首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trace elements, including rare earth elements (REE), exhibit systematic variations in plutonic rocks from the Captains Bay pluton which is zoned from a narrow gabbroic rim to a core of quartz monzodiorite and granodiorite. The chemical variations parallel those in the associated Aleutian calcalkaline volcanic suite. Concentrations of Rb, Y, Zr and Ba increase as Sr and Ti decrease with progressive differentiation. Intermediate plutonic rocks are slightly enriched in light REE (La/Yb=3.45–9.22), and show increasing light REE fractionation and negative Eu anomalies (Eu/Eu*=1.03–0.584). Two border-zone gabbros have similar REE patterns but are relatively depleted in total REE and have positive Eu anomalies; indicative of their cumulate nature. Initial 87Sr/86Sr ratios in 8 samples (0.70299 to 0.70377) are comparable to those of volcanic rocks throughout the arc and suggest a mantle source for the magmas. Oxygen isotopic ratios indicate that many of the intermediate plutonic rocks have undergone oxygen isotopic exchange with large volumes of meteoric water during the late stages of crystallization; however no trace element or Sr isotopic alteration is evident.Major and trace element variations are consistent with a model of inward fractional crystallization of a parental high-alumina basaltic magma at low pressures (6 kb). Least-squares approximations and trace element fractionation calculations suggest that differentiation in the plutonic suite was initially controlled by the removal of calcic plagioclase, lesser pyroxene, olivine and Fe-Ti oxides but that with increasing differentiation and water fugacity the removal of sub-equal amounts of sodic plagioclase and hornblende with lesser Fe-Ti oxides effectively drove residual liquids toward dacitic compositions. Major and trace element compositions of aplites which intrude the pluton are not adequately explained by fractional crystallization. They may represent partial melts derived from the island arc crust. Similarities in Sr isotopes, chemical compositions and differentiation trends between the plutonic series and some Aleutian volcanic suites indicates that shallow-level fractional crystallization is a viable mechanism for generating the Aleutian calcalkaline rock series.LDGO Contribution no. 2964  相似文献   

2.
Whole rock and mineral stable isotope and microprobe analyses are presented from granitoids of the North Chilean Precordillera. The Cretaceous to Tertiary plutonic rocks contain important ore deposits and frequently display compositional and textural evidence of hydrothermal alteration even in barren rocks. Deuteric alteration includes replacement of biotite and amphibole by chlorite and epidote, sericitization and saussuritization of feldspars, and uralitization of clinopyroxene and/or amphibole. While whole rock compositions are not significantly affected, compositional variations in amphiboles suggest two types of hydrothermal alteration. Hornblende with actinolitic patches and rims and tight compositional trends from hornblende to Mg-rich actinolite indicate increasing oxygen fugacity from magmatic to hydrothermal conditions. Uralitic amphiboles exhibiting irregular Mg-Fe distribution and variable Al content are interpreted as reflecting subsolidus hydration reactions at low temperatures. The δD values of hydrous silicates vary from −63 to −105‰. Most δ18O values of whole rocks are in the range of 5.7 to 7.7‰ and are considered normal for igneous rocks in the Andes. These δ18O values also coincide well with the oxygen isotope composition of geochemically similar recent volcanics from the Central Andean Volcanic Zone (δ18O = 7.0–7.4‰). Only one sample in this study (δ18O = 3.0‰) appears to be depleted by isotope exchange with light meteoric water at high temperatures. The formation of secondary minerals in all other intrusions is mainly the product of deuteric alteration. This also holds true for the sample from El Abra, the only pluton associated with mineralization. This indicates the dominant role of a magmatic rather than a meteoric fluid in the alteration of the Cretaceous and Tertiary granitoids in northern Chile. Received: 8 July 1998 / Accepted: 15 April 1999  相似文献   

