously reported partition coefficients for the REE between these two minerals. High‐Y monazite inclusions within pristine, crack‐free garnet yield U–Pb dates significantly younger than the Lu–Hf dates for the same samples, indicating recrystallization of monazite within garnet. The recrystallization of high‐Y and high‐HREE monazite domains over >50 Ma likely records either punctuated thermal pulses or prolonged residence at relatively high temperatures (up to ~610–680 °C) driving monazite recrystallization. One c. 616 Ma garnet Lu–Hf date and several c. 610–600 Ma monazite U–Pb dates are tentatively interpreted as records of the onset of tectonism metamorphism in the Ross orogeny, with a more robust constraint from the other Lu–Hf dates (c. 588–572 Ma) and numerous c. 590–570 Ma monazite U–Pb dates. The data are consistent with a tectonic model that involves shortening and thickening prior to widespread magmatism in the vicinity of the study area. The early tectonic history of the Ross orogen, recorded in metamorphic rocks, was broadly synchronous with Gondwana‐wide collisional Pan‐African orogenies.  相似文献   

12.
The Fuping Complex is one of the important basement terranes within the central segment of the Trans‐North China Orogen (TNCO) where mafic granulites are exposed as boudins within tonalite–trondhjemite–granodiorite (TTG) gneisses. Garnet in these granulites shows compositional zoning with homogeneous cores formed in the peak metamorphic stage, surrounded by thin rims with an increase in almandine and decrease in grossular contents suggesting retrograde decompression and cooling. Petrological and phase equilibria studies including pseudosection calculation using thermocalc define a clockwise P–T path. The peak mineral assemblages comprise garnet+clinopyroxene+amphibole+quartz+plagioclase+K‐feldspar+ilmenite±orthopyroxene±magnetite, with metamorphic P–T conditions estimated at 8.2–9.2 kbar, 870–882 °C (15FP‐02), 9.6–11.3 kbar, 855–870 °C (15FP‐03) and 9.7–10.5 kbar, 880–900 °C (15FP‐06) respectively. The pseudosections for the subsequent retrograde stages based on relatively higher H2O contents from P/T–M(H2O) diagrams define the retrograde P–T conditions of <6.1 kbar, <795 °C (15FP‐02), 5.6–5.8 kbar, <795 °C (15FP‐03), and <9 kbar, <865 °C (15FP‐06) respectively. Data from LA‐ICP‐MS zircon U–Pb dating show that the mafic dyke protoliths of the granulite were emplaced at c. 2327 Ma. The metamorphic zircon shows two groups of ages at 1.96–1.90 Ga (peak at 1.93–1.92 Ga) and 1.89–1.80 Ga (peak at 1.86–1.83 Ga), consistent with the two metamorphic events widely reported from different segments of the TNCO. The 1.93–1.92 Ga ages are considered to date the peak granulite facies metamorphism, whereas the 1.86–1.83 Ga ages are correlated with the retrograde event. Thus, the collisional assembly of the major crustal blocks in the North China Craton (NCC) might have occurred during 1.93–1.90 Ga, marking the final cratonization of the NCC.  相似文献   

13.
Accessory minerals are thought to play a key role in controlling the behaviour of certain trace elements such as REE, Y, Zr, Th and U during crustal melting processes under high-grade metamorphic conditions. Although this is probably the case at middle crustal levels, when a comparison is made with granulite-facies lower crustal levels, differences are seen in trace element behaviour between accessory minerals and some major phases. Such a comparison can be made in Central Spain where two granulite-facies terranes have equilibrated under slightly different metamorphic conditions and where lower crustal xenoliths are also found. Differences in texture and chemical composition between accessory phases found in leucosomes and leucogranites and those of melanosomes and protholiths indicate that most of the accessory minerals in melt-rich migmatites are newly crystallized. This implies that an important redistribution of trace elements occurs during the early stages of granulite-facies metamorphism. In addition, the textural position of the accessory minerals with respect to the major phases is crucial in the redistribution of trace elements when melting proceeds via biotite dehydration melting reactions. In granulitic xenoliths from lower crustal levels, the situation seems to be different, as major minerals show high concentration of certain trace elements, the distribution of which is thus controlled by reactions involving final consumption of Al-Ti-phlogopite. A marked redistribution of HREE–Y–Zr between garnet and xenotime (where present) and zircon, but also of LREE between feldspars (K-feldspar and plagioclase) and monazite, is suggested.  相似文献   

