首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The powerful eruption in the Akademii Nauk caldera on January 2, 1996, marked a new activity phase of Karymsky volcano and became a noticeable event in the history of modern volcanism in Kamchatka. The paper reports data obtained by studying more than 200 glassy melt inclusions in phenocrysts of olivine (Fo 82-72), plagioclase (An 92-73), and clinopyroxene (Mg#83-70) in basalts of the 1996 eruption. The data were utilized to estimate the composition of the parental melt and the physicochemical parameters of the magma evolution. According to our data, the parental melt corresponded to low magnesian, highly aluminous basalt (SiO2 = 50.2 wt %, MgO = 5.6 wt %, Al2O3 = 17 wt %) of the mildly potassic type (K2O = 0.56 wt %) and contained much dissolved volatile components (H2O = 2.8 wt %, S = 0.17 wt %, and Cl = 0.11 wt %). Melt inclusions in the minerals are similar in chemical composition, a fact testifying that the minerals crystallized simultaneously with one another. Their crystallization started at a pressure of approximately 1.5 kbar, proceeded within a narrow temperature range of 1040 ± 20°C, and continued until a near-surface pressure of approximately 100 bar was reached. The degree of crystallization of the parental melt during its eruption was close to 55%. Massive crystallization was triggered by H2O degassing under a pressure of less than 1 kbar. Magma degassing in an open system resulted in the escape of 82% H2O, 93% S, and 24% Cl (of their initial contents in the parental melt) to the fluid phase. The release of volatile compounds to the atmosphere during the eruption that lasted for 18 h was estimated at 1.7 × 106 t H2O, 1.4 × 105 t S, and 1.5 × 104 t Cl. The concentrations of most incompatible trace elements in the melt inclusions are close to those in the rocks and to the expected fractional differentiation trend. Melt inclusions in the plagioclase were found to be selectively enriched in Li. The Li-enriched plagioclase with melt inclusions thought to originate from cumulate layers in the feeding system beneath Karymsky volcano, in which plagioclase interacted with Li-rich melts/brines and was subsequently entrapped and entrained by the magma during the 1996 eruption.  相似文献   

2.
The paper presents data on naturally quenched melt inclusions in olivine (Fo 69–84) from Late Pleistocene pyroclastic rocks of Zhupanovsky volcano in the frontal zone of the Eastern Volcanic Belt of Kamchatka. The composition of the melt inclusions provides insight into the latest crystallization stages (∼70% crystallization) of the parental melt (∼46.4 wt % SiO2, ∼2.5 wt % H2O, ∼0.3 wt % S), which proceeded at decompression and started at a depth of approximately 10 km from the surface. The crystallization temperature was estimated at 1100 ± 20°C at an oxygen fugacity of ΔFMQ = 0.9–1.7. The melts evolved due to the simultaneous crystallization of olivine, plagioclase, pyroxene, chromite, and magnetite (Ol: Pl: Cpx: (Crt-Mt) ∼ 13: 54: 24: 4) along the tholeiite evolutionary trend and became progressively enriched in FeO, SiO2, Na2O, and K2O and depleted in MgO, CaO, and Al2O3. Melt crystallization was associated with the segregation of fluid rich in S-bearing compounds and, to a lesser extent, in H2O and Cl. The primary melt of Zhupanovsky volcano (whose composition was estimated from data on the most primitive melt inclusions) had a composition of low-Si (∼45 wt % SiO2) picrobasalt (∼14 wt % MgO), as is typical of parental melts in Kamchatka and other island arcs, and was different from MORB. This primary melt could be derived by ∼8% melting of mantle peridotite of composition close to the MORB source, under pressures of 1.5 ± 0.2 GPa and temperatures 20–30°C lower than the solidus temperature of “dry” peridotite (1230–1240°C). Melting was induced by the interaction of the hot peridotite with a hydrous component that was brought to the mantle from the subducted slab and was also responsible for the enrichment of the Zhupanovsky magmas in LREE, LILE, B, Cl, Th, U, and Pb. The hydrous component in the magma source of Zhupanovsky volcano was produced by the partial slab melting under water-saturated conditions at temperatures of 760–810°C and pressures of ∼3.5 GPa. As the depth of the subducted slab beneath Kamchatkan volcanoes varies from 100 to 125 km, the composition of the hydrous component drastically changes from relatively low-temperature H2O-rich fluid to higher temperature H2O-bearing melt. The geothermal gradient at the surface of the slab within the depth range of 100–125 km beneath Kamchatka was estimated at 4°C/km.  相似文献   