3.
《Geochimica et cosmochimica acta》1999,63(11-12):1787-1804
Rift-related lavas of the North Shore Volcanic Group (NSVG) are intruded by plutonic rocks of the Duluth Complex along the unconformity between the NSVG and the underlying Proterozoic metasedimentary rocks (Animikie Group) and Archean volcano-sedimentary and plutonic rocks. Heat associated with the emplacement of the mafic intrusions generated fluid flow in the overlying plateau lavas. δ18O values for whole rocks from the NSVG and hypabyssal sills range from 5.5 to 17.7‰ and 5.3 to 11.5‰, respectively, and most values are higher than those considered “normal” for basaltic rocks (5.4 to 6.0‰). In general, there is a positive correlation between whole rock δ18O and water content, which suggests that elevated δ18O values are related primarily to secondary mineral growth and isotopic exchange during hydrothermal alteration and metamorphism. δ18OH2O values computed from amygdule-filling minerals such as smectite, chlorite, and epidote found in low- to high-temperature metamorphic zones range from ∼−1 to 6‰ with an average value of ∼3‰. Smectite in the lower-grade zones gives computed δDH2O values between −26 and −83‰, whereas epidote in the higher-grade zones gives δDH2O values of −15 to 6‰. Fluid isotopic compositions computed from epidote and smectite values are suggestive of the involvement of at least two fluids during the early stages of amygdule filling. Fluid δD and δ18O values determined from epidote at the higher metamorphic grades indicate that seawater dominated the deeper portions of the system where greenschist facies assemblages and elevated δ18O values were produced in flow interiors, as well as margins. Smectite isotopic compositions suggest that meteoric water was predominant in the shallower portions of the system. The increase in δ18O values of massive flow interiors with depth is interpreted as a result of rock interaction with a fluid of constant oxygen isotopic composition with increasing temperature. The stable isotopic data are supportive of previous suggestions that seawater was involved in the hydrothermal system associated with the Midcontinent Rift. Although the origin of the seawater remains problematic, it appears that marine incursions may have occurred during the late stages of Portage Lake volcanism, and periodically thereafter.  相似文献   

4.
应用氢氧同位素研究矿床成因的一些问题探讨   总被引:10,自引:1,他引:10       下载免费PDF全文
翟建平  胡凯 《地质科学》1996,31(3):229-237
成矿热液的氢、氧同位素组成与其水的类型、水/岩交换的岩石成分和同位素组成、水/岩交换时的温度及水/岩交换程度(W/R比值大小)等诸多因素有关,微生物和有机质也对其有一定的影响。因此,仅通过简单投影的方法将成矿热液的氢、氧同位素值与一些所谓的标准值进行类比,由此就推断出热液中水的来源,这种方法是不可取的;尤其当成矿热液的氢、氧同位素值介于大气降水和岩浆水的值之间时,切忌滥用两种水混合成矿模式,因为实际情况往往并不是这样。本文以胶东乳山金矿床为例,展开了这方面的讨论。  相似文献   

5.
The Michilla mining district comprises one of the most important stratabound and breccia-style copper deposits of the Coastal Cordillera of northern Chile, hosted by the Middle Jurassic volcanic rocks of the La Negra Formation. 40Ar/39Ar analyses carried out on igneous and alteration minerals from volcanic and plutonic rocks in the district allow a chronological sequence of several magmatic and alteration events of the district to be established. The first event was the extrusion of a thick lava series of the La Negra Formation, dated at 159.9 ± 1.0 Ma (2σ) from the upper part of the series. A contemporaneous intrusion is dated at 159.6 ± 1.1 Ma, and later intrusive events are dated at 145.5 ± 2.8 and 137.4 ± 1.1 Ma, respectively. Analyzed alteration minerals such as adularia, sericite, and actinolite apparently give valid 40Ar/39Ar plateau and miniplateau ages. They indicate the occurrence of several alteration events at ca. 160–163, 154–157, 143–148, and 135–137 Ma. The first alteration event, being partly contemporaneous with volcanic and plutonic rocks, was probably produced in a high thermal gradient environment. The later events may be related either to a regional low-grade hydrothermal alteration/metamorphism process or to plutonic intrusions. The Cu mineralization of the Michilla district is robustly bracketed between 163.6 ± 1.9 and 137.4 ± 1.1 Ma, corresponding to dating of actinolite coexisting with early-stage chalcocite and a postmineralization barren dyke, respectively. More precisely, the association of small intrusives (a dated stock from the Michilla district) with Cu mineralization in the region strongly suggests that the main Michilla ore deposit is related to a magmatic/hydrothermal event that occurred between 157.4 ± 3.6 and 163.5 ± 1.9 Ma, contemporaneous or shortly after the extrusion of the volcanic sequence. This age is in agreement with the Re–Os age of 159 ± 16 Ma obtained from the mineralization itself (Tristá-Aguilera et al., Miner Depos, 41:99–105,2006).  相似文献   