14.
The Wulanhada pluton is among the rare suite of Devonian alkaline plutons occurring along the northern margin of the North China Craton(NCC).The intrusion is mainly composed of quartz-monzonite.Here we report zircon SHRIMP U-Pb data from this intrusion which shows emplacement age of ca.381.5 Ma.The rock is metaluminous with high(Na_2O + K_2O) values ranging from 8.46 to 9.66 wt.%.The REE patterns of the rocks do not show any Eu anomaly whereas the primitive-mantle-normalized spider diagram shows strong positive Sr and Ba anomalies.The Wulanhada rocks exhibit high initial values of(~(87)Sr/~(86)Sr)_t = 0.70762-0.70809,low ε_(Nd)(t) =-12.76 to-12.15 values and negative values of ε_(Hf)(t) =-23.49 to-17.02 with small variations in(~(176)Hf/~(177)Hf),(0.281873-0.282049).These geochemical features and quantitative isotopic modeling results suggest that the rocks might have been formed through the partial melting of Neoarchean basic rocks in the lower crust of the NCC.The Wulanhada rocks,together with the Devonian alkaline rocks and mafic-ultramafic complex from neighboring regions,constitute a post-collisional magmatic belt along the northern NCC.  相似文献   

15.
The Hongshan quartz monzonite porphyry is one of the Yanshanian intrusions in the southern part of the Yudun Arc. Detailed zircon U–Pb data of four samples yielded ages of 78.8–80.7 Ma, indicating that the Hongshan intrusion was emplaced during the late stage of Late Cretaceous. The Hongshan intrusion shows shoshonitic and high‐K calc‐alkaline, with A/CNK = 0.64–1.14. The rocks show an obvious fractionation between light and heavy rare‐earth elements (average [La/Yb]N = 38.85), with negative Eu anomalies (Eu/Eu* = 0.60–0.87), enrichment in large‐ion lithophile elements (Rb, Th, U and K) and depletion in high field‐strength elements (Nb, Ta and P). Rocks have high Sr and low Y content which are characteristics of adakitic rocks, suggesting magma derivation from thickened lower crust. In order to evaluate the nature of the source region, Hf isotope data of zircons were acquired through LA‐MC‐ICPMS. The negative and variable εHf(t) values demonstrate that the Hongshan intrusion was derived from ancient crust, without mantle‐derived components and is significantly different from the Triassic intrusions in the southern part of the Yudun Arc. The three Yanshanian intrusions in Hongshan, Relin and Tongchangou are remarkably similar in terms of geochronology, geochemistry and Hf isotopes. We therefore infer that these intrusions had the same magmatic source and we correlate the tectonics with northward subduction of Tethys underneath the Asian continent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The western Fiordland Orthogneiss (WFO) is an extensive composite metagabbroic to dioritic arc batholith that was emplaced at c. 20–25 km crustal depth into Palaeozoic and Mesozoic gneiss during collision and accretion of the arc with the Mesozoic Pacific Gondwana margin. Sensitive high‐resolution ion microprobe U–Pb zircon data from central and northern Fiordland indicate that WFO plutons were emplaced throughout the early Cretaceous (123.6 ± 3.0, 121.8 ± 1.7, 120.0 ± 2.6 and 115.6 ± 2.4 Ma). Emplacement of the WFO synchronous with regional deformation and collisional‐style orogenesis is illustrated by (i) coeval ages of a post‐D1 dyke (123.6 ± 3.0 Ma) and its host pluton (121.8 ± 1.7 Ma) at Mt Daniel and (ii) coeval ages of pluton emplacement and metamorphism/deformation of proximal paragneiss in George and Doubtful Sounds. The coincidence emplacement and metamorphic ages indicate that the WFO was regionally significant as a heat source for amphibolite to granulite facies metamorphism. The age spectra of detrital zircon populations were characterized for four paragneiss samples. A paragneiss from Doubtful Sound shows a similar age spectrum to other central Fiordland and Westland paragneiss and SE Australian Ordovician sedimentary rocks, with age peaks at 600–500 and 1100–900 Ma, a smaller peak at c. 1400 Ma, and a minor Archean component. Similarly, one sample of the George Sound paragneiss has a significant Palaeozoic to Archean age spectrum, however zircon populations from the George Sound paragneiss are dominated by Permo‐Triassic components and thus are markedly different from any of those previously studied in Fiordland.  相似文献   

