首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we will summarize some of the most important results of the Cassini mission concerning the satellites of Saturn. The Cassini Mission was launched in October 1997 on a Titan IV-Centaur rocket from Cape Canaveral. Cassini mission was always at risk of cancelation during its development but was saved many times thanks to the great international involvement. The Cassini mission is in fact a NASA-ESA-ASI project. The main effort was made by NASA, which provided the launch facilities, the integration and several instruments; ESA provided the Huygens probe while ASI some of the key elements of the mission such as the high-gain antenna, most of the radio system and important instruments of the Orbiter, such as the Cassini Radar and the visual channel of the VIMS experiment. ASI contributed also to the development of HASI experiment on Huygens probe. The Cassini mission was the first case in which the Italian planetology community was directly involved, developing state of the art hardware for a NASA mission. Given the long duration of the mission, the complexity of the payload onboard the Cassini Orbiter and the amount of data gathered on the satellites of Saturn, it would be impossible to describe all the new discoveries made, therefore we will describe only some selected, paramount examples showing how Cassini’s data confirmed and extended ground-based observations. In particular we will describe the achievements obtained for the satellites Phoebe, Enceladus and Titan. We will also put these examples in the perspective of the overall evolution of the system, stressing out why the selected satellites are representative of the overall evolution of the Saturn system. Cassini is also an example of how powerful could be the coordination between ground-based and space observations. In fact coordinated ground-based observations of Titan were performed at the time of Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the in situ observations by the probe with the general view provided by ground-based measurements. Different telescopes operating at different wavelengths were used, including radio telescopes (up to 17-tracking of the Huygens signal at 2040 MHz), eight large optical observatories studying the atmosphere and surface of Titan, and high-resolution infrared spectroscopy used to observe radiation emitted during the Huygens Probe entry (Witasse et al. J. Geophys. Res. 111:E07S01, 2006).  相似文献   

2.
The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next space astronomy mission observing in the infrared. The mission is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to <5 K through the use of mechanical coolers. These coolers will also cool the focal plane instruments thus avoiding the use of consumables and giving the mission a long lifetime. SPICA’s large, cold aperture will provide a two order of magnitude sensitivity advantage over current far infrared facilities (>30 microns wavelength). We describe the scientific advances that will be made possible by this large increase in sensitivity and give details of the mission, spacecraft and focal plane conceptual design.
Bruce SwinyardEmail:
  相似文献   

3.
The Solar TErrestrial RElations Observatory (STEREO) requires powerful tools for the three-dimensional (3D) reconstruction of the solar corona. Here we test such a program with data from SOHO and TRACE. By taking advantage of solar rotation, a newly developed stereoscopy tool for the reconstruction of coronal loops is applied to the solar active region NOAA 8891 observed from 1 March to 2 March 2000. The stereoscopic reconstruction is composed of three steps. First, we identify loop structures in two TRACE images observed from two vantage viewpoints approximately 17 degrees apart, which corresponds to observations made about 30 hours apart. In the second step, we extrapolate the magnetic field in the corona with the linear force-free field model from the photospheric line-of-sight SOHO/MDI data. Finally, combining the extrapolated field lines and one-dimensional loop curves from two different viewpoints, we obtain the 3D loop structures with the magnetic stereoscopy tool. We demonstrate that by including the magnetic modeling this tool is more powerful than pure geometrical stereoscopy, especially in resolving the ambiguities generated by classical stereoscopy. This work will be applied to the STEREO mission in the near future.  相似文献   

