首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Solar type Ⅲ radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type Ⅲ bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type Ⅲ radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.  相似文献   

2.
We present a statistical study of decimetric type Ⅲ radio bursts,coronal mass ejections(CMEs),and Hα flares observed in the period from July 2000 to March2005.In total,we investigated 395 decimetric type Ⅲ radio burst events,21% of which showed apparent correlation to CMEs that were associated with Hα flares.We noticed that the Hα flares which were strongly associated with CMEs were gradual events,and82% of them took place before CMEs appeared in the field of view of LASCO C2;that most of the CME-associated radio bursts started in the frequency range around750 MHz with a frequency drifting rate of several hundred MHz s-1,of which both positive and negative ones were recognized; and that the correlation of type Ⅲ radio bursts to CMEs without associated flares is fairly vague,less than 9%.  相似文献   

3.
The Astrophysics Directorate of CONIDA has installed two radio spectrometer stations belonging to the e-CALLISTO network in Lima, Peru. Given their strategic location near the Equator, it is possible to observe the Sun evenly throughout the whole year. The receiver located at Pucusana, nearby the capital city of Lima, took data from October 2014 until August 2016 in the metric and decimetric bands looking for radio bursts. During this period, this e-CALLISTO detector was unique in its time-zone coverage. To asses the suitability of the sites and the performance of the antennas, we analyzed the radio ambient background and measured their radiation pattern and beamwidth. To demonstrate the capabilities of the facilities for studying solar dynamics in these radio frequencies, we have selected and analyzed type Ⅲ Solar Radio Bursts. The study of this kind of burst helps to understand the electron beams traversing the solar corona and the solar atmospheric density. We have characterized the most common radio bursts with the following mean values: a negative drift rate of –25.8 ± 3.7 MHz s~(-1), a duration of 2.6 ± 0.3 s and 35 MHz bandwidth in the frequency range of 114 to 174 MHz. In addition, for some events, it was possible to calculate a global frequency drift which on average was 0.4 ± 0.1 MHz s~(-1).  相似文献   

4.
The apparently common source heights of type III fundamental and harmonic components and the source height of the solar 38 MHz radar echoes may all refer to scattering at a coronal level where (radio wavenumber) × (electron gyroradius) 1, that is, where radio frequency = (2 to 5) × plasma frequency.  相似文献   

5.
P. Maltby 《Solar physics》1976,46(1):149-157
The wavelength dependence of filament features is studied, using high-resolution filtergrams taken at seven wavelengths in H. The observed contrast profiles are compared with profiles calculated on the basis of Beckers' (1964) cloud model. The deviation between observed and calculated profiles is used to suggest a progression among the observed profiles that depends on the height of the filament feature.Both upward and downward velocities are detected. The fine scale features in the filament and the corresponding velocity field vary with a time constant of a few minutes.  相似文献   

6.
We present H filtergram observations of a number of the Type III-RS (reverse slope) bursts that occurred on August 12, 1975. Solar radio emission was peculiar on that date in that a large number, and proportion, of the usually rare reverse slope bursts were observed (Tarnstrom and Zehntner, 1975). We show that the radio bursts coincide in time with a homologous set of H flares located at the limbward edge of spot group Mt. Wilson 19598. We propose a model in which the reverse slope bursts are the downward branches of U bursts, whose upward branches are hidden behind the coronal density enhancement over the spot group.  相似文献   

7.
A survey of soft X-ray images from Skylab has revealed a class of large-scale transient X-ray enhancements in the lower corona which are typically associated with the disappearance of H filaments away from active regions. Contemporary with the H filament disappearance, X-ray emitting structures appeared at or near the filament location with shape and size resembling the filament. Eventually these structures faded, but the filament cavity was no longer obvious. Typically the peak of the X-ray event lagged the end of the filament disappearance by tens of minutes. The durations of the coronal X-ray enhancements were considerably longer than the associated H filament disappearances. Major flare effects, such as chromospheric brightenings, typically were not associated with these X-ray events.One event analyzed quantitatively had a peak temperature between 1.8 and 2.7 × 106 K, achieved a peak density of 109 cm–3 and resulted in an enhancement in the plasma pressure over the conditions of the preexisting coronal cavity of at least a factor of 7. The mass of the coronal X-ray emitting material was about 10% that of the preexisting filament and the thermal energy of the coronal event was on the order of 1029 erg, about 10% of the mechanical energy of the H filament eruption. The event appeared to cool by radiative losses and not by thermal conduction. It is likely that the coronal enhancements are caused by heating of an excess of previously cooler material, either from the filament itself, or by compression of coronal material by a changing magnetic field.  相似文献   

8.
9.
Seventy-one occurrences of coronal mass ejections(CMEs) associated with radio bursts,seemingly associated with type Ⅲ bursts/fine structures(FSs),in the centimeter-metric frequency range during 2003-2005,were obtained with the spectrometers at the National Astronomical Observatories,Chinese Academy of Sciences(NAOC) and the Culgoora radio spectrometer and are presented.The statistical results of 68 out of 71 events associated with the radio type III bursts or FSs during the initiation or early stages of the...  相似文献   