6.
The Illapel Plutonic Complex (IPC), located in the Coastal Range of central Chile (31°–33° S), is composed of different lithologies, ranging from gabbros to trondhjemites, including diorites, tonalites and granodiorites. U/Pb geochronological data shows that the IPC was amalgamated from, at least, four different magmatic pulses between 117 and 90 Ma (Lower to mid-Cretaceous). We present new paleomagnetic results including Anisotropy of Magnetic Susceptibility (AMS) from 62 sites in the plutonic rocks, 10 sites in country rocks and 7 sites in a mafic dyke swarm intruding the plutonic rocks.Remanent magnetizations carried by pyrrhotite in deformed country rock sediments nearby the intrusive rocks indicate that tilting of the sedimentary rocks occurred prior or during the intrusion. The paleomagnetic study shows no evidence for either a measurable tilt of the IPC or a significant rotation of the forearc at this latitude range. Moreover, new 40Ar/39Ar ages exclude any medium- to low-temperature post-magmatic recrystallization/deformation event in the studied samples. AMS data show a magnetic foliation that is often sub-vertical. Despite an apparent N–S elongated shape of the IPC, the large variations in the orientation of the AMS foliation suggests that this plutonic complex could be made of several units distributed in a N–S trend rather than N–S elongated bodies.Previous works have suggested for this area a major shift on tectonic evolution from highly extensional during Lower Cretaceous to a period around 100 Ma, associated with exhumation and compressive deformation to conform the present day Coastal Range. The low degree of anisotropy and the lack of evidence for a tectonic fabric in the intrusive rocks indicate that the shift from extensional to compressional should postdate the emplacement of the IPC, i.e. is younger than 90Ma.  相似文献   

7.
Numerous stable isotope studies of whole rocks and mineral separates in epithermal systems indi-cate that even though meteoric waters are dominant components in epithermal systems ,fluids of other origins,such as sedimentary or meta-sedimentary fluids,magmatic waters and even evolved meteoric waters ,may also play a role in the formation of epithermal ore deposits.Usually the more depleted the wall rocks,the larger the size of ore deposits ,and the least depletion degrees in whole rocks for economic mineralization are by about 3.5‰.The depletion in δ^18O in wall rocks,however,may be complicated by the superimposition of low temperature-hydration over high-temperature altera-tion or vice versa,the existence of primary low-^18O and high-^18O magmas ,and alteration by vol-canic gases.The depletion in δ^18O in wall rocks is controlled by the composition and nature of flu-ids,the temperature of fluids,the elevation of rocks at the time of alteration ,lithology,boiling effects of fluids ,and alteration style,as well as by water/rock ratios.In addition ,the fluids re-sponsible for epithermal deposits have experienced positive δ^18O shifts .It seems that when the above complications and controlling factors are well defined,oxygen isotope studies would be a promising and powerful exploration tool.  相似文献   