4.
The exciting new high resolution images from the one meter Sunrise balloon telescope and the first images from the 1.6 meter Big Bear telescope together with the continuing data from the 1 meter Swedish Solar Observatory demonstrate the promise of the new generation of multimeter solar telescopes. While the promise of the new generation of telescopes is great the technical challenges to build them will require the efforts of a significant fraction of the solar community. In this talk I will emphasize the need for an integrated systems approach to the development of the telescope, its instruments, its software, and its operations and management structures. The experience of several decades of space mission has taught us a great deal about the value of planning mission development from the definition of the primary scientific objectives to the delivery of the data to the science community. Much of these lessons learned, often painfully, should provide guidance to those in developing the new telescope systems (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The SOHO mission: An overview   总被引:3,自引:0,他引:3  
The Solar and Heliospheric Observatory (SOHO) is a space mission that forms part of the Solar-Terrestrial Science Program (STSP), developed in a collaborative effort by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The STSP constitutes the first cornerstone of ESA's long-term programme known as Space Science — Horizon 2000. The principal scientific objectives of the SOHO mission are a) to reach a better understanding of the structure and dynamics of the solar interior using techniques of helioseismology, and b) to gain better insight into the physical processes that form and heat the Sun's corona, maintain it and give rise to its acceleration into the solar wind. To achieve these goals, SOHO carries a payload consisting of 12 sets of complementary instruments. SOHO is a three-axis stabilized spacecraft with a total mass of 1850 kg; 1150 W of power will be provided by the solar panels. The payload weighs about 640 kg and will consume 450 W in orbit. SOHO will be launched by an ATLAS II-AS and will be placed in a halo orbit around the Sun-Earth L1 Lagrangian point where it will be continuously pointing to Sun centre with an accuracy of 10 arcsec. Pointing stability will be better than 1 arcsec over 15 min intervals. The SOHO payload produces a continuous science data stream of 40 kbits/s which will be increased by 160 kbits/s whenever the solar oscillations imaging instrument is operated in its highrate mode. Telemetry will be received by NASA's Deep Space Network (DSN). Planning, coordination and operation of the spacecraft and the scientific payload will be conducted from the Experiment Operations Facility (EOF) at NASA's Goddard Space Flight Center (GSFC).  相似文献   

6.
We present the first quantitative three-dimensional (3D) tomographic reconstructions of electron density from coronagraph measurements of the K-corona’s total brightness (B) made by LASCO-C2 on SOHO. This is possible because new calibrations of the LASCO-C2 images in both polarized brightness (pB) and B have now been made for the entire mission. The B and pB reconstructions are compared, and the differences are explained in terms of line of sight weighting functions in Thomson scattering. We conclude that the LASCO-C2 B archive, which is vastly larger than the pB archive, will be a very valuable resource for determining the 3D electron density throughout the SOHO mission which started taking data in 1996.  相似文献   

7.
We use an innovative research technique to analyze combined images from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) and the Transition Region and Coronal Explorer (TRACE). We produce a high spatial and temporal resolution simulated CDS raster or “composite” map from TRACE data and use this composite map to jointly analyze data from both instruments. We show some of the advantages of using the “composite” map method for coronal loop studies. We investigate two postflare loop structures. We find cool material (250 000 K) concentrated at the tips or apex of the loops. This material is found to be above its scale height and therefore not in hydrostatic equilibrium. The exposure times of the composite map and TRACE images are used to give an estimate of another loop’s cooling time. The contribution to the emission in the TRACE images for the spectral lines present in its narrow passband is estimated by using the CDS spectral data and CHIANTI to derive synthetic spectra. We obtain cospatial and cotemporal data collected by both instruments in SOHO Joint Observations Program (JOP) 146 and show how the combination of these data can be utilized to obtain more accurate measurements of coronal plasmas than if analyzed individually. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

8.
In the modern era of helioseismology we have a wealth of high-quality data available, e.g., more than 6 years of data collected by the various instruments on board the SOHO mission, and an even more extensive ground-based set of observations covering a full solar cycle. Thanks to this effort a detailed picture of the internal rotation of the Sun has been constructed. In this paper we present some of the actions that should be done to improve our knowledge of the inner rotation profile discussed during the workshop organized at Saclay on June 2003 on this topic. In particular we will concentrate on the extraction of the rotational frequency splittings of low- and medium-degree modes and their influence on the rotation of deeper layers. Furthermore, for the first time a full set of individual |m|-component rotational splittings is computed for modes ℓ≤4 and 1<ν<2 mHz, opening new studies on the latitudinal dependence of the rotation rate in the radiative interior. It will also be shown that these splittings have the footprints of the differential rotation of the convective zone which can be extremely useful to study the differential rotation of other stars where only these low-degree modes will be available.  相似文献   

