首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The estuarine environment can serve as either a source or sink of carbon relative to the coastal ocean carbon budget. A variety of time-dependent processes such as sedimentation, carbon supply, and productivity dictate how estuarine systems operate, and Mobile Bay is a system that has experienced both natural and anthropogenic perturbations that influenced depositional processes and carbon cycling. Sediments from eight box cores provide a record of change in bulk sediment accumulation and carbon burial over the past 110 years. Accumulation rates in the central part of the basin (0.09 g cm?2) were 60–80 % less than those observed at the head (0.361 g cm?2) and mouth (0.564 g cm?2) of the bay. Sediment accumulation in the central bay decreased during the past 90 years in response to both anthropogenic (causeway construction) and natural (tropical cyclones) perturbations. Sediment accumulation inevitably increased the residence time of organic carbon in the oxic zone, as observed in modeled remineralization rates, and reduced the overall carbon burial. Such observations highlight the critical balance among sediment accumulation, carbon remineralization, and carbon burial in dynamic coastal environments. Time-series analysis based solely on short-term observation would not capture the long-term effects of changes in sedimentation on carbon cycling. Identifying these relationships over longer timescales (multi-annual to decadal) will provide a far better evaluation of coastal ocean carbon budgets.  相似文献   

2.
The effect of random inclusion of wheat straw (fibers) on shear strength characteristics of Shanghai cohesive soil is presented in this paper. 1 year old natural wheat straw (fibers) with four section lengths of 5, 10, 15, 20 mm (aspect ratio: l/d = 1.67, 3.33, 5, 6.67) are used as reinforcement and specific Shanghai cohesive soil is used as medium. Locally available cohesive soil is compacted with standard Proctor’s maximum density with low percentage of reinforcement (0.1–0.4 % of wheat straw sections by weight of oven-dried soil). A series of direct shear tests were conducted on unreinforced as well as reinforced soil to investigate the shear strength characteristics of wheat straw-reinforced soil. The test results show that the inclusion of randomly distributed wheat straw sections (fibers) in soil increases the shear strength to one degree or another. It is noticed that the optimum wheat straw (fiber) content for achieving maximum shear strength is 0.3 % of the weight of oven-dried soil for wheat straw fiber length 15–20 mm (aspect ratio: 5–6.67).  相似文献   

3.
The use of agricultural wastes as biosorbents is gaining importance in bioremediation of heavy metal-polluted water and soils, due to their effectiveness and low cost. This work assesses the Cd, Pb and Cu adsorption capacity of the raw materials used in the production of substrates for mushroom production (Agaricus bisporus and Pleurotus ostreatus) and the spent mushroom composted (SMC), based on the functional groups of their organic carbon. The raw materials studied included agricultural wastes (wheat straw, wheat and rice poultry litter, grape pomace) and inorganic substances (gypsum and calcareous sand). Organic carbon from wastes and their composting products were characterized by CP-MAS 13C NMR. Langmuir adsorption isotherms of metals were plotted for each raw material, composting step, spent A. bisporus and P. ostreatus substrates and the final SMC. The maximum adsorption capacities of SMC were 40.43, 15.16 and 36.2 mg g?1 for Cd, Pb and Cu, respectively. The composting process modified the adsorption properties of raw materials because of the enhanced adsorption of Cd and Cu and decreased adsorption capacity of Pb. CP-MAS 13C NMR and potentiometric titration were used to identify the functional groups of the organic carbon responsible for the metal adsorption. The content of cellulose was correlated with Pb adsorption (p < 0.001), alkyl and carboxyl carbon with Cd adsorption (p < 0.001), and N-alkyl (p < 0.001) and carboxyl (p < 0.010) groups with Cu adsorption. These results are valuable to develop new biosorbents based on agricultural wastes and demonstrate the high potential of SMC to adsorb heavy metals from polluted environments.  相似文献   

4.
A novel process based on supercritical water gasification has been used in this study for co-production of hydrogen and power from sugarcane bagasse as one of the main agricultural wastes of Iran. The cycle of the process was designed first, and then, the thermodynamic equilibrium model of the gasification process was simulated using ASPEN PLUS. The effects of temperature and feed concentration on molar fraction of main components of produced gas were investigated. The temperature was directly correlated with hydrogen production in which hydrogen and carbon monoxide production was favored at higher temperatures. The maximum hydrogen production occurred in the sugarcane bagasse concentrations about 20–30 wt%. Palladium membrane as a metallic dense membrane was used for separation of high-purity hydrogen. Hydrogen production of 8.55 kg/h and electrical power generation of 56 kW were obtained for the 20 wt% mixture of bagasse with a mass flow rate of 1000 kg/h, reactor pressure of 300 bars and temperature of 700 °C.  相似文献   

