首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The post-12-Ma volcanism at Yucca Mountain (YM), Nevada, a potential site for an underground geologic repository of high-level radioactive waste in the USA, is assumed to follow a Poisson process and is characterized by a sequence of empirical recurrence rate time series. The last ten time series are used as a prediction set to check the predictive ability of the candidate model produced by a training sample using autoregressive integrated moving average modeling techniques. The model is used to forecast future recurrence rates that, in turn, are used to develop a continuous mean function of the volcanic process, which is not only required to evaluate the probability of site disruption by volcanic activity but accommodates a long period of compliance. At the model validation stage, our candidate model forecasts a mean number of 6.196 eruptions for the prediction set which accounts for seven volcanic events of the 33 post-12-Ma eruptions at the YM site. For a full-scaled forecasting, our fitted model predicts a waning volcanism producing only 3.296 new eruptions in the next million years. We then present the site disruption probability as the chance that a new eruption will occur in the “hazard area” based on a model developed for licensing commercial space launch and reentry operations in the space transportation industry. The results of the site disruption probability and sensitivity analysis are summarized with a numerical table generated from a simple equation sufficient for practical use. We also produce three-dimensional plots to visualize the nonlinearity of the intensity function associated with the underlying model of a nonhomogeneous Poisson process and emphasize that the interpretation of site disruption probability should always be accompanied by a compliance period.  相似文献   

2.
Models that calculate the probability that a new volcano or a dike from a nearby eruption will intersect the footprint of the proposed high-level nuclear waste repository are generalized based on a conceptual model developed for the space transportation industry. The proposed hazard area, defined such that every new eruption that occurs there will disrupt the repository, plays a fundamental role in developing probability models. This hazard area is used not only to hedge the uncertainties in predicting patterns of future volcanic activity, but also to account for the characteristics of a new eruption during the post-closure performance period of an underground geologic repository. The paper discusses the advantages of probability comparisons, capabilities of conservativeness measurements and expert-elicitation on model parameters, and the implications to the proposed repository.Paper funded by a contract from the Agency for Nuclear Projects, State of Nevada, USA.  相似文献   

3.
Secondary calcite residing in open cavities in the unsaturated zone of Yucca Mountain has long been interpreted as the result of downward infiltration of meteoric water through open fractures. In order to obtain information on the isotopic composition (δD and δ18O) of the mineral-forming water we studied fluid inclusions from this calcite. Water was extracted from inclusions by heated crushing and the δD values were measured using a continuous-flow isotope-ratio mass spectrometry method. The δ18O values were calculated from the δ18O values of the host calcite assuming isotopic equilibrium at the temperature of formation determined by fluid-inclusion microthermometry.The δD values measured in all samples range between ? 110 and ? 90‰, similar to Holocene meteoric water. Coupled δ18O–δD values plot significantly, 2 to 8‰, to the right of the meteoric water line. Among the various processes operating at the topographic surface and/or in the unsaturated zone only two processes, evaporation and water–rock exchange, could alter the isotope composition of percolating water. Our analysis indicates, however, that none of these processes could produce the observed large positive δ18O-shifts. The latter require isotopic interaction between mineral-forming fluid and host rock at elevated temperature (>100 °C), which is only possible in the deep-seated hydrothermal environment. The stable isotope data are difficult to reconcile with a meteoric origin of the water from which the secondary minerals at Yucca Mountain precipitated; instead they point to the deep-seated provenance of the mineral-forming waters and their introduction into the unsaturated zone from below, i.e. a hypogene origin.  相似文献   

4.
Based on the calculation method of information gain in the stochastic process presented by Vere-Jones, the relation between information gain and probability gain is studied, which is very common in earthquake prediction, and the yearly probability gain for seismic statistical model is proposed. The method is applied to the non-stationary Poisson model with whole-process exponential increase and stress release model. In addition, the prediction method of stress release model is obtained based on the inverse function simulation method of stochastic variable.  相似文献   