10.
The evolutional characteristics of the red asymmetry of H flare line profiles were studied by means of a quantitative analysis of H flare spectra obtained with the Domeless Solar Telescope at Hida Observatory. Red-shifted emission streaks of H line are found at the initial phase of almost all flares which occur near the disk center, and are considered to be substantial features of the red asymmetry. It is found that a downward motion in the flare chromospheric region is the cause of the red-shifted emission streak. The downward motion abruptly increases at the onset of a flare, attains its maximum velocity of about 40 to 100 km s-1 shortly before the impulsive peak of the microwave burst, and rapidly decreases before the intensity of H line reaches its maximum. Referring to the numerical simulations made by Livshits et al. (1981) and Somov et al. (1982), we conclude that the conspicuous red-asymmetry or the red-shifted emission streak of H line is due to the downward motion of the compressed chromospheric flare region produced by the impulsive heating by energetic electron beam or thermal conduction.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 258.  相似文献   

11.
The 13 pairs of type III bursts with the bidirectional drift structures recorded with the spectrograph in the frequency ranges of 230–300 MHz and 625–1500 MHz at the Yunnan Observatory and 2600–3800 MHz at the Beijing National Astronomical Observatories are analyzed in this present article and the outstanding characteristics of these events are obtained. These bursts respectively reveal that the separatrix frequency between the bursts with positive and negative drifts comes between 250 MHz and 3420 MHz, with a gap being between 0.6 MHz and 110 MHz; the duration is 53 ms–1880 ms and the frequency drift rate is between 45 MHz/s and 56000 MHz/s. The drift rate at metric wavelengths is relatively low, only a few decades of MHz while it is comparatively high at microwave wavelengths, reaching 56000 MHz/s. The qualitative explanation of these events is given in this paper.  相似文献   

12.
M. D. Ding  C. Fang 《Solar physics》1993,147(2):305-321
The H line profile in a flare atmospheric model superposed by a spatially correlated velocity field is studied in detail in this paper. The computations are carried out with the assumption that the velocity field is represented by a Kubo-Anderson process. It is found that the shape and the intensity of the H line profile depend greatly on the parameters of the velocity field. The variation of the profile and its relative deviation with respect to different correlation lengths is more complex than in the case of absorption lines. It is also shown that such a profile cannot be matched by those produced in the usually-used micro- and macro-turbulent approaches, especially for the velocity field with an intermediate correlation length. The results imply that the flare atmosphere should be highly turbulent in order to explain the observed H line profile with only weak central reversal in the flare spectra. Particularly, the effects of meso-turbulent fields should be taken into account in order to improve the spectral diagnostics and modelling of the flare atmosphere.  相似文献   

13.
J.- P. Wülser 《Solar physics》1988,114(1):115-126
H line profile observations of solar flares with high temporal resolution are an important tool for the analysis of the energy transport mechanism from the site of the flare energy release to the chromosphere. A specially designed instrument (imaging spectrograph) allows two-dimensional imaging of an active region simultaneously in 15 spectral channels along the H line profile with a temporal resolution of 5.4 s. Two flares have been observed in November 1982. The first one shows H signatures which one would typically expect in the case of explosive chromospheric evaporation produced by massive injection of non-thermal electrons. The observations of the other flare indicate that the heating of the upper chromosphere is dominated by thermal conduction, although during the impulsive hard X-ray burst there are also signatures of heating by non-thermal electrons.  相似文献   

14.
We investigated 64 pairs of interacting-CME events identified from simultaneous observations by the SOHO and STEREO spacecraft from January 2010 to August 2014, to examine the relationship between large SEP events in the energy range of ~25 to~60 MeV and properties of the interacting CMEs.We found that during CME interactions, the large SEP events in this study were all generated by CMEs with the presence of enhanced type Ⅱ radio bursts, which also have wider longitudinal distributions compared to events without a type Ⅱ radio burst or its enhancement(almost always associated with small SEP events).It seems that the signature of type Ⅱ radio burst enhancement is a good discriminator between large SEP and small or no SEP event producers during CME interactions. The type Ⅱ radio burst enhancement is more likely to be generated by CME interactions, with the main CME having a larger speed(v), angular width(WD), mass(m) and kinetic energy(Ek), and taking over the preceding CMEs. The preceding CMEs in these instances have higher v, WD, m and Ekthan those in CME pairs missing type Ⅱ radio bursts or enhancements. Generally, the values of these properties in the type-Ⅱ-enhanced events are typically higher than the corresponding non-type-Ⅱ or non-type-Ⅱ-enhanced cases for both the main and preceding CMEs. Our analysis also revealed that the intensities of associated SEP events correlate negatively with the intersection height of the two CMEs. Moreover, the overlap width of two CMEs is typically larger in type-Ⅱ-enhanced events than in non-type-Ⅱ or non-type-Ⅱ-enhanced events. Most type-Ⅱ-enhanced events and SEP events are coincident and are almost always made by the fast and wide main CMEs that sweep fully over relatively slower and narrower preceding CMEs. We suggest that a fast CME with enough energy completely overtaking a relatively narrower preceding CME, especially at low height, can drive a more energetic shock signified by the enhanced type Ⅱ radio bursts. The shock may accelerate ambient particles(likely provided by the preceding CME) and lead to large SEP events more easily.  相似文献   