8.
 Hydrogen and oxygen isotope analyses have been made of hydrous minerals in gabbros and basaltic xenoliths from the Eocene Kap Edvard Holm intrusive complex of East Greenland. The analyzed samples are of three types: (1) primary igneous hornblendes and phlogopites that crystallized from partial melts of hydrothermally altered basaltic xenoliths, (2) primary igneous hornblendes that formed during late–magmatic recrystallization of layered gabbroic cumulates, and (3) secondary actinolite, epidote and chlorite that formed during subsolidus alteration of both xenoliths and gabbros. Secondary actinolite has a δ18O value of −5.8‰ and a δD value of −158‰. These low values reflect subsolidus alteration by low–δ18O, low–δD hydrothermal fluids of meteoric origin. The δD value is lower than the −146 to −112‰ values previously reported for amphiboles from other early Tertiary meteoric–hydrothermal systems in East Greenland and Scotland, indicating that the meteoric waters at Kap Edvard Holm were isotopically lighter than typical early Tertiary meteoric waters in the North Atlantic region. This probably reflects local climatic variations caused by formation of a major topographic dome at about the time of plutonism and hydrothermal activity. The calculated isotopic composition of the meteoric water is δD=−110 ± 10‰, δ18O ≈−15‰. Igneous hornblendes and phlogopites from pegmatitic pods in hornfelsed basaltic xenoliths have δ18O values between −6.0 and −3.8‰ and δD values between −155 and −140‰. These are both much lower than typical values of fresh basalts. The oxygen isotope fractionations between pegmatitic hornblendes and surrounding hornfelsic minerals are close to equilibrium fractionations for magmatic temperatures, indicating that the pegmatites crystallized from low–δ18O partial melts of xenoliths that had been hydrothermally altered and depleted in 18O prior to stoping. The pegmatitic minerals may have crystallized with low primary δD values inherited from the altered country rocks, but these values were probably overprinted extensively by subsolidus isotopic exchange with low–δD meteoric–hydrothermal fluids. This exchange was facilitated by rapid self–diffusion of hydrogen through the crystal structures. Primary igneous hornblendes from the plutonic rocks have δ18O values between +2.0 and +3.2‰ and δD values between −166 and −146‰. The 18O fractionations between hornblendes and coexisting augites are close to equilibrium fractionations for magmatic temperatures, indicating that the hornblendes crystallized directly from the magma and subsequently underwent little or no oxygen exchange. The hornblendes may have crystallized with low primary δD values, due to contamination of the magma with altered xenolithic material, but the final δD values were probably controlled largely by subsolidus isotopic exchange. This inference is based partly on the observation that coexisting plagioclase has been extensively depleted in 18O via a mineral–fluid exchange reaction that is much slower than the hydrogen exchange reaction in hornblende. It is concluded that all hydrous minerals in the study area, whether igneous or secondary, have δD values that reflect extensive subsolidus isotopic equilibration with meteoric–hydrothermal fluids. Received: 22 March 1994 / Accepted: 26 January 1995  相似文献   

9.
The Kooh-Shah region located in a Tertiary volcanic-plutonic belt of the Lut Block in eastern Iran comprises several subvolcanic intermediate to acidic intrusive rocks, diorite to syenite in composition, which have intruded into volcanic rocks. The Kooh-Shah granitoid rocks are characterized by enrichment in large ion-lithophile elements (LILE: e.g. Sr, Ba, Rb) and depletion in high field-strength elements (HFSE: e.g. Nb, Ta, Ti). The chondrite-normalized REE patterns are characterized by moderate LREE enrichment (La/Yb)N=6.01-10.01, medium-heavy REE enrichment, and absence of Eu anomalies. The Kooh-Shah intrusive rocks are metaluminous, shoshonitic with calc-alkaline affinity and high values of magnetic susceptibility, and classified as the magnetite-series of oxidant I-type granitoids. The age of Kooh-Shah granitoid rocks based on zircon U-Pb age dating is 39.7±0.7 Ma (=Middle Eocene) and the ranges of their initial 87Sr/86Sr and 143Nd/144Nd ratios are from 0.704812 to 0.704920 and 0.512579 to 0.512644, respectively, when recalculated to an age of 39 Ma. The initial ?Nd isotope values for the Kooh-Shah intrusive rocks range from -0.18 to 1.09. This geochemical data indicates that the Kooh-Shah granitoid rocks formed from depleted mantle in an island arc setting. The geochemical signature of the studied granitoid rocks represents a characteristic guide for future exploration of copper-gold porphyry-type deposits in the Lut block.  相似文献   

10.
The 2,700-Ma Vermilion Granitic Complex of northern Minnesota is a granite-migmatite terrane composed of supracrustal metasedimentary rocks, mafic rocks, tonalitic and granodioritic plutonic rocks, and granite. The metasedimentary rocks are predominantly graywacke, which has been regionally metamorphosed to garnet-sillimanite-muscovite-bearing biotite schist, and has locally undergone anatexis. The mafic rocks form early phases within the complex and are of two types: (1) basaltic amphibolite, and (2) monzodiorite and essexite rich in large ion lithophile elements (LILE). The members of the early plutonic suite form small bodies that intrude the metasedimentary rocks and mafic rocks, producing an early migmatite. The granite is of two distinct varieties: (1) white garnet-muscovite-biotite leucogranite (S-type; Chappell and White 1974) and (2) grayish-pink biotite-magnetite Lac La Croix Granite (I-type). The leucogranite occurs in the early migmatite and in paragneissic portions of the complex, whereas the Lac La Croix Granite is a late-stage intrusive phase that invades the early migmatite and metasediment (producing a late migmatite) and forms a batholith. This study focuses specifically on the origin of granite in the Vermilion Granitic Complex. Chemical mass-balance calculations suggest that the S-type two-mica leucogranite had a metagraywacke source, and that the I-type Lac La Croix Granite formed via partial fusion of calc-alkaline tonalitic material, which may have been similar to rocks of the early plutonic suite. This model is satisfactory for petrogenesis of similar Late Archean post-kinematic granites throughout the Canadian Shield.  相似文献   