5.
The values of parameters in a groundwater flow model govern the precision of predictions of future system behavior. Predictive precision, thus, typically depends on an ability to infer values of system properties from historical measurements through calibration. When such data are scarce, or when their information content with respect to parameters that are most relevant to predictions of interest is weak, predictive uncertainty may be high, even if the model is "calibrated." Recent advances help recognize this condition, quantitatively evaluate predictive uncertainty, and suggest a path toward improved predictive accuracy by identifying sources of predictive uncertainty and by determining what observations will most effectively reduce this uncertainty. We demonstrate linear and nonlinear predictive error/uncertainty analyses as applied to a groundwater flow model of Yucca Mountain, Nevada, the United States' proposed site for disposal of high-level radioactive waste. Linear and nonlinear uncertainty analyses are readily implemented as an adjunct to model calibration with medium to high parameterization density. Linear analysis yields contributions made by each parameter to a prediction's uncertainty and the worth of different observations, both existing and yet-to-be-gathered, toward reducing this uncertainty. Nonlinear analysis provides more accurate characterization of the uncertainty of model predictions while yielding their (approximate) probability distribution functions. This article applies the above methods to a prediction of specific discharge and confirms the uncertainty bounds on specific discharge supplied in the Yucca Mountain Project License Application.  相似文献   

6.
New field, compositional, and geochronologic data from Fisher Caldera, the largest of 12 Holocene calderas in Alaska, provide insights into the eruptive history and formation of this volcanic system. Prior to the caldera-forming eruption (CFE) 9400 years ago, the volcanic system consisted of a cluster of several small (∼3 km3) stratocones, which were independently active between 66±144 and 9.4±0.2 ka. Fisher Caldera formed through a single eruption, which produced a thick dacitic fall deposit and two pyroclastic-flow deposits, a small dacitic flow and a compositionally mixed basaltic-dacitic flow. Thickness and grain-size data indicate that the fall deposit was dispersed primarily to the northeast, whereas the two flows were oppositely directed to the south and north. After the cataclysmic eruption, a lake filled much of the caldera during what may have been a significant quiescent period. Volcanic activity from intracaldera vents gradually resumed, producing thick successions of scoria fall interbedded with lake sediments. Several Holocene stratocones have developed; one of which has had a major collapse event. The caldera lake catastrophically drained when a phreatomagmatic eruption generated a large wave that overtopped and incised the southwestern caldera wall. Multiple accretionary-lapilli-bearing deposits inside and outside the caldera suggest significant Holocene phreatomagmatic activity. The most recent eruptive activity from the Fisher volcanic system was a small explosive eruption in 1826, and current activity is hydrothermal. Late Pleistocene to Holocene magma eruption rates range from 0.03 to 0.09 km3 ky−1 km−1, respectively. The Fisher volcanic system is chemically diverse, ∼48–72 wt.% SiO2, with at least seven dacitic eruptions over the last 82±14 ka that may have become more frequent over time. Least squares calculations suggest that prior to the CFE, Fisher Volcano products were not derived from a single, large magma reservoir, and were likely erupted from multiple, compositionally independent magma reservoirs. After the CFE, the majority of products appear to have derived from a single reservoir in which magma mixing has occurred.  相似文献   

7.
8.
Ground water temperatures in the fractured volcanic aquifer near Yucca Mountain, Nevada, have previously been shown to have significant spatial variability with regions of elevated temperatures coinciding roughly with near-vertical north-south trending faults. Using insights gained from one-dimensional models, previous investigators have suggested upwelling along faults from an underlying aquifer as a likely explanation for this ground water temperature pattern. Using a three-dimensional coupled flow and heat-transport model, we show that the thermal high coinciding with the Paintbrush fault zone can be explained without significant upwelling from the underlying aquifer. Instead, the thermal anomaly is consistent with thermal conduction enhanced slightly by vertical ground water movement within the volcanic aquifer sequence. If more than approximately 400 m3/day of water enters the volcanic aquifer from below along a 10 km fault zone, the calculated temperatures at the water table are significantly greater than the measured temperatures. These results illustrate the potential limitations in using one-dimensional models to interpret ground water temperature data, and underscore the value in combining temperature data with fully coupled three-dimensional simulations.  相似文献   