9.
Abstract— The characterization of comet and asteroid interiors will eventually require in situ exploration with drills, penetrators/penetrometers, hypervelocity impactors, excavators or other devices. Because they offer desirable scientific capabilities and relative mechanical simplicity, penetrators and penetrometers, which use only axial force to push beneath the surface, are a good choice for near‐term missions. Penetrometers are instruments, generally deployed from a larger vehicle, that measure subsurface mechanical properties and may also contain additional scientific instruments. There are three basic types: “fast” penetrometers are released from above and plunge into the surface. Static and dynamic (collectively referred to as “slow”) penetrometers use, respectively, a constant slow penetration speed and periodic hammering impulses. The low gravity environment of asteroids and comets presents a key challenge to instrument deployment and also greatly affects the mechanical properties of surface materials, and in turn penetrometer performance. The Rosetta mission, currently en route to comet 67P/Churyumov‐Gerasimenko, will be the next mission to try both fast and slow, dynamic penetrometry, when it arrives in 2014. We present some new concepts of static penetrometers for small body exploration that are adapted to the low gravity environment. The low gravity environment also presents challenges for the testing of penetrometers on Earth and a number of previous solutions are described and new methods suggested. In the next generation of missions to study comets and asteroids, penetrometers could provide important data on their mechanical, seismic, thermal, electromagnetic, and chemical characteristics, as well as sample collection.  相似文献   

10.
The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26?–?34 nm and 0.1?–?50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions – i.e., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26?–?34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1?–?7 nm band extracted from the SEM 0.1?–?50 nm channel.  相似文献   

11.
12.
The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.  相似文献   

13.
SOHO, the Solar and Heliospheric Observatory, is a project of international cooperation between ESA and NASA to study the Sun, from its deep core to the outer corona, and the solar wind. Three helioseismology instruments are providing unique data for the study of the structure and dynamics of the solar interior, from the very deep core to the outermost layers of the convection zone. A set of five complementary remote sensing instruments, consisting of EUV, UV and visible light imagers, spectrographs and coronagraphs, give us our first comprehensive view of the outer solar atmosphere and corona, leading to a better understanding of the enigmatic coronal heating and solar wind acceleration processes. Finally, three experiments complement the remote sensing observations by making in- situ measurements of the composition and energy of the solar wind and charged energetic particles, and another instrument maps the neutral hydrogen in the heliosphere and its dynamic change by the solar wind. This paper reports some of the first results from the SOHO mission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Based on various lines of geologic, geomorphic, topographic, geophysical, spectral, and elemental evidence, we conclude that hydrothermal environments have certainly existed on Mars and are likely to still exist. Here, we present candidate targets of endogenic- and exogenic-driven hydrothermal environments on Mars based on a set of selection criteria and suggest strategies for the detection of such targets. This includes a re-evaluation of potential targets using both existing and yet-to-be-released remote information provided by the instruments onboard the Mars orbiters and rovers. We also provide terrestrial analogs for possible martian hydrothermal environments to highlight the implications of these targets for potential martian life. This compilation and synthesis of data from martian localities indicating hydrothermal activity is timely and a first step towards prioritizing candidate targets for further investigation, which will likely add more targets to this list. Future in situ exploration will have to focus on the most promising of the hydrothermal targets and investigate them utilizing a novel integrated multi-tier, multi-agent reconnaissance mission architecture.  相似文献   

15.
The bootstrap method is used to determine errors of basic attributes of coronal mass ejections (CMEs) visually identified in images obtained by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO) instruments. The basic parameters of CMEs are stored, among others, in a database known as the SOHO/LASCO CME catalog and are widely employed for many research studies. The basic attributes of CMEs (e.g. velocity and acceleration) are obtained from manually generated height-time plots. The subjective nature of manual measurements introduces random errors that are difficult to quantify. In many studies the impact of such measurement errors is overlooked. In this study we present a new possibility to estimate measurements errors in the basic attributes of CMEs. This approach is a computer-intensive method because it requires repeating the original data analysis procedure several times using replicate datasets. This is also commonly called the bootstrap method in the literature. We show that the bootstrap approach can be used to estimate the errors of the basic attributes of CMEs having moderately large numbers of height-time measurements. The velocity errors are in the vast majority small and depend mostly on the number of height-time points measured for a particular event. In the case of acceleration, the errors are significant, and for more than half of all CMEs, they are larger than the acceleration itself.  相似文献   