11.
Abstract: Characterization of Neogene magmatism in the Ryuo mine area in the Kitami metallogenic province was carried out on the basis of K-Ar data for felsic–to–mafic terrestrial extrusive and intrusive volcanism from Late Miocene to Early Pliocene. The Ryuo epithermal gold-silver deposit occurs primarily in the felsic volcaniclastic rocks of the Ikutahara Formation and in Ryuo Rhyolite. The Ryuo mineralization age of 7. 7 – 8. 1 Ma coincides well with the hydrothermal alteration age (7. 7 Ma) of Ryuo Rhyolite hosting ore veins. It is concluded that the Ryuo mineralization was essentially accompanied by felsic volcanic activity during the sedimentation of the Ikutahara Formation, and was closely related both temporally and spatially to the intrusive activity of Ryuo Rhyolite. Hydrothermal alteration related to the epithermal gold-silver mineralization of the Ryuo deposit is primarily characterized by early regional and vein-related alterations, and late steam-heated alteration. Early regional alteration consists of a smectite halo (smectite+pyrite±quartz±opal–CT±mordenite°Clinoptilolite–heulandite series mineral). Early vein-related alteration is primarily marked by potassic alteration. This alteration halo can be subdivided into a K-feldspar halo (quartz+adular–ia+pyrite±illite±interstratified illite/smectite±smectite), an illite halo (quartz+illite + chlorite + pyrite ± interstratified illite/smec–tite±smectite) and an interstratified illite/smectite halo (quartz + interstratified illite/smectite+pyrite±smectite). Late steam-heated alteration characterized by kaolinite or alunite locally overprints the early K-feldspar halo. The style of the Ryuo gold-silver deposit is a low-sulfidation epithermal type. The gold–silver–bearing quartz vein precipitates during boiling of ore fluid. The origin of the ore fluid might be meteoric water. The temperature and sulfur fugacity conditions during precipitation of electrum and acanthite are estimated to be 206°– 238°C and 10-13.5 – 10-11.6 atm, respectively.  相似文献   

12.
Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar–Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth’s surface at about 5.30 Ma. Based on the δ18O–δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.  相似文献   

13.
The Gromadnen-Vurguveem peridotite-gabbro massif is confined to one of the largest ophiolite complex of western Chukotka and composed mainly of intrusive rocks. This paper reports the first comprehensive compositional data for its plutonic rocks (petrochemistry, geochemistry, and compositions of minerals). In terms of petrography, two groups of rocks can be distinguished in the Gromadnen-Vurguveem peridotite-gabbro massif. The first group includes leucocratic gabbroids (mostly gabbronorites), composing most of the massif. The second group includes olivine-bearing cumulate rocks: olivine gabbros, troctolites, plagioclase-bearing dunites, and amphibolized wehrlites. The major element variations in these rocks suggest their affiliation to low-titanium, low-potassium, and high-alumina plutonic derivatives of island-arc magmatism. According to geochemical characteristics (distribution of REEs and indicator incompatible elements), the gabbroids of the first group are akin to both island-arc tholeiites and boninites. The olivine-bearing rocks of the second groups show boninitic affinity. Based on these observations, it was concluded that the intrusive complex of the Gromadnen-Vurguveem massif was formed during an early stage of the development of an ensimatic island arc.  相似文献   