15.
Multi-telescope observations of the coronal transient of 15–16 April, 1980 provide simultaneous data from the Solar Maximum Mission Coronagraph/Polarimeter, the Solwind Coronagraph, and the new Emission Line Coronagraph of the Sacramento Peak Observatory. An eruptive prominence-associated white light transient is for the first time seen as an unusual wave or brightening in Fe x gl6374 (but not in Fe xiv gl5303). Several interpretations of this fleeting enhancement are offered.The prominence shows a slowly increasing acceleration which peaks at the time of the Fe event. The white light loop transient surrounding the prominence expands at a well-documented constant speed to 10R , with an extrapolated start time at zero height coincident with the surface activity.This loop transient exemplifies those seen above 1.7R in that leading the disturbance is a bright (N e-enhanced) loop rather than dark. This is consistent with a report of the behavior of another eruptive event observed by Fisher and Poland (1981) which began as a density depletion in the lower corona, with a bright loop forming at greater altitudes. The top of the bright loop ultimately fades in the outer corona while slow radial growth continues in the legs.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
The time dependence of Doppler shift and line-center intensity is simultaneously observed for the H emission of three solar prominences, each one during about two hours. Doppler oscillations with periods near one hour and amplitudes between 1 and 2 km s–1 are conspicuously visible in the recordings of all three prominences. Fourier analysis yields periods of 50, 60, and 64 min, as well as slight indications of short periods near 3 and 5 min. No oscillations are found in the line-center brightness.  相似文献   

17.
We have studied mass motions associated with active region arch structures from observations of a developing active region near the center of the solar disk. We present a method for the computation of the line-of-sight velocity from photographs at H ± 0.5 under the assumption of Beckers' cloud model and reasonable assumptions about the Doppler width and optical depth of the arches. Some arches show motions typical to arch filaments (the material moves towards the observer near the apex of the arch and away from the observer near the footpoints), while in others the velocity field is more complex. Assuming a symmetric loop, we reconstructed the velocity vector along an arch filament. The results are consistent with the picture where material is draining out of the filament while the whole structure is ascending with a velocity near that of the apex, which does not exceed 10 km s–1. The motion is systematically slower than expected from a free-fall model.  相似文献   

18.
Extended time series (time resolution about 2–3 min) of spatially resolved observations (≫ 17 arcsec) in one dimension of solar S-component sources obtained at the Siberian Solar Radio Telescope (SSRT) at 5.2 cm wavelength allow the detection of evolutional features of the growth and decay of active regions in the solar corona. Characteristic slow flux variations with timescales of about 1–2 hours occurring during the decay phase of the radio emission in the low corona above plages and sunspots are compared with recently detected step-like flux increases on timescales of about 10–20 min followed by quasi-constant periods appearing in the initial phase of the development of active regions. Superimposed on this basic behaviour, also fluctuations at shorter timescales (or even periodic oscillations) have been observed. As it is well known from emission-model calculations, the variations of the S-component radiation can be due to variations of the magnetic field and/or changes of the energy of the radiating particles, which is basically the same emission mechanism as for microwave bursts. Since the “S-component” is originally defined by its long timescale behaviour derived from whole-Sun flux density measurements, the presently detected small-timescale features in S-component sources require either a revised definition of S-component emission or must be considered as “burst-like”.  相似文献   

19.
During 1967–1970, the greatness of 90 large flares (H importance 2) was influenced by the orientation of the large-scale ( 100 000 km) magnetic field structure over the flare site. Although the average X-ray and optical emissions are only slightly larger for flares with their overlying fields directed southward, as opposed to northward, the meter-wave-length prompt flux maxima are, on average, an order of magnitude greater for the flares with southward oriented magnetic fields. There is a comparable, but possibly smaller difference in the 10 cm- fluxes. We therefore conclude that, during this period, the orientation of the overlying magnetic field affects the amount of electromagnetic flare energy radiated promptly in the corona (10 cm- and m-), relative to that radiated in the chromosphere (X-ray and optical). We demonstrate that this statistical effect shows some variability in degree during the period, although the trend is consistent throughout.  相似文献   

20.
Quasi simultaneous H and radio observations of LSI+61o303 during August-September 1993 are presented. The radio data show that during the studied epoch the outburst has peaked at radio phase 0.6, at level100 mJy. No significant variations in the H profile at phases 0.5 to 0.65 have been detected. A remarkable increase of the EW and FWHM of the H blue peak is observed at radio phase 0.23. Possible reasons are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号