5.
Grasslands account for 40 % of the Chinese land area. About 80 % of the total grasslands are in the northern temperate zone. These grassland ecosystems provide goods and services to the local people and play an important role in the global carbon cycle. Remote sensing and ecosystem modeling approaches have been used to quantify the carbon budget of these grasslands. However, the intensive site measurements and meteorological data acquired in these ecosystems in the last few decades have not been adequately used to improve ecosystem model capabilities, in turn, better quantify their carbon budget. In this study an effort was made to examine the carbon budget and its spatial–temporal variation of the temperate grasslands in China from 1951 to 2007 using a process-based biogeochemistry model. It was found that the regional grasslands acted as a small carbon sink at 11.25 g C m?2 year?1 in the study area of 64.96 million hectares with a high inter-annual variability ranging from ?124 to 122.7 g C m?2 year?1 during the study period. As a result, the temperate grasslands sequestered about 410 Tg C in their vegetation and soils during the study period. The carbon sink occurred in typical steppe in central Inner Mongolia within the 300–400 mm rainfall zone and forest steppe in central and western China. By contrast, forest steppe in northeastern China mainly acted as a carbon source. Three major ecosystem types of forest steppe, typical steppe and desert steppe account for 54, 34, and 12 % of the total sink (7.3 Tg C year?1) during 1951–2007, respectively. Soil moisture and evapotranspiration had a dominant effect on carbon budget in the typical steppe and the forest steppe while both water conditions and nitrogen mineralization rate were the major factors in the desert steppe. At a decadal scale, the air temperature significantly increased by 0.4 °C and annual precipitation insignificantly decreased by 0.2 mm; the regional carbon sink increased by 2.2 Tg C per decade during the period 1951–2007. However, further sensitivity analysis suggests that the sink of temperate grasslands will be reduced if the climate gets warmer and drier during this century since the increasing net primary production does not keep up with the increase of heterotrophic respiration.  相似文献   

6.
High anthropogenic N loads and abundant bacteria are characteristic of highly contaminated urban rivers. To better understand the dispersal and accumulation of bacteria, we determined contents and isotopic compositions of suspended particulate organic matter (SPOM) and bacteria in a highly contaminated urban river (the Nanming) and effluents in winter and summer of 2013. Relative to SPOM, bacterial biomass in the river was depleted in 13C and 15N and its C/N ratio was lower (δ13C: ? 33.2‰ ± 3.1‰; δ15N: ? 1.5‰ ± 1.2‰; C/N: 4.8 ± 0.6), while effluents showed higher 13C and 15N contents and C/N ratios (δ13C: ? 25‰ ± 2.1‰; δ15N: + 8.5‰ ± 1.1‰; C/N: 8.1 ± 1.2). Source recognition of SPOM was based on carbon isotopes because they are conservative and distinct between end-members (effluent detritus and bacterial biomass). Using a mixing model, bacterial biomass in the river was calculated to account for < 20% and < 56% of bulk suspended particulate organic nitrogen in winter and summer, respectively. An N budget showed that bacterial N was a small proportion of total nitrogen (< 7.4%) in the riverwater.  相似文献   

7.
Spatial distributions of 0-20 cm soil carbon sources/sinks caused by land use changes from the year 1980 to 2000 in an area of 2.97 × 10~6 km~2 in eastern China were investigated using a land use dataset from a recent soil geochemical survey.A map of soil carbon sources/sinks has been prepared based on a spatial analysis scheme with GIS.Spatial statistics showed that land use changes had caused 30.7 ± 13.64 Tg of surface soil organic carbon loss,which accounts for 0.33%of the total carbon storage of 9.22 Pg.The net effect of the carbon source was estimated to be ~ 71.49 Tg soil carbon decrease and ~40.80 Tg increase.Land use changes in Northeast China(NE) have the largest impact on soil organic carbon storage compared with other regions.Paddy fields,which were mainly transformed into dry farmland in NE,and constructed land in other regions,were the largest carbon sources among the land use types.Swamp land in NE was also another large soil carbon source when it was transformed into dry farmland or paddy fields.Dry farmland in the NE region formed the largest soil organic carbon sink,as some were transformed into paddy fields,forested land,and other land use types with high SOCD.  相似文献   