9.
长白山天池火山喷发序列研究   总被引:4,自引:0,他引:4  
长白山天池火山周边的11个钻孔资料揭示了长白山天池火山的喷发序列和岩浆演化过程.天池火山的喷发序列分为3个旋回:早期旋回喷发于上新世至早更新世,对应着周边地区的造高原喷发,天池火山熔岩盾主体开始形成,岩浆演化顺序是粗面玄武岩到粗面岩;中期旋回是早更新世的玄武岩浆演化到粗面岩和粗安岩(相当于小白山组);晚期旋回是从更新世到全新世,老房子小山组的玄武岩演化到白头山组粗面岩及碱流岩.在粗面质岩浆喷发过程中,有寄生火山的玄武质岩浆伴随喷发.全新世内天池火山千年大喷发主体由碱流质火山碎屑堆积物构成,松散堆积物的钻孔堆积层序表明,天池火山在全新世至少发生过两期巨型造伊格尼姆岩喷发.  相似文献   

10.
The U.S. Department of Energy is currently studying Yucca Mountain, Nevada, as a potential site for a geological high-level waste repository. In the current conceptual models of radionuclide transport at Yucca Mountain, part of the transport path to pumping locations would be through an alluvial aquifer. Interactions with minerals in the alluvium are expected to retard the downstream migration of radionuclides, thereby delaying arrival times and reducing ground water concentrations. We evaluate the effectiveness of the alluvial aquifer as a transport barrier using the stochastic Lagrangian framework. A transport model is developed to account for physical and chemical heterogeneities and rate-limited mass transfer between mobile and immobile zones. The latter process is caused by small-scale heterogeneity and is thought to control the macroscopic-scale retardation in some field experiments. A geostatistical model for the spatially varying sorption parameters is developed from a site-specific database created from hydrochemical measurements and a calibrated modeling approach (Turner and Pabalan 1999). Transport of neptunium is considered as an example. The results are sensitive to the rate of transfer between mobile and immobile zones, and to spatial variability in the hydraulic conductivity. Chemical heterogeneity has only a small effect, as does correlation between hydraulic conductivity and the neptunium distribution coefficient. These results illustrate how general sensitivities can be explored with modest effort within the Lagrangian framework. Such studies complement and guide the application of more detailed numerical simulations.  相似文献   

11.
The present study assesses the uncertainty of flow and radionuclide transport in the unsaturated zone at Yucca Mountain using a Monte Carlo method. Matrix permeability, porosity, and sorption coefficient are considered random. Different from previous studies that assume distributions of the parameters, the distributions are determined in this study by applying comprehensive transformations and rigorous statistics to on-site measurements of the parameters. The distribution of permeability is further adjusted based on model calibration results. Correlation between matrix permeability and porosity is incorporated using the Latin Hypercube Sampling method. After conducting 200 Monte Carlo simulations of three-dimensional unsaturated flow and radionuclide transport for conservative and reactive tracers, the mean, variances, and 5th, 50th, and 95th percentiles for quantities of interest (e.g., matrix liquid saturation and water potential) are evaluated. The mean and 50th percentile are used as the mean predictions, and their associated predictive uncertainties are measured by the variances and the 5th and 95th percentiles (also known as uncertainty bounds). The mean predictions of matrix liquid saturation and water potential are in reasonable agreement with corresponding measurements. The uncertainty bounds include a large portion of the measurements, suggesting that the data variability can be partially explained by parameter uncertainty. The study illustrates propagation of predictive uncertainty of percolation flux, increasing downward from repository horizon to water table. Statistics from the breakthrough curves indicate that transport of the reactive tracer is delayed significantly by the sorption process, and prediction on the reactive tracer is of greater uncertainty than on the conservative tracer because randomness in the sorption coefficient increases the prediction uncertainty. Uncertainty in radionuclide transport is related to uncertainty in the percolation flux, suggesting that reducing the former entails reduction in the latter.  相似文献   