16.
《Planetary and Space Science》2006,54(13-14):1279-1297
Venus Express is the first European mission to the planet Venus. Its payload consists of seven instruments and will investigate the atmosphere, the plasma environment, and the surface of Venus from orbit. Science planning is a complex process that takes into account requests from all experiments and the operational constraints. The planning of the science operations is based on synergetic approach to provide good coverage of science themes derived from the main mission goals. Typical observations in a single orbit—so-called “science cases” are used to build the mission science activity plan. The nominal science mission (from June 4, 2006 till October 2, 2007) is divided in nine phases depending on observational conditions, occurrences of the solar and Earth occultation, and particular science goals. The observation timelines for each phase were developed in a coordinated way to optimize the payload activity, maximize the overall mission science return, and to fit into the available mission budgets.  相似文献   

17.
We applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.  相似文献   

18.
We present a detailed review of the calibration of the LASCO C3 coronagraph on the SOHO satellite. Most of the calibration has been in place since early in the mission and has been utilized to varying degrees as required by specific analysis efforts. However, using observational data from the nearly decade-long database of LASCO images, we have re-evaluated and improved many aspects of the calibration. This includes the photometric calibration, vignetting function, geometric distortion, stray light, and exposure and observation times. Using this comprehensive set of corrections we have generated and made available a set of calibrated coronal images along with a set of periodic background images to ease the accessibility and use of the LASCO database. Deceased  相似文献   

19.
The experience gained with the current generation of X-ray telescopes like Chandra and XMM-Newton has shown that low energy “soft” protons can pose a severe threat to the possibility to exploit scientific data, reducing the available exposure times by up to 50% and introducing a poorly reproducible background component. These soft protons are present in orbits outside the radiation belts and enter the mirrors, being concentrated towards the focal plane instruments, losing energy along their path and finally depositing their remaining energy in the detectors. Their contribution to the residual background will be even higher for ATHENA with respect to previous missions, given the much higher collecting area of the mirrors, even if the instruments will likely suffer no significant radiation damage from this particles flux. As a consequence this soft proton flux shall be damped with the use of a magnetic diverter to avoid excess background loading on the WFI or X-IFU instruments. We present here a first complete evaluation of this background component for the two focal plane instruments of the ATHENA mission in absence of a magnetic diverter, and derive the requirements for such device to reduce the soft protons induced background below the level required to enable the mission science. We estimate the soft proton flux expected in L2 for the interplanetary component and for the component generated locally by acceleration processes in the magnetotail. We produce a proton response matrix for each of the two instruments of ATHENA focal plane, exploiting two independent Monte Carlo simulations to estimate the optics concentration efficiency, and Geant4 simulations to evaluate the energy loss inside the radiation filters and deposited in the detector. With this modular approach we derive the expected fluxes and spectra for the soft protons component of the background. Finally, we calculate the specifics of a magnetic diverter able to reduce such flux below the required level for both X-IFU and WFI.  相似文献   

20.
Gaia is the most ambitious space astrometry mission currently envisaged and it will be a technological challenge in all its aspects. Here we describe a proposal for the data compression system of Gaia, specifically designed for this mission but based on concepts that can be applied to other missions and systems as well. Realistic simulations have been performed with our Telemetry CODEC software, which performs a stream partitioning and pre-compression to the science data. In this way, standard compressors such as bzip2 or szip boost their performance and decrease their processing requirements when applied to such pre-processed data. These simulations have shown that a lossless compression factor of 3 can be achieved, whereas standard compression systems were unable to reach a factor of 2.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号