8.
In the present study, a widely used reactive dye, Color Index (C.I.) Reactive Blue 268 was utilized for mycoremediation by Aspergillus fumigatus isolated from textile effluent. Complete decolorization of the test dye (0.1 g L?1) was recorded within 6 days of static incubation at 27 °C in Czapek Dox broth (CDB). However, the isolate was unable to utilize the dye as a sole source of energy in Czapek Dox agar and CDB in absence of sucrose and obligate requirement of a labile carbon source, i.e., sucrose needed for induction of decolorization. Biosorption seems to play the pivotal role in decolorization as evident by coloring of the fungal biomass as that of dye color. The optimal conditions for the highest decolorization were found at 30 °C and pH 6.0 with 6-day-old inoculums supplemented with sucrose (10 g L?1) and ammonium chloride (2 g L?1) as a carbon and nitrogen source, respectively. The response of the isolate to increasing dye concentrations was found to be growth inhibitory. Surprisingly, about 65 % of dye decolorization was recorded with heat-inactivated biomass powder within 6 days of static incubation supporting the fact of fungal biosorption. Results of this study have established the candidature of the isolate for biotechnological removal of dyes from disreputable dying effluents.  相似文献   

9.
Meta-analysis and other statistical methods were used to evaluate how changes in soil organic carbon (SOC) content in post-mining soils are related to different factors; the data were obtained from 17 studies covering 93 temperate post-mining sites in the Northern Hemisphere that had been revegetated by forest or grassland either by reclamation or natural succession. Because many studies have failed to report any measures of variance, only part of the data were used for meta-analysis. According to the meta-analysis, the rate of SOC accumulation was unrelated to vegetation type. In a separate analysis that included all available data and in which rates of SOC accumulation at each site were used as individual entries, the rate of SOC accumulation differed depending on the age of the site and vegetation type. Under deciduous forests, the rate reached a maximum after 5–10 years and then decreased. Under coniferous forests, the initial SOC values were lower than under deciduous forests, but slowly increased with age and reached a maximum after 30–40 years. No significant temporal trend was found in grasslands, probably because the data set included only relatively young grassland sites. Based on data from sites younger than 30 years, sites with grasslands and deciduous forests accumulated SOC faster than sites with coniferous forests. The rate of accumulation was negatively correlated with temperature under coniferous forests, but positively correlated with temperature in grasslands. This suggests that carbon sequestration is favored by cold climates in coniferous forests, but by warm climates in grasslands. Deciduous forests were intermediate. Compared to conifers, deciduous trees may support SOC sequestration deeper in the soil profile, which may enhance SOC stability. A large proportion of post-mining sites reach the pre-mining SOC stock within 20 years or less after reclamation.  相似文献   

10.
Alkaline lipases are one of the most important industrial enzymes that have several uses in detergents, food, pharmaceutical, cosmetics, textile, leather and biomedical industries. For screening the lipase-producing bacteria, olive agar A, B, C and Rhodamine B agar were used. The best environmental conditions and their interactions for alkaline lipase production were obtained using Taguchi statistical test. Enzyme purification was carried out by ammonium sulfate precipitation, dialysis and SDS-PAGE, respectively. The best alkaline lipase-producing strain, WS3, isolated from Persian Gulf, was named Marinobacter alkaliphilus ABN-IAUF-1 (GenBank accession number: KP403723). The maximum enzyme activity of 37.00 (μ/ml) was measured in the presence of coconut oil as the carbon source in oil broth medium after 48-h incubation at the pH 8.00 and 30 °C. The most effective factors in enzyme production were nitrogen and carbon sources with 32 and 25% of influence, respectively. Precipitation and dialysis increased the enzyme purity 1.90–2.33 times. The total enzyme activity of 925.00 ± 20.00 U in the oil broth, 96.00 ± 7.00 U after precipitation with ammonium sulfate and 60.00 ± 5.00 U after dialysis was measured. The molecular weight of alkaline lipase was measured as 55 kDa. In conclusion, this is the first report of production of alkaline lipase by a halo-alkalophilic bacterium, Marinobacter alkaliphilus ABN-IAUF-1, that was obtained from Persian Gulf, Iran. The application of enzymes produced by extremophiles such as Marinobacter alkaliphilus could be an asset in the modern environmental microbiology as well as food and industrial biotechnology.  相似文献   