3.
Clinopyroxene phenocrysts in fergusite from a diatreme in the Dunkel’dyk potassic alkaline complex in the southeastern Pamirs, Tajikistan, and from carbonate veinlets cutting across this rock contain syngenetic carbonate, silicate, and complex melt inclusions. The homogenization of the silicate and carbonate material of the inclusions with the complete dissolution of daughter crystalline phases and fluid in each of them occur simultaneously at 1150?1180°C. The pressures estimated using fluid inclusions and mineral geobarometers were 0.5–0.7 GPa. The behavior of the inclusions during their heating and their geochemistry are in good agreement with the origin of carbonate melts via liquid immiscibility. Carbonatite magma was segregated at the preservation of volatile components (H2O, CO2, F, Cl, and S) in the melt, and this resulted in the crystallization of H2O-rich minerals and carbonates and testifies that the magma was not intensely degassed during its ascent to the surface. The silicate melts are rich in alkalis (up to 4 wt % Na2O and 12 wt % K2O), H2O, F, Cl, and REE (up to 1000 ppm), LREE, Ba, Th, U, Li, B, and Be. The diagrams of the concentrations of incompatible elements of these rocks typically show deep Nb, Ta, and Ti minima, a fact making them similar to the unusual type of ultrapotassic magmas: lamproites of the Mediterranean type. These magmas are thought to be generated in relation to subduction processes, first of all, the fluid transport of various components from a down-going continental crustal slab into overlying levels of the mantle wedge, from which ultrapotassic magmas are presumably derived.  相似文献   

4.
The compositions of approximately 70 naturally quenched melt inclusions in olivine, clinopyroxene, orthopyroxene, and plagioclase phenocrysts from tephra of the soil–pyroclastic cover of Simushir Island (Central Kuril Islands) were studied. The concentrations of the major rock-forming components, H2O, S, and Cl were analyzed in inclusions. The reconstructed melts contain 48.6–78.4 wt % SiO2, 0.3–8.26 wt % MgO, and 0.12–1.72 wt % K2O. The concentration of S and Cl in the melts changes regularly with increasing SiO2 content: from 0.14 to ~0.02 wt % S and from ~0.05 to ~0.28 wt % Cl. The content of H2O in parental melts is 4.2–4.5 wt %.  相似文献   