12.
The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava.  相似文献   

13.
Xenoliths in pyroclastic fall deposits from the 1975 Tolbachik eruption constrain the timing and development of subsurface conduits associated with basaltic cinder cone eruptions. The two largest Tolbachik vents contain xenoliths derived from magmatic and hydromagmatic processes, which can be correlated with observed styles of eruption activity. Although many basaltic eruptions progress from early hydromagmatic activity to late magmatic activity, transient hydromagmatic events occurred relatively late in the 1975 eruption sequence. Magmatic fall deposits contain 0.01–0.3 vol.% xenoliths from <3-km-deep rocks, likely derived from 6–15-m-wide and 1.7–2.8-km-deep conduits. Intervals that supported the highest tephra columns (i.e., droplet flow regime) produced few of these xenoliths; most were derived from intervals with relatively lower columns and active lava flows (i.e., annular 2-phase flow). Several periods of decreased eruptive activity resulted in inflow of groundwater from >500 m depth into the dry-out zone around the conduit, disrupting and ejecting 105–106 m3 of wall-rock through hydromagmatic processes with conduits widening to 8–48 m. Hydromagmatic falls contain 60–75 vol.% of highly fragmented xenoliths, with juvenile clasts displaying obvious magma-water interaction features. During the largest hydromagmatic event, unusual breccia-bombs formed containing a wide range of fresh and pyrometamorphic xenoliths suspended in a quenched basaltic matrix. Hydromagmatic activity during the 1975 Tolbachik eruption occurred below likely fragmentation depths for a basalt containing 2.2 wt.% magmatic water. This activity is more likely related to conduit-wall collapse rather than variations in conduit-flow pressure. In contrast, larger volume silicic eruptions may have transient hydromagmatic events in response to conduit flow dynamics above the magma fragmentation depth. The 1975 Tolbachik volcanoes are reasonably analogous to Quaternary basaltic volcanoes in the Yucca Mountain region and can guide interpretations of their poorly preserved deposits. The youngest basaltic volcanoes near Yucca Mountain have cone deposits characterized by elevated xenolith abundances and distinctive xenolith breccia-bombs, remarkably similar to 1975 Tolbachik deposits. Extrapolation of 1975 Tolbachik data suggests conduits for some Yucca Mountain basaltic volcanoes may have widened locally on the order of 50 m in response to late-stage hydromagmatic events.  相似文献   

14.
Following an intersection of rising magma with drifts of the potential Yucca Mountain nuclear waste repository, a pathway is likely to be established to the surface with magma flowing for days to weeks and affecting the performance of engineered structures located along or near the flow path. In particular, convective circulation could occur within magma-filled drifts due to the exsolution and segregation of magmatic gas. We investigate gas segregation in a magma-filled drift intersected by a vertical dyke by means of analogue experiments, focusing on the conditions of sustained magma flow. Degassing is simulated by electrolysis, producing micrometric bubbles in viscous mixtures of water and golden syrup, or by aerating golden syrup, producing polydisperse bubbly mixtures with 40% of gas by volume. The presence of exsolved bubbles induces a buoyancy-driven exchange flow between the dyke and the drift that leads to gas segregation. Bubbles segregate from the magma by rising and accumulating as a foam at the top of the drift, coupled with the accumulation of denser degassed magma at the base of the drift. Steady-state influx of bubbly magma from the dyke into the drift is balanced by outward flux of lighter foam and denser degassed magma. The length and time scales of this gas segregation are controlled by the rise of bubbles in the horizontal drift. Steady-state gas segregation would be accomplished within hours to hundreds of years depending on the viscosity of the degassed magma and the average size of exsolved gas bubbles, and the resulting foam would only be a few cm thick. The exchange flux of bubbly magma between the dyke and the drift that is induced by gas segregation ranges from 1 m3 s−1, for the less viscous magmas, to 10−8 m3 s−1, for the most viscous degassed magmas, with associated velocities ranging from 10−1 to 10−9 m s−1 for the same viscosity range. This model of gas segregation also predicts that the relative proportion of erupted degassed magma, that could potentially carry and entrain nuclear waste material towards the surface, would depend on the value of the dyke magma supply rate relative to the value of the gas segregation flux, with violent eruption of gassy as well as degassed magmas at relatively high magma supply rates, and eruption of mainly degassed magma by milder episodic Strombolian explosions at relatively lower supply rates.  相似文献   