11.
In the present study the removal of nitrates from wastewater using Pseudomonas stutzeri microorganism in a Gas–Liquid–Solid bioreactor at the concentration of 200 ppm was studied for a period of 12 h. The response surface methodology with the help of central composite design and genetic algorithm were employed to optimize the process parameters such as airflow rate, biofilm carrier, carbon source, temperature and pH which are responsible for the removal of nitrates. The optimized values of parameters found from RSM are airflow rate 2.41 lpm, biofilm carrier 15.15 g/L, carbon source 85.0 mg/L, temperature 29.74 °C, pH 7.47 and nitrate removal 193.16. The optimized parameters obtained from genetic algorithm are airflow rate 2.42 lpm, biofilm carrier 15.25 g/L, carbon source 84.98 mg/L, temperature 29.61 °C, pH 7.51 and nitrate removal is 194.14. The value of R2 > 0.9831 obtained for the present mathematical model indicates the high correlation between observed and predicted values. The optimal values for nitrate removal at 200 ppm are suggested according to genetic algorithm and at these optimized parameters more than 96 % of nitrate removal was estimated, which meets the standards for drinking water.  相似文献   

12.
Effluent sludge from an anaerobic digester was used as a source of nitrogen, phosphate, sulfur, and other nutrients in the culture medium of ethanol production by the yeast Saccharomyces cerevisiae. Several pretreatments (mechanical, chemical, thermal, and thermo-chemical) were performed on the anaerobic digested sludge (ADS) to make the nutrients accessible to the yeast cells. Preliminary experiments revealed that S. cerevisiae is not able to assimilate the carbon content of the ADS. However, when glucose was added to the medium, ethanol production was observed. The yield of ethanol using untreated ADS was only 10 % of the theoretical yield, but alkaline pretreatment improved it up to 43 %. By separating the hydrolysate of alkaline-treated ADS from the suspended solids, the ethanol yield from the supernatant was further improved up to 65 % of theoretical yield. Alkaline-treated ADS exhibited competitive performance with the mixture of yeast extract and mineral salts in ethanol fermentation.  相似文献   

13.
The present study examines the temporal variability of air–water CO2 fluxes (FCO2) and seawater carbonate chemistry in a Baja California coastal lagoon during an exceptionally warm anomaly that was developed in Northeast Pacific coasts during 2014. This oceanographic condition led to a summer-like season (weak upwelling condition) during the study period, which reached a maximum surface temperature anomaly of 2 °C in September 2014. San Quintín Bay acts as a source of CO2 to the atmosphere in 2014 (3.3 ± 4.8 mmol C m?2 day?1) with the higher positive fluxes mainly observed in summer months (9.0 ± 5.3 mmol C m?2 day?1). Net ecosystem production (NEP) switched seasonally between net heterotrophy and net autotrophy during the study period, with an annual average of 2.2 ± 7.1 mmol C m?2 day?1, which indicates that San Quintín Bay was a net autotrophic system during the atypical warm oceanographic condition in 2014. This pattern of seasonal variations in the carbon balance at San Quintín Bay appears to be linked to the life cycle of benthic communities, which play an important role in the whole-ecosystem metabolism. Under the limited input from external sources coupled with an increase in seawater temperatures, the recycled benthic carbon and nutrient fluxes play a major role to sustain water-column processes within the bay. Since the upwelling condition may influence the magnitude of the air–water CO2 fluxes, our results clearly indicated that San Quintín Bay is a net source of carbon to the atmosphere regardless of the adjacent oceanic conditions. Our study sheds light on the carbon dynamics and its metabolic implications in a shallow coastal ecosystem under a regional warm anomaly and contributes potentially relevant information in view of the likely future scenario of global climate change.  相似文献   

14.
The drilling sludge represents a complex environment, containing several types of pollutants that can be even used as nutrients by indigenous microorganisms, like hydrocarbon-degrading bacteria, having good potentialities for the biodegradation of petroleum products. In this study, a drilling sludge was collected from drilling quagmire. Physicochemical characterization of the drilling sludge was done. Its mineralogy was obtained by diffractometry. The indigenous aerobic sludge hydrocarbon-degrading bacteria were checked by counting on Bushnell–Haas medium, and their isolation and purification were performed by the selective microbial enrichment technique in a batch-enriched Bushnell–Haas culture, with crude oil as the sole carbon source. Isolates were characterized, and their power to emulsify crude oil was determined by emulsification index and oil spreading tests. Environmental conditions in the quagmire, like temperature, pH and moisture, were suitable for bacterial development. Physicochemical characteristics of the drilling sludge showed richness in chemical elements and promote microbial life. Fifteen different colonies of hydrocarbon-degrading bacteria were isolated and purified; they have diversified morphological and microscopic aspects. Most isolates had a good emulsification index (between 31 and 76 %). Oil spreading test gave clear zone diameters >28 mm, with a maximum of 60 mm. The results of these investigations prove the elementary, mineralogy and microbiology richness of drilling sludge and reveal the high diversity of its indigenous hydrocarbon-degrading bacterial flora. These properties can be exploited for the own restoration of petroleum quagmires in oil fields, by means of bioremediation applications and by integrating indigenous microorganisms.  相似文献   