17.
The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U–Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana.Ages of detrital zircons (by ID–TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean–Paleoproterozoic ages (3.4–3.3, 3.1–2.7, and 2.5–2.4 Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3–1.9 Ga, with a peak at ca. 2.15 Ga) and to the ca. 1.75 Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2 Ga, with a peak at 1.3 Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0 Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9 Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin.Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6–1.2 Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt.Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630 Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605 Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt.Whilst continent–continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634–599 Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595–560 Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588 Ma, as indicated by monazite age.The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545–500 Ma in the Paraguay belt and ca. 500 Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50–100 million years.  相似文献   

18.
New field mapping, U–Pb zircon geochronology and structural analysis of the southernmost Sardinia metamorphic basement, considered a branch of the Variscan foreland, indicate that it is, in part, allochthonous and was structurally emplaced within the foreland area, rather than being older depositional basement beneath the foreland succession. The Bithia Formation, classically considered part of the ‘Southern Sulcis metamorphic Complex’ (and here termed the Bithia tectonic unit, or BTU), is a greenschist facies metamorphic unit commonly interpreted as Precambrian in age. New geochronology of felsic volcanic rocks in the BTU, however, yield a U–Pb zircon age of 457.01 ± 0.17 Ma (Upper Ordovician). Thus, the depositional age of the unit is younger than the weakly metamorphosed Lower Cambrian rocks of the adjacent foreland succession. New detailed mapping and analysis of the field relationships between the BTU and foreland succession indicates that their contact is a mylonitic shear zone. The metamorphic character, general lithology, and deformational history of the BTU are similar to those of units in the Variscan Nappe Zone located northeast of the foreland area. We reinterpret the BTU as a synformal klippe of material related tectonically to the Variscan Nappe Zone. We infer that it was thrust over and became infolded into the foreland during late stages of the Variscan contractional deformation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Geochemical data are presented for a suite of mafic volcanic rocks from the Geita area in the Sukumaland greenstone belt (SGB) of northwestern Tanzania with the aim of constraining their petrogenesis, tectonic setting and to assess a possible genetic link with mafic volcanic rocks from the Rwamagaza area also from the SGB previously reported by [Manya, S., Maboko, M.A.H., 2003. Dating basaltic volcanism in the Neoarchaean Sukumaland greenstone belt of the Tanzania Craton using the Sm–Nd method: implications for the geological evolution of the Tanzania Craton. Precambrian Research 121, 35–45] and [Manya, S., 2004. Geochemistry and petrogenesis of volcanic rocks of the Neoarchaean Sukumaland greenstone belt, northwestern Tanzania. Journal of African Earth Sciences 40, 269–279]. Mafic volcanic rocks from the two locations in the SGB show similar geochemical and Nd-isotopic compositions. Trace element and Nd-isotope compositions are consistent with their generation from a depleted MORB mantle (DMM) source which had been metasomatised by a subduction component in a late Archaean back arc setting at 2823 Ma.These findings are at variance with the previously proposed lithostratigraphical framework in the SGB which postulated an inner arcuate belt dominated by lower Nyanzian mafic volcanic rocks and an outer belt dominated by upper Nyanzian chemical sedimentary rocks, rare felsic flows and shales. The presence of mafic volcanic rocks flanking the outer belt which are of similar composition and age as those of the inner belt suggests that mafic volcanics in the SGB form discontinuous patches of rock distributed throughout the belt and separated by intervening granites. Furthermore, they corroborate previous evidence that both the rocks of the inner and outer belt formed more or less coevally and the subdivision of the volcano-sedimentary package of the SGB (and other greenstone belts of the Tanzania Craton) into a lower mafic volcanic dominated unit and an upper felsic volcanic and BIF dominated unit is not stratigraphically valid.  相似文献   

20.
Two major granulitic units are recognized in the Gour Oumelalen area. One of the units is composed partially of Archean gneisses (Red Gneiss complex) with U–Pb zircon SIMS and TIMS ages of approximately 2.7 Ga. Although they were formed from 3.0- to 3.2-Ga-old precursors, as indicated by Nd model ages, we find no evidence of any older history (≈3.5 Ga) as suggested by previous Pb–Pb ages. The other formation (Gour Oumelalen supergroup) is a metasedimentary sequence at least partly of Paleoproterozoic age, as indicated by zircon dates of a metavolcanic rock at approximately 2.2 Ga. A later magmatic event is recorded at approximately 1.9 Ga in both units and related to coeval granulite-facies metamorphism that affected both units. Nd model ages at approximately 2.0 Ga suggest an accretion of juvenile crust formation at that time. The existence of TDM Nd model ages intermediate between 2.5 and 2.9 Ga could result from the mixing of 3.2 and 2.0-Ga-old material or may reflect separate events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号