15.
Mineral weathering rates and a forest macronutrient uptake stoichiometry were determined for the forested, metabasaltic Hauver Branch watershed in north‐central Maryland, USA. Previous studies of Hauver Branch have had an insufficient number of analytes to permit determination of rates of all the minerals involved in chemical weathering, including biomass. More equations in the mass‐balance matrix were added using existing mineralogic information. The stoichiometry of a deciduous biomass term was determined using multi‐year weekly to biweekly stream‐water chemistry for a nearby watershed, which drains relatively unreactive quartzite bedrock. At Hauver Branch, calcite hosts ~38 mol% of the calcium ion (Ca2+) contained in weathering minerals, but its weathering provides ~90% of the stream water Ca2+. This occurs in a landscape with a regolith residence time of more than several Ka (kiloannum). Previous studies indicate that such old regolith does not typically contain dissolving calcite that affects stream Ca2+/Na+ ratios. The relatively high calcite dissolution rate likely reflects dissolution of calcite in fractures of the deep critical zone. Of the carbon dioxide (CO2) consumed by mineral weathering, calcite is responsible for approximately 27%, with the silicate weathering consumption rate far exceeding that of the global average. The chemical weathering of mafic terrains in decaying orogens thus may be capable of influencing global geochemical cycles, and therefore, climate, on geological timescales. Based on carbon‐balance calculations, atmospheric‐derived sulfuric acid is responsible for approximately 22% of the mineral weathering occurring in the watershed. Our results suggest that rising air temperatures, driven by global warming and resulting in higher precipitation, will cause the rate of chemical weathering in the Hauver Branch watershed to increase until a threshold temperature is reached. Beyond the threshold temperature, increased recharge would produce a shallower groundwater table and reduced chemical weathering rates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
郭星  潘华  李金臣  侯春林 《地震学报》2018,40(4):506-518
以历史重演原则和构造类比原则为基础,提出了一种基于经验分布的大地震复发概率计算方法,该方法不作任何复发概率分布的强假定,直接通过对大量地震序列数据的蒙特卡罗随机抽样来模拟未来大地震的复发规律,进而统计得到未来一段时间内的大地震发生概率,并以鲜水河断裂带炉霍段和道孚段为实例,利用本文给出的复发概率计算方法得出炉霍段和道孚段未来50年大地震发生概率分别为0.15和0.31。   相似文献   