5.
ABSTRACT

The Xiaohaizi wehrlite intrusion in the early Permian Tarim Large Igneous Province, Northwest China, is characterized by unusual high-An (up to 86) plagioclases. It has been suggested that H2O may have exerted a major control on their formation, but this interpretation requires further direct evidence. Moreover, it remains unclear where the water came from. In order to unravel these questions, we present electron microprobe analyses of minerals and melt inclusions in clinopyroxene macrocrysts in the dikes crosscutting the Xiaohaizi wehrlite intrusion and in situ oxygen isotope data of zircons from the Xiaohaizi wehrlite. The homogenized melt inclusions have restricted SiO2 (45.5–48.7 wt.%) and Na2O + K2O (2.4–3.8 wt.%) contents, displaying sub-alkaline affinity. This is inconsistent with the alkaline characteristic of the parental magma of the clinopyroxenes, suggesting significant modification of melt inclusions by contamination of the host clinopyroxene due to overheating. Nevertheless, the Ca/Na ratios (2.9–4.7) of melt inclusions are the upper limit of the parental magma of the clinopyroxenes due to high CaO (21.5–23.0 wt.%) and very low Na2O (0.22–0.34 wt.%) contents in the host clinopyroxenes. Thermodynamic calculation suggests that under fixed P (2.7 kbar) and T (1000°C), and assumed H2O (~1.5 wt.%) conditions, the Ca/Na ratio of the parental magma cannot generate high-An plagioclase in the wehrlite. The results confirm that H2O exerts a major control. Zircon δ18O (VSMOW) values (2.99–3.71‰) are significantly lower than that of mantle-derived zircon (5.3 ± 0.6‰). Such low zircon δ18O values may be due to incorporation of large amounts of low-δ18O, hydrothermally altered oceanic crust. However, geochemical and Sr-Nd-Pb isotopic data do not support recycled oceanic crust in the mantle source of the Xiaohaizi intrusion. Alternatively this can be explained by incorporation of meteoritic water in the magma chamber. This will increase the H2O content of the liquid that finally crystallize high-An plagioclases.  相似文献   

6.
The products of the 1974 eruption of Fuego, a subduction zone volcano in Guatemala, have been investigated through study of silicate melt inclusions in olivine. The melt inclusions sampled liquids in regions where olivine, plagioclase, magnetite, and augite were precipitating. Comparisons of the erupted ash, groundmass, and melt inclusion compositions suggest that the inclusions represent samples of liquids present in a thermal boundary layer of the magma body. The concentrations of H2O and CO2 in glass inclusions were determined by a vacuum fusion manometric technique using individual olivine crystals (Fo77 to Fo71) with glass inclusion compositions that ranged from high-alumina basalt to basaltic andesite. Water, Cl, and K2O concentrations increased by a factor of two as the olivine crystals became more iron-rich (Fo77 to Fo71) and as the glass inclusions increased in SiO2 from 51 to 54 wt.% SiO2. The concentration of H2O in the melt increased from 1.6 wt.% in the least differentiated liquid to about 3.5% in a more differentiated liquid. Carbon dioxide is about an order of magnitude less abundant than H2O in these inclusions. The gas saturation pressures for pure H2O in equilibrium with the melt inclusions, which were calculated from the glass inclusion compositions using the solubility model of Burnham (1979), are given approximately by P(H2O)(Pa)=(SiO2−48.5 wt.%) × 1.45 × 107. The concentrations of water in the melt and the gas saturation pressures increased from about 1.5% to 3.5% and from 300 to 850 bars, respectively, during pre-eruption crystallization.  相似文献   