15.
In this study, teff (Eragrostis tef) straw has been chemically treated and tested as an adsorbent for Cr(VI) removal. Chemically treatment of teff straw was done by NaOH, H3PO4 and ZnCl2 solutions. Scanning electron micrograph and X-ray diffraction were used for anatomical characterization, whereas Fourier transform infrared spectroscopy was used for surface change characterization of adsorbents. Effects of different experimental parameters like pH (2–12), initial Cr(VI) concentration (100–900 mg/L), adsorbent dose (2.5–20 g/L), contact time (15–360 min) and temperature (288–318 K) were studied. Temperature increment was found to stimulate the adsorption process. Langmuir isotherm was found to give better representation over wide range of temperature for untreated, H3PO4- as well as ZnCl2-treated teff straw, and Freundlich isotherm best represented the isotherm data for NaOH-treated teff straw. Maximum Cr(VI) adsorption capacity of untreated, NaOH-, H3PO4- and ZnCl2-treated teff straw was found to be 86.1, 73.8, 89.3 and 88.9 mg/g, respectively. Respective values of average effective diffusion coefficient (D e) were found to be 2.8 × 10?13, 2.59 × 10?14, 1.32 × 10?13 and 1.14 × 10?13 m2/s, respectively. The negative value of ΔG o for all the adsorbents indicates Cr(VI) spontaneous adsorption. Isosteric heat of adsorption (ΔH st,a) was found to vary with surface coverage (θ). ΔH st,a increased for untreated, H3PO4- and ZnCl2-treated teff straw, and decreased steadily with θ for NaOH-treated teff straw.  相似文献   

16.
Nitrogen removal from hypersaline wastewater was successfully started up by inoculating estuarine sediments for 140 days. Efficient ammonia and total nitrogen removal was sustained under specific ammonia loading of 0.016–0.139 kg N/[kg VSS day] in a sequencing batch reactor. Stable nitrite accumulation was observed during nitrification. The specific ammonia consumption rate was higher than the value of freshwater activated sludge and salt-acclimated freshwater activated sludge. With methanol as carbon source, specific nitrite reduction rate of halophilic denitrifiers was much less than the freshwater counterpart. Halophilic activated sludge was characterized as good settling and flocculation prosperity with small floc size and net-like sludge structure. The abundance of ammonia-oxidizing bacteria outnumbered ammonia-oxidizing archaeas in both estuarine sediments and the activated sludge. Nitrifier population was dominated by the halophilic members of genus Nitrosomonas. This study demonstrated the application of mixed halophilic consortia for efficient nitrogen removal, overcoming the limits and difficulties of applying freshwater bacteria for saline wastewater treatment.  相似文献   

17.
Nitrate removal from water has been accomplished by heterotrophic biofilms using organic carbon as a source of reducing power. To overcome the natural limitation in organic carbon in water, a poly-ε-caprolactone based biofilm carrier that serves simultaneously as a biofilm carrier and as a source of organic carbon was developed and tested in the present work. The feasibility of the new biofilm carrier for nitrate removal from water was evaluated in a packed bed reactor. The combination of size and structure provided a carrier element having high surface area and void volume, 1,170 m2/m3 and 67 %, respectively. A maximum denitrification rate of 4.4 mg N–NO3 ?/(L.h) (9.2 mg N–NO3 ?/(m2.h)) was achieved in the packed bed reactor at 20 °C and pH 7.0. Main advantages of the biofilm carrier developed in the present work are its mechanical stability in water even after biofilm formation and controlled release of organic carbon by enzymatic reactions. The proposed biotechnology to remove nitrate from groundwater is robust and easy to operate.  相似文献   