14.
Porphyry Cu-Mo-Au mineralisation with associated potassic and phyllic alteration, an advanced argillic alteration cap and epithermal quartz-sulphide-gold-anhydrite veins, are telescoped within a vertical interval of 400-800 m on the northeastern margin of the Thames district, New Zealand. The geological setting is Jurassic greywacke basement overlain by Late Miocene andesitic-dacitic rocks that are extensively altered to propylitic and argillic assemblages. The porphyry Cu-Mo-Au mineralisation is hosted in a dacite porphyry stock and surrounding intrusion breccia. Relicts of a core zone of potassic K-feldspar-magnetite-biotite alteration are overprinted by phyllic quartz-sericite-pyrite or intermediate argillic chlorite-sericite alteration assemblages. Some copper occurs in quartz-magnetite-chlorite-pyrite-chalcopyrite veinlets in the core zone, but the bulk of the copper and the molybdenum are associated with the phyllic alteration as disseminated chalcopyrite and as molybdenite-sericite-carbonate veinlets. The advanced argillic cap has a quartz-alunite-dickite core, which is enveloped by an extensive pyrophyllite-diaspore-dickite-kaolinite assemblage that overlaps with the upper part of the phyllic alteration zone. Later quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins occur within and around the margins of the porphyry intrusion, and are associated with widespread illite-carbonate (argillic) alteration. Multiphase fluid inclusions in quartz stockwork veins associated with the potassic alteration trapped a highly saline (50-84 wt% NaCl equiv.) magmatic fluid at high temperatures (450 to >600 °C). These hypersaline brines were probably trapped at a pressure of about 300 bar, corresponding to a depth of 1.2 km under lithostatic conditions. This shallow depth is consistent with textures of the host dacite porphyry and reconstruction of the volcanic stratigraphy. Liquid-rich fluid inclusions in the quartz stockwork veins and quartz phenocrysts trapped a lower salinity (3-20 wt% NaCl equiv.), moderate temperature (300-400 °C) fluid that may have caused the phyllic alteration. Fluid inclusions in the quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins trapped dilute (1-3 wt% NaCl equiv.) fluids at 250 to 320 °C, at a minimum depth of 1.0 km under hydrostatic conditions. Oxygen isotopic compositions of the fluids that deposited the quartz stockwork veins fall within the 6 to 10‰ range of magmatic waters, whereas the quartz-sulphide-gold-anhydrite veins have lower '18Owater values (-0.6 to 0.5‰), reflecting a local meteoric water (-6‰) influence. A '18O versus 'D plot shows a trend from magmatic water in the quartz stockwork veins to a near meteoric water composition in kaolinite from the advanced argillic alteration. Data points for pyrophyllite and the quartz-sulphide-gold-anhydrite veins lie about midway between the magmatic and meteoric water end-member compositions. The spatial association between porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins suggests that they are all genetically part of the same hydrothermal system. This is consistent with K-Ar dates of 11.6-10.7 Ma for the intrusive porphyry, for alunite in the advanced argillic alteration, and for sericite selvages from quartz-gold veins in the Thames district.  相似文献   

15.
Plutonic rocks associated with the Latir volcanic field comprise three groups: 1) 25 Ma high-level resurgent plutons composed of monzogranite and silicic metaluminous and peralkaline granite, 2) 23–25 Ma syenogranite, and alkali-feldspar granite intrusions emplaced along the southern caldera margin, and 3) 19–23 Ma granodiorite and granite plutons emplaced south of the caldera. Major-element compositions of both extrusive and intrusive suites in the Latir field are broadly similar; both suites include high-SiO2 rocks with low Ba and Sr, and high Rb, Nb, Th, and U contents. Moreover, both intermediateto siliciccomposition volcanic and plutonic rocks contain abundant accessory sphene and apatite, rich in rare-earth elements (REE), as well as phases in which REE's are essential components. Strong depletion in Y and REE contents, with increasing SiO2 content, in the plutonic rocks indicate a major role for accessory mineral fractionation that is not observed in volcanic rocks of equivalent composition. Considerations of the rheology of granitic magma suggest that accessory-mineral fractionation may occur primarily by filter-pressing evolved magmas from crystal-rich melts. More limited accessory-mineral crystallization and fractionation during evolution of the volcanic magmas may have resulted from markedly lower diffusivities of essential trace elements than major elements. Accessory-mineral fractionation probably becomes most significant at high crystallinities. The contrast in crystallization environments postulated for the extrusive and intrusive rocks may be common to other magmatic systems; the effects are particularly pronounced in highly evolved rocks of the Latir field. High-SiO2 peralkaline porphyry emplaced during resurgence of the Questa caldera represents non-erupted portions of the magma that produced the Amalia Tuff during caldera-forming eruption. The peralkaline porphyry continues compositional and mineralogical trends found in the tuff. Amphibole, mica, and sphene compositions suggest that the peralkaline magma evolved from metaluminous magma. Extensive feldspar fractionation occurred during evolution of the peralkaline magmas, but additional alkali and iron enrichment was likely a result of high halogen fluxes from crystallizing plutons and basaltic magmas at depth.  相似文献   