7.
Using various methods of melt inclusion investigation, including electron and ion microprobe techniques, we estimated the composition, evolution, and formation conditions of melts producing the trachydacites and pantellerites of the Late Paleozoic bimodal volcanic association of Dzarta-Khuduk, Central Mongolia. Primary crystalline and melt inclusions were detected in anorthoclase from trachydacites and quartz from pantellerites and pantelleritic tuffs. Among the crystalline inclusions, we identified hedenbergite, fluorapatite, and pyrrhotite in the trachydacites and F-arfvedsonite, fluorite, ilmenite, and the rare REE diorthosilicate chevkinite in the pantellerites. Melt inclusions in anorthoclase from the trachydacites are composed of glass, a gas phase, and daughter minerals (F-arfvedsonite, fluorite, villiaumite, and anorthoclase rim on the inclusion wall). Melt inclusions in quartz from the pantellerites are composed of glass, a gas phase, and a fine-grained salt aggregate consisting of Li, Na, and Ca fluorides (griceite, villiaumite, and fluorite). Melt inclusions in quartz crystalloclasts from the pantelleritic tuffs are composed of homogeneous silicate glasses. The phenocrysts of the trachydacites and pantellerites crystallized at temperatures of 1060–1000°C. During thermometric experiments with quartz-hosted melt inclusions from the pantellerites, the formation of immiscible silicate and salt (fluoride) melts was observed at a temperature of 800°C. Homogeneous melt inclusions in anorthoclase from the trachydacites have both trachydacite and rhyolite compositions (wt %): 68–70 SiO2, 12–13 Al2O3, 0.34–0.74 TiO2, 5–7 FeO, 0.4–0.9 CaO, and 9–12 Na2O + K2O. The agpaitic index ranges from 0.92 to 1.24. The glasses of homogenized melt inclusions in quartz from the pantellerites and pantelleritic tuffs have rhyolitic compositions. Compared with the homogeneous glasses trapped in anorthoclase of the trachydacites, quartz-hosted inclusions from the pantellerites show higher SiO2 (72–78 wt %) and lower Al2O3 contents (7.8–10.0 wt %). They also contain 0.14–0.26 wt % TiO2, 2.5–4.9 wt % FeO, 9–11 wt % Na2O + K2O, and 0.9–0.15 wt % CaO and show an agpaitic index of 1.2–2.05. Homogeneous melt inclusions in quartz from the pantelleritic tuffs contain 69–72 wt % SiO2. The contents of other major components, including TiO2, Al2O3, FeO, and CaO, are close to those in the homogeneous glasses of quartzhosted melt inclusions in the pantellerites. The contents of Na2O + K2O are 4–10 wt %, and the agpaitic index is 1.0–1.6. The glasses of melt inclusions from each rock group show distinctive volatile compositions. The H2O content is up to 0.08 wt % in anorthoclase of the trachydacites, 0.4–1.4 wt % in quartz of the pantellerites, and up to 5 wt % in quartz of the pantelleritic tuffs. The content of F in the glasses of melt inclusions in the phenocrysts of the trachydacites is no higher than 0.67 wt %, and up to 1.4–2.8 wt % in quartz from the pantellerites. The Cl content is up to 0.2 wt % in the glasses of melt inclusions in the minerals of the trachydacites and up to 0.5 wt % in the glasses of quartz-hosted melt inclusions from the pantellerites. The investigation of trace elements in the homogenized glasses of melt inclusions in minerals showed that the trachydacites and pantellerites were formed from strongly evolved rare-metal alkaline silicate melts with high contents of Li, Zr, Rb, Y, Hf, Th, U, and REE. The analysis of the composition of homogeneous melt inclusions in the minerals of the above rocks allowed us to distinguish magmatic processes resulting in the enrichment of these rocks in trace and rare earth elements. The most important processes are the crystallization differentiation and immiscible separation of silicate and fluoride salt melts. It was also shown that all the melts studied evolved in spatially separated magma chambers. This caused the differences in the character of melt evolution between the trachydacites and pantellerites. During the final stages of differentiation, when the magmatic system was saturated with respect to ore elements, Na-Ca fluoride melts were separated and extracted considerable amounts of Li.  相似文献   

8.
To determine the pre-eruptive composition of peralkaline magma at Frantale volcano, Ethiopia, we have studied glass inclusions in phenocrysts from a lateceupting, glassy pantelleritic lava flow. Matrix glass and crystal-free glass inclusions in quartz were analyzed for all major and most minor elements by electron microprobe and for H2O and 15 lithophile trace elements by ion microprobe (SIMS). Compositions of inclusions may have been slightly modified by post-trapping quartz crystallization, the average concentrations of all constituents but silica may be artificially high by 10% relative. Glass inclusions contain extreme enrichments in H2O (mean of 4.6 to 4.9 wt%) and several lithophile trace elements, which suggest that the lava erupted from a highly evolved, water-rich fraction of magma. The pre-eruptive concentration of water was much higher than that generally considered to occur in pantellerite magmas. Trends observed for lithophile elements in whole-rock samples from pre-,syn-and post-caldera eruptive units are mimicked in glass inclusions from the studied pantellerite lava; concentrations of Rb, Y, Zr, Nb, and Ce±Cl increase with progressive differentiation. With the exception of Cl and H2O contents, the composition of matrix glass is similar to that of glass inclusions suggesting: that few constituents exsolved from magma or cooling glass; eruption and quench of the lava occurred rapidly; and the matrix glass is, largely, compositionally representative of melt. Higher average abundances of Cl and H2O in glass inclusions suggest that these volatiles exsolved after melt entrapment; degassing could have occurred as either an equilibrium or disequilibrium process.  相似文献   