17.
Evaluation of historic range of variability (HRV) is an effective tool for determining baseline conditions and providing context to researchers and land managers seeking to understand and enhance ecological function. Incorporating HRV into restoration planning acknowledges the dynamic quality of landscapes by allowing variability and disturbance at reasonable levels and permitting riverine landscapes to adapt to the physical processes of their watersheds. HRV analysis therefore represents a practical (though under‐utilized) method for quantifying process‐based restoration goals. We investigated HRV of aggradational processes in the subalpine Lulu City wetland in Rocky Mountain National Park to understand the impacts of two centuries of altered land use and to guide restoration planning following a human‐caused debris flow in 2003 that deposited up to 1 m of sand and gravel in the wetland. Historic aerial photograph interpretation, ground penetrating radar surveys, and trenching, coring, and radiocarbon dating of valley‐bottom sediments were used to map sediment deposits, quantify aggradation rates, and identify processes (in‐channel and overbank fluvial deposition, direct hillslope input, beaver pond filling, peat accumulation) creating alluvial fill within the wetland. Results indicate (i) the Lulu City wetland has been aggrading for several millennia, (ii) the aggradation rate of the past one to two centuries is approximately six times higher than long‐term pre‐settlement averages, (iii) during geomorphically active periods, short‐term aggradation rates during the pre‐settlement period were probably much higher than the long‐term average rate, and (iv) the processes of aggradation during the last two centuries are the same as historic processes of aggradation. Understanding the HRV of aggradation rates and processes can constrain management and restoration scenarios by quantifying the range of disturbance from which a landscape can recover without active restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Phreatomagmatic deposits at Narbona Pass, a mid-Tertiary maar in the Navajo volcanic field (NVF), New Mexico (USA), were characterized in order to reconstruct the evolution and dynamic conditions of the eruption. Our findings shed light on the temporal evolution of the eruption, dominant depositional mechanisms, influence of liquid water on deposit characteristics, geometry and evolution of the vent, efficiency of fragmentation, and the relative importance of magmatic and external volatiles. The basal deposits form a thick (5–20 m), massive lapilli tuff to tuff-breccia deposit. This is overlain by alternating bedded sequences of symmetrical to antidune cross-stratified tuff and lapilli tuff; and diffusely-stratified, clast-supported, reversely-graded lapilli tuffs that pinch and swell laterally. This sequence is interpreted to reflect an initial vent-clearing phase that produced concentrated pyroclastic density currents, followed by a pulsating eruption that produced multiple density currents with varying particle concentrations and flow conditions to yield the well-stratified deposits. Only minor localized soft-sediment deformation was observed, no accretionary lapilli were found, and grain accretion occurs on the lee side of dunes. This suggests that little to no liquid water existed in the density currents during deposition. Juvenile material is dominantly present as blocky fine ash and finely vesiculated fine to coarse lapilli pumice. This indicates that phreatomagmatic fragmentation was predominant, but also that the magma was volatile-rich and vesiculating at the time of eruption. This is the first study to document a significant magmatic volatile component in an NVF maar-diatreme eruption. The top of the phreatomagmatic sequence abruptly contacts the overlying minette lava flows, indicating no gradual drying-out period between the explosive and effusive phases. The lithology of the accidental clasts is consistent throughout the vertical pyroclastic stratigraphy, suggesting that the diatreme eruption did not penetrate below the base of the uppermost country rock unit, a sandstone aquifer ∼360 m thick. By comparison, other NVF diatremes several tens of kilometers away were excavated to depths of ∼1,000 m beneath the paleosurface (e.g., Delaney PT. Ship Rock, New Mexico: the vent of a violent volcanic eruption. In: Beus SS (ed) Geological society of America Centennial Field Guide, Rocky Mountain Section 2:411–415 (1987)). This can be accounted for by structurally controlled variations in aquifer thickness beneath different regions of the volcanic field. Variations in accidental clast composition and bedding style around the edifice are indicative of a laterally migrating or widening vent that encountered lateral variations in subsurface geology. We offer reasonable evidence that this subsurface lithology controlled the availability of external water to the magma, which in turn controlled characteristics of deposits and their distribution around the vent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Reservoir storage plays an important role in water supply during the dry season when precipitation is insufficient. In a watershed where the streams are controlled by reservoirs, drought occurrences depend on not only precipitation variations but also reservoir regulation. In this study, the joint dependence structure of the reservoir storage and its relevant variables of precipitation and/or upstream outflow were analyzed for two cascade reservoirs in a headwater basin of the Huaihe River, China. Correlation analysis indicates that the reservoir storage in October (the end of the wet season) depends highly on the regional precipitation at time scales of several months, e.g., 7 months for the upstream and 9 months for the downstream. Additionally, the downstream storage is correlated with outflow from the upstream reservoir at the 5-month timescale significantly. For estimation of the joint probability of pairs of the storage and its relevant variables, univariate marginal distributions and bivariate copula were appropriately selected in terms of statistical tests. The bivariate return period of \(T(X < x,Y < y)\) and \(T(X \le x,Y \ge y)\) and the conditional probability of \(P(Y \ge y|X \le x)\) were estimated by using the selected Clayton copula. The results from contour lines of the bivariate return period demonstrate that the probability of drought occurrences affected by both reservoir storage and precipitation/outflow is smaller than that by either of the variables. Meanwhile, the concurrent drought probability between precipitation and reservoir storage in the upstream is higher than that in the downstream. The estimated conditional probability offers useful information on how much the regular storage could be remained under some specified drought levels of precipitation/upstream outflow. Therefore, the results are helpful for improving the operation strategies of the cascade reservoirs for the adaptive management of drought under different climate variations.  相似文献   

20.
Estimation of design flood in ungauged catchments is a common problem in hydrology. Methods commonly adopted for this task are limited to peak flow estimation, e.g. index flood, rational and regression‐based methods. To estimate complete design hydrograph, rainfall–runoff modelling is preferred. The currently recommended method in Australia known as Design Event Approach (DEA) has some serious limitations since it ignores the probabilistic nature of principal model inputs (such as temporal patterns (TP) and initial loss) except for design rainfall depth. A more holistic approach such as Joint Probability Approach (JPA)/Monte Carlo Simulation Technique (MCST) can overcome some of the limitations associated with the DEA. Although JPA/MCST has been investigated by many researchers, it has been proved to be difficult to apply since its routine application needs readily available regional design data such as stochastic rainfall duration, TP and losses, which are largely unavailable for Australian states. This paper presents regionalization of the model inputs/parameters to the JPA/MCST for eastern New South Wales (NSW) in Australia. This uses data from 86 pluviograph stations and six catchments from NSW to regionalize the input distributions for application with the JPA/MCST. The independent testing to three test catchments shows that the regionalized JPA/MCST generally outperforms the at‐site DEA. The developed regionalized JPA/MCST can be applied at any arbitrary location in eastern NSW. The method and design data developed here although primarily applicable to eastern NSW can be adapted to other Australian states and countries. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号