18.
Soil contamination due to petroleum oil has become significant ecological issue due to their toxicity. Thus, detoxification of petroleum-contaminated soil is of pressing concern. In this study, bench-scale bioslurry experiment was carried for remediation and detoxification of petroleum-contaminated soil. Potato peels powder was used as organic nutrient source in the slurry for biostimulation purpose, while biosurfactant producing Bacillus licheniformis strain J1 identified through molecular approach is used as inocula in the slurry treatment. The strain J1 has the capability to utilized petroleum as carbon source, but its efficiency increase in the presence of potato peels powder. Bioslurry phase experiment was categorized into four groups based on the treatment, such as B0 (soil + H2O), B1 (soil + petroleum oil + H2O), B2 (soil + petroleum oil + strain J1 + H2O), B3 (soil + petroleum oil + potato peels powder + strain J1 + H2O). After 90 days of treatment, the soils from each treatment were subjected to toxicity analysis using earth worm acute toxicity test and seed germination inhibition assay. The results suggest that in B1 treatment the toxicity effect on germination and seedling growth is highest, while decrease in effect was observed in case of B2 and B3 treatment. Results of earthworm acute toxicity test revealed that 30 ± 5% earthworm survival rates was reported in B1 treatment, whereas 71.6 ± 2.8 and 78.3 ± 2.8% was observed in B2 and B3 treatment, respectively. Hence, the result of the present study signifies that bioslurry phase treatment can be effectively and commercially used for detoxification petroleum-contaminated wastelands.  相似文献   

19.
This study investigates the occurrence of greenhouse gases (GHGs) and the role of groundwater as an indirect pathway of GHG emissions into surface waters in a gaining stretch of the Triffoy River agricultural catchment (Belgium). To this end, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations, the stable isotopes of nitrate, and major ions were monitored in river and groundwater over 8 months. Results indicated that groundwater was strongly oversaturated in N2O and CO2 with respect to atmospheric equilibrium (50.1 vs. 0.55 μg L?1 for N2O and 14,569 vs. 400 ppm for CO2), but only marginally for CH4 (0.45 vs. 0.056 μg L?1), suggesting that groundwater can be a source of these GHGs to the atmosphere. Nitrification seemed to be the main process for the accumulation of N2O in groundwater. Oxic conditions prevailing in the aquifer were not prone for the accumulation of CH4. In fact, the emissions of CH4 from the river were one to two orders of magnitude higher than the inputs from groundwater, meaning that CH4 emissions from the river were due to CH4 in-situ production in riverbed or riparian zone sediments. For CO2 and N2O, average emissions from groundwater were 1.5?×?105 kg CO2 ha?1 year?1 and 207 kg N2O ha?1 year?1, respectively. Groundwater is probably an important source of N2O and CO2 in gaining streams but when the measures are scaled at catchment scale, these fluxes are probably relatively modest. Nevertheless, their quantification would better constrain nitrogen and carbon budgets in natural systems.  相似文献   

20.
The effect of glucose, chicken manure, and filter mud on the ammonium and nitrate concentrations, ammonia-oxidizing bacterial community and bacterial community in latosolic red soils during the incubation of microcosms was investigated. The soil nitrate concentration was significantly lower in the glucose-treated soil than in the filter mud or chicken manure-treated soil from days 2 and 5 to 21 of incubation. The ammonia-oxidizing bacteria community composition, measured by terminal restriction fragment length polymorphism analysis, was different among the treatments 9 days after incubation, suggesting that the control soil without external fertilization had a low 283-bp (Nitrosospira) fragment relative abundance (27 %) compared with the glucose-treated (62 %), filter mud (73 %) and chicken manure (78 %) samples. Additionally, 491-bp fragments (Nitrosomonas) were detected in all the soil treatments except for the control soil, and 48-bp fragments (from different Nitrosomonas) were detected in the chicken manure-treated soil. The bacterial community structure was markedly changed in the glucose-treated soil on day 9 and in the filter mud-treated soil on day 31, indicating that the effect of filter mud on the bacterial community is delayed compared to the effect of glucose. The chicken manure-treated soil showed less change, similar to that of the control soil. Glucose fertilization greatly increased the soil bacterial abundance and functional diversity; however, the chicken manure and filter mud did not stimulate soil bacterial activity on day 9. These results indicated that nitrification may have been somewhat suppressed in the glucose-treated soils, which was possibly related to the improving ammonia-oxidizing bacterial community, bacterial community and activity via the available carbon application. The filter manure and chicken manure treatments demonstrated fewer effects. These results suggest that organic carbon quality, e.g., increasing the available carbon, regulates the nitrification process and is beneficial to reducing soil nitrogen losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号