9.
The Zaldívar porphyry copper deposit, Northern Chile, consists of two major intrusions, the 290 Ma Zaldívar, and the more recent Miocene (38.7 Ma) Llamo porphyry. Five types of inclusions have been identified in quartz phenocrysts from Llamo porphyry, including melt inclusions (M), and four types of fluid inclusions, called MS (multi solids), B (brines), G (vapor-rich) and W (aqueous), respectively.Melt remnants, well preserved as M-inclusions, homogenize around 1000 °C. They show a rhyolitic composition, comparable to the most evolved acidic rhyolitic end member found elsewhere in the regional magmatism and to worldwide volcanic rhyolitic glass. High silica content in some inclusions can, however, be due to partial remelting of the quartz host during the heating run. Copper content in the same inclusions ranges between 0.03 and 0.57 wt.%, with an average concentration of 0.10 wt.%, suggesting a major magmatic source for the copper (orthomagmatic model).MS inclusions, which contain a number of solids at room temperature, mostly H2O-bearing phases (system NaCl–KCl–((Fe, Mg, Cu)Cl)–H2O, average salinity 70 wt.% NaCl equiv.), homogenize at magmatic temperatures (around 1000 °C). They represent the first fluids to have exsolved from the magma at depth, at a pressure of about 2 kbar. Their high homogenization temperature, comparable to values measured for melt inclusions (1000 to 1050 °C), may indicate trapping of MS and M inclusions in host phenocrysts from an immiscible mixture of silicate melt and highly saline fluids expelled from the magma during the early stage of quartz crystallization.The data indicate a magmatic origin for copper, as well as extremely high melt temperatures. These features are interpreted by magmatic differentiation of mantle-derived primitive melts, corresponding to major changes in the tectonic regime of the Andean margin, which occurred in Miocene times.  相似文献   

10.
The evolution of volatiles in the AD 79 magma chamber at Vesuvius (Italy) was investigated through the study of melt inclusions (MI) in crystals of different origins. FTIR spectroscopy and EMPA were used to measure H2O, CO2, S and Cl of the different melts. This allowed us to define the volatile content of the most evolved, phonolitic portion of the magma chamber and of the mafic melts feeding the chamber. MI in sanidine from phonolitic and tephri-phonolitic pumices show systematic differences in composition and volatile content, which can be explained by resorption of the host mineral during syn-eruptive mixing. The pre-eruption content of phonolitic magma appears to have been dominated by H2O and Cl (respectively 6.0 to 6.5 wt% and 6700 ppm), while magma chamber refilling occurred through the repeated injection of H2O, CO2 and S-rich tephritic magmas (respectively 3%, 1500 ppm and 1400 ppm). Strong CO2 degassing probably occurred during the decompressional path of mafic batches towards the magma chamber, while sulphur was probably released by the magma following crystallization and mixing processes. Water and chlorine strongly accumulated in the magma and reached their solubility limits only during the eruption. Chlorine solubility appears to have been strongly compositionally controlled, and Cl release was inhibited by groundmass crystallization of leucite, which shifted the composition of the residual liquid towards higher Cl solubilities. Received: 28 October 1999 / Accepted: 21 April 2000  相似文献   