16.
Lead isotope compositions of nine sulfide concentrates from ore samples from the Sar-Cheshmeh deposit are reported. They range from virtually unaltered granodiorite through varying degrees of potassic alteration to ores showing strong phyllic alteration (sericite veins). The samples without strong phyllic alteration have fairly uniform lead isotope compositions around 206Pb/204Pb=18.6, 207Pb/204Pb=15.6, and 208Pb/204Pb=38.7. Two samples with sericite veins have markedly more radiogenic lead. It is concluded that the fluid responsible for the potassic alteration and the associated mineralization was essentially magmatic, whereas convecting meteoric water from the country rock acted as a mineralizing solution during phyllic alteration. In the context of the plumbotectonics model, the deposit has a typical orogen signature intermediate between primitive and mature island-arc settings.  相似文献   

17.
The Predazzo Intrusive Complex (PIC), a Ladinian plutonic body located in the Southern Alps (NE Italy), is made up of a 4.5 km3 gabbroic to syenitic and syenogranitic intrusion, basaltic to latitic volcanic products (about 6 km3 in volume) and by an extended dike swarm intruding both intrusive and volcanic rocks. An extensive field survey of the complex, followed by detailed petrographic and geochemical analyses, allowed the identification of three different magmatic units: a Shoshonitic Silica Saturated Unit (SS), 3.1 km3 in volume, a Shoshonitic Silica Undersaturated Unit (SU), 0.3 km3 in volume, and a Granitic Unit (GU), 1.1 km3 in volume. K-affinity, marked Nb and Ti negative anomalies and a strong Pb enrichment are distinctive markers for all PIC lithotypes. A general HFSE (Th, U, Pb), LREE (La, Ce, Pr, Nd) and Na enrichment characterizes the SU suite with respect to the SS series. Mass balance calculations, based on major and trace element whole rock and mineral compositions, have been used to simulate the fractionation process of SS and SU suites, showing (i) the complexity of the evolutionary stages of the PIC and (ii) the analogy between the calculated subtracted solid assemblages and the natural cumulitic lithotypes outcropping in the area. The field relationships between the various portions of the intrusive complex, the volcanic products and the dike swarm define the temporal evolution of the PIC, in which the SS magma batch was followed by the GU and later on by the SU intrusion. The presence, in both eastern and western portions of the complex, of a transitional magmatic contact between the intrusive rocks of the SS suite and the volcanics is not in favour of the hypothesis of a caldera collapse to explain the ring-like shape of the PIC.  相似文献   

18.
In the Uasilau-Yau Yau intrusive complex of central New Britain,Papua New Guinea, there is a compositional continuum in intrusiverock-types from gabbro to granodiorite and K-Ar mineral agesof the most mafic and most felsic components are not significantlydifferent (29?0.6 Ma versus 28.3?0.5 Ma, respectively). Tonaliteporphyry, the progenitor of porphyry copper mineralization inthe complex, represents a significantly younger intrusive eventat 24 Ma. Relatively calcic (An95—50) plagioclase coresand salite to augite composition clinopyroxene are texturallyearly phases in the intrusive rocks. The main mafic mineral,calcic amphibole, generally has corroded clinopyroxene coresand may, like biotite, K-feldspar and quartz, generally be alate-stage, not a primary liquidus phase. Petrographic featuresindicate that the mafic minerals in the plutonic rocks crystallizedfrom melt, rather than being restite phases. The intrusive rocks cover an extensive silica range (45–75wt. per cent), do not exhibit simple straight-line variationon Harker diagrams for many elements (e.g. TiO2, FeO, P2O5 andSr), and most are relatively depleted in incompatible traceelements (Rb, Zr, and REE). Major and trace element modellingsupports derivation of the complex by shallow level fractionalcrystallization dominated by removal of the phases calcic plagioclase,clinopyroxene, and magnetite from a parental magma closely resemblingrecent basaltic rocks in New Britain. The fact that the plutonicrocks are almost chemically indistinguishable from late Cainozoiccalc-alkaline volcanic rocks of New Britain supports fractionalcrystallization as a viable mechanism for generating these island-arcvolcanic rocks and indicates an analogous origin for the initialmagma. Granites, such as those of the Uasilau-Yau Yau intrusive complex,which are probably generated by partial melting of subductedoceanic crust or the overlying mantle, may be termed mantleor M-type granites. Documentation of the characteristics ofM-type versus normal I-type granites may enable the recognitionof M-type plutonic rocks in older, possibly more deeply erodedgeologic terrains. This would, by analogy to their volcanicequivalents, be very helpful in tectonic interpretations. Also,such plutonic rocks have known potential for Cu-Au mineralization.  相似文献   

