首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
用陕西天文台流星雷达监测人为空间碎片可能性的分析   总被引:1,自引:0,他引:1  
本文分析了利用中国科学院陕西天文台的流星雷达进行人为间空碎片监测的可能性。详细计算了到达接收机的回波的信噪比S/N依赖于目标散射截面σ和高度距离R的关系。理论计算表明,利用陕西天文台的流星雷达完全有可能监测在200km至1200km的高度范围内,半径大于0。5m的人为空间碎片。  相似文献   

2.
分析了空间碎片地基雷达探测的必要性和现实意义,介绍了国外有代表性的地基雷达工作概况,在此基础上,给出了描述空间碎片的轨道参量和物理参量,并对空间碎片地基雷达探测所需的关键技术进行了探讨。  相似文献   

3.
4.
5.
6.
7.
针对目前流星雷达测距误差大的问题,本文提出了提高流星雷达测距精度的新方法,即提高采样速率,用相关分析确定回波脉冲参考点的方法。该方法使流星雷达的测距精度提高一个数量级,测距误差降到±14m,使流星雷达不仅可以用来观测研究流星,还可用于监测飞机、火箭的飞行等,扩大流星雷达的应用。  相似文献   

8.
空间碎片监测网采集的轨道测量数据是轨道编目的基础。面对巨量碎片和有限的监测站点,数据采集方法与快速的作业任务调度优化是充分发挥监测效能、提升编目能力和精度的关键技术。监测任务包括常规监测、重点目标监测和应急监测等。针对监测网多任务调度优化问题,以监测收益为目标函数,分别提出线性指派模型和考虑移动成本的非线性指派模型,并使用改进的LAPJV算法和改进的2-opt算法进行解算。开展了地基观测网络空间碎片监测任务优化仿真实验,线性模型和非线性模型处理200个测站、7 170个碎片的4 h任务规划,改进的LAPJV算法和2-opt算法的解算时间分别为12.051 s和162.071 s,监测总收益分别为289 399.07和285 333.79,分别可监测2 931和2 918个碎片,占碎片总数的40%以上。结果表明,模型/算法兼顾解算速度和精度,具有近实时监测任务优化的能力,可以作为监测任务优化的有效解决方案。  相似文献   

9.
针对载人航天的典型区域,利用目前流行的空间碎片模型对空间碎片分布进行了初步仿真,得到了一些定量的仿真结果,并对其进行了初步的分析;得到以下初步结论:400 km高度、倾角为40°~50°区域内,飞行器每年遭遇分米至米级尺度的空间碎片的概率为千万分之一量级;每年遭遇厘米级尺度的空间碎片的概率为百万分之一量级;每年遭遇毫米级尺度的空间碎片的概率为百分之四左右;每年遭遇0.1 mm级尺度的空间碎片约2次;每年遭遇0.01 mm级尺度的空间碎片约550~600次。可供相关工程应用部门参考。  相似文献   

10.
吴光节  张周生 《天文学报》2004,45(2):186-194
近20年来,随着CCD和像增强器的发展,小巧灵活的流星视频观测系统在世界上逐渐多了起来.并且,最终将可能逐步取代流星的目视观测和普通照相观测.介绍云南天文台I号流星彗星视频照相系统的研制及其初步观测结果.这一系统由容易转换的5组件构成.用于流星观测的大视场相机的视场约36度,单帧图像可观测到约6等恒星.实测的恒星星等测量精度可达约0.2等.还讨论了视频照相机比传统的感光胶卷照相的长处,以及视频照相系统的改进与发展.  相似文献   

11.
The MU radar of RISH (Research Institute for Sustainable Humanosphere, Kyoto University), which is a MST radar (46.5 MHz, 1 MW peak power), has been successfully applied to meteor studies by using its very high versatility. The system has recently renewed with 25 channel digital receivers which significantly improved the sensitivity and precision of interferometer used in meteor observation. The transmission is now synchronized to GPS signals, and two external receiving sites with a ranging capability has additionally been operated in order to determine the trajectories and speeds of meteoroids.  相似文献   

12.
The Canadian Meteor Orbit Radar is a multi-frequency backscatter radar which has been in routine operation since 1999, with an orbit measurement capability since 2002. In total, CMOR has measured over 2 million orbits of meteoroids with masses greater than 10 μg, while recording more than 18 million meteor echoes in total. We have applied a two stage comparative technique for identifying meteor streams in this dataset by making use of clustering in radiants and velocities without employing orbital element comparisons directly. From the large dataset of single station echoes, combined radiant activity maps have been constructed by binning and then stacking each years data per degree of solar longitude. Using the single-station mapping technique described in Jones and Jones (Mon Not R Astron Soc 367:1050–1056, 2006) we have identified probable streams from these single station observations. Additionally, using individual radiant and velocity data from the multi-station velocity determination routines, we have utilized a wavelet search algorithm in radiant and velocity space to construct a list of probable streams. These two lists were then compared and only streams detected by both techniques, on multiple frequencies and in multiple years were assigned stream status. From this analysis we have identified 45 annual minor and major streams with high reliability.  相似文献   

13.
Recently, meteor head echo detections from high powered large aperture radars (HPLA) have brought new measurements to bear on the study of sporadic interplanetary meteors. These same observations have demonstrated an ability to observe smaller meteoroids without some of the geometrical restrictions of specular radar techniques. Yet incorporating data from various radar reflection types and from different radars into a single consistent model has proven challenging. We believe this arises due to poorly understood radio scattering characteristics of the meteor plasma, especially in light of recent work showing that plasma turbulence and instability greatly influences meteor trail properties at every stage of evolution. In order to overcome some of the unknown relationships between meteoroid characteristics (such as mass and velocity) and the resulting head echo radar cross-sections (RCS), we present our results on meteor plasma simulations of head echo plasmas using particle in cell (PIC) ions, which show that electric fields strongly influence early stage meteor plasma evolution, by accelerating ions away from the meteoroid body at speeds as large as several kilometers per second. We also present the results of finite difference time domain electromagnetic simulations (FDTD), which can calculate the radar cross-section of the simulated meteor plasma electron distributions. These simulations have shown that the radar cross-section depends in a complex manner on a number of parameters. In this paper we demonstrate that for a given head echo plasma the RCS as a function of radar frequency peaks at sqrt (2*peak plasma frequency) and then decays linearly on a dB scale with increasing radar frequency. We also demonstrate that for a fixed radar frequency, the RCS increases linearly on a dB scale with increasing head echo plasma frequency. These simulations and resulting characterization of the head echo radar cross-section will both help relate HPLA radar observations to meteoroid properties and aid in determining a particular radar facility’s ability to observe various meteoroid populations.  相似文献   

14.
Radio science and meteor physics issues regarding meteor “head-echo” observations with high power, large aperture (HPLA) radars, include the frequency and latitude dependency of the observed meteor altitude, speed, and deceleration distributions. We address these issues via the first ever use and analysis of meteor observations from the Poker Flat AMISR (PFISR: 449.3 MHz), Sondrestrom (SRF: 1,290 MHz), and Arecibo (AO: 430 MHz) radars. The PFISR and SRF radars are located near the Arctic Circle while AO is in the tropics. The meteors observed at each radar were detected and analyzed using the same automated FFT periodic micrometeor searching algorithm. Meteor parameters (event altitude, velocity, and deceleration distributions) from all three facilities are compared revealing a clearly defined altitude “ceiling effect” in the 1,290 MHz results relative to the 430/449.3 MHz results. This effect is even more striking in that the Arecibo and PFISR distributions are similar even though the two radars are over 2,000 times different in sensitivity and at very different latitudes, thus providing the first statistical evidence that HPLA meteor radar observations are dominated by the incident wavelength, regardless of the other radar parameters. We also offer insights into the meteoroid fragmentation and “terminal” process.  相似文献   

15.
Observations carried out during Leonid meteor shower 2003, by using Indian MST radar (13.46^N, 79.18^E; dip 12.5^N) are used to determine the number density of meteoroids through the cross section of the meteor streams. Cross sections are calculated for a number of classes of echo duration (particle size). They are also used to determine the relative flux of the shower in particle size ranges producing radar meteor echoes having durations <0.4 s, 0.4–1 s and >1 s. Mean activity profiles along the Earth's passage through the stream show a systematic change of the peak activity and the width of the stream depending on the distribution of echo durations across the stream. The patterns of mass distribution index s are presented and discussed.  相似文献   

16.
This paper describes the Canadian Meteor Orbit Radar (CMOR) that has been in operation since late 2001. CMOR is a 3 station meteor radar operating at a frequency of 29.85 MHz near Tavistock, Ont. To avoid bias against fragmenting meteoroids that is inherent in the traditional multi-station method of Gill and Davies (Mon. Not. R Astron. Soc. 116 (1955) 105), we use a completely geometrical method similar to that used in the AMOR system (Quart. J. R. Astron. Soc. 35 (1994) 293) based on the interferometric determination of the echo directions and the time delays of echoes from two remote stations to obtain the trajectories and speeds of meteoroids. We describe the hardware and some of the software and present some preliminary results that provide a good indication of present capabilities of the system. Typically, we can measure 1500 individual trajectories, and hence orbits, per day with a mean accuracy of 6° in direction and about 10% in speed. A small subset of these for which it is possible to measure the speeds using Hocking's (Radio. Sci. 35 (2000) 1205) method yield speeds with a precision of about 5%. The purpose of this paper is to show that the radiants and speeds necessary for the computation of orbits are well measured rather than to discuss any orbital surveys.  相似文献   

17.
We compare the results from the application of four different methods to determine the speed of meteoroids from single station radar data. The methods used are the pre-t 0 amplitude, post-t 0 amplitude, pre-t 0 phase and the Fresnel transform (FT) methods. Speeds from the first three methods are compared to the FT method since, requiring the use of the entire records of both the amplitude and phase data, this method is the most accurate of the four.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号