11.
Melt and fluid inclusions were investigated in minerals from igneous rocks and ore (Au-Ag-Pb-Zn) veins of the Stiavnica ore field in Central Slovakia. High H2O (7.1–12.0 wt %) and Cl (0.32–0.46 wt %) contents were found in silicate melt inclusions (65–69 wt % SiO2 and 5.2–5.6 wt % K2O) in plagioclase phenocrysts (An 68–36) from biotite-homblende andesites of the eastern part of the caldera. Similar high water contents are characteristic of magmatic melts (71–76 wt % SiO2 and 3.7–5.1 wt % K2O) forming the sanidine rhyolites of the Vyhne extrusive dome in the northwestern part of the Stiavnica caldera (up to 7.1 wt %) and the rhyolites of the Klotilda dike in the eastern part of the ore field (up to 11.5 wt %). The examination of primary inclusions in quartz and sanidine from the Vyhne rhyolites revealed high concentrations of N2 and CO2 in magmatic fluid (8.6 g/kg H2O and 59 g/kg H2O, respectively). Fluid pressure was estimated as 5.0 kbar on the basis of primary CO2 fluid inclusions in plagioclase phenocrysts from the Kalvari basanites. This value corresponds to a depth of 18 km and may be indicative of a deep CO2 source. Quartz from the granodiorites of the central part of the Stiavnica-Hodrusa complex crystallized from a melt with 4.2–6.1 wt % H2O and 0.24–0.80 wt % Cl. Magmatic fluid cogenetic with this silicate melt was represented by a chloride brine with a salinity of no less than 77–80 wt % NaCl equiv. Secondary inclusions in quartz of the igneous rocks recorded a continuous trend of temperature, pressure, and solution salinity, from the parameters of magmatic fluids to the conditions of formation of ore veins. The gold mineralization of the Svyatozar vein system was formed from boiling low-salinity fluids (0.3–8.0 wt % NaCl equv.) at temperatures of 365–160°C and pressures of 160–60 bar. The Terezia, Bieber, Viliam, Spitaler, and Rozalia epithermal gold-silver-base metal veins were also formed from heterogeneous low-salinity fluids (0.3–12.1 wt %) at temperatures of 380–58°C and pressures of 240–10 bar. It was found that the salt components of the solutions were dominated by chlorides (high content of fluorine, up to 0.45 mol/kg H2O, was also detected), and sulfate solutions appeared in the upper levels. The dissolved gas of ore-forming solutions was dominated by CO2 (0.1–8.4 mol %, averaging 1.3 wt %) and contained minor nitrogen (0.00–0.85 mol %, averaging 0.05 mol %) and negligible methane admixtures (0.00–0.05 mol %, averaging 0.004 mol %). These data allowed us to conclude that the magmatic melts could be sources of H2O, Cl, CO2, and N2. The formation of the epithermal mineralization of the Stiavnica ore field was associated with the mixing of magmatic fluid with low-concentration meteoric waters, and the fluid was in a heterogeneous state.  相似文献   

12.
The well-documented eruptive history of Mount Mazama, Oregon, provides an excellent opportunity to use pre-eruptive volatile concentrations to study the growth of an explosive silicic magmatic system. Melt inclusions (MI) hosted in pyroxene and plagioclase crystals from eight dacitic–rhyodacitic eruptive deposits (71–7.7?ka) were analyzed to determine variations in volatile-element concentrations and changes in magma storage conditions leading up to and including the climactic eruption of Crater Lake caldera. Temperatures (Fe–Ti oxides) increased through the series of dacites, then decreased, and increased again through the rhyodacites (918–968 to ~950 to 845–895?°C). Oxygen fugacity began at nickel–nickel-oxide buffer (NNO) +0.8 (71?ka), dropped slightly to NNO +0.3, and then climbed to its highest value with the climactic eruption (7.7?ka) at NNO +1.1 log units. In parallel with oxidation state, maximum MI sulfur concentrations were high early in the eruptive sequence (~500?ppm), decreased (to ~200?ppm), and then increased