19.
The Mont-de-l’Aigle deposit is located in the northern part of Dome Lemieux, in the Connecticut Valley-Gaspé Synclinorium, Gaspé Peninsula, Québec. The Dome Lemieux is a subcircular antiform of Siluro–Devonian sedimentary rocks that is cut by numerous mafic and felsic sills and dikes of Silurian to Late Devonian age. Plutonism occurred in a continental within-plate extensional setting typical of orogenic collapse. The Cu−Fe (± Au) mineralization of Mont-de-l’Aigle occurs in veins, stockworks, and breccias. Mineralization is located near or within N−S and NW−SE faults cutting sedimentary rocks. IOCG mineralization postdates intrusions, skarns, hornfels, and epithermal mineralization typical of the southern part of the Dome Lemieux. The paragenetic sequence comprises: (1) pervasive sodic, potassic, chlorite, and silica alteration, (2) hematite, quartz, pyrite, magnetite, and chalcopyrite veins, stockworks and breccias and, (3) dolomite ± hematite veins and veinlets cutting the earlier mineralization. Intrusions display proximal sodic and potassic alteration, whereas sedimentary rocks have proximal decalcification, silicification, and potassic alteration. Both intrusive and sedimentary rocks are affected by a pervasive distal chlorite (± silica) alteration. The sulfur isotope composition of pyrite and chalcopyrite (δ34S=−1.5 to 4.8‰) suggests that sulfur was derived mainly from igneous rocks. Fluid δ18O (−0.4 to 2.65‰) indicates meteoric or seawater that reacted with the country rocks. Mixing of hot magmatic fluids with a cooler fluid, perhaps meteoric or seawater is suggested for mineral deposition and alteration of the Mont-de-l’Aigle deposit. The mineralogy, alteration, and sulfur isotope composition of the Mont-de-l’Aigle deposit compare well with IOCG deposits worldwide, making the Mont-de-l’Aigle deposit a rare example of Paleozoic IOCG mineralization, formed at shallow depth, within a low metamorphic grade sedimentary rock sequence.  相似文献   

20.
The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleoproterozoic to the Neoproterozoic period. Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies. However, the subtle controls of facies variation, depositional setting and post-depositional diagenesis on stable isotope compositions are not yet clearly understood. The Vindhyan Supergroup hosts four carbonate units, exhibiting a wide variability in depositional processes and paleogeography. A detailed facies-specific carbon and oxygen isotope study of the carbonate units was undertaken by us to investigate the effect of these processes and to identify the least altered isotope values. It is seen that both carbon and oxygen isotope compositions have been affected by early meteoric water diagenesis. The effect of diagenetic alteration is, however, more pronounced in case of oxygen isotopes than carbon isotopes. Stable isotope compositions remained insensitive to facies only when sediments accumulated in a shallow shelf setting without being exposed. Major alteration of original isotope ratios was observed in case of shallow marine carbonates, which became exposed to meteoric fluids during early diagenetic stage. Duration of exposure possibly determined the magnitude of alteration and shift from the original values. Moreover, dolomitization is found to be accompanied by appreciable alteration of isotope compositions in some of the carbonates. The present study suggests that variations in sediment depositional settings, in particular the possibility of subaerial exposure, need to be considered while extracting chronostratigraphic significance from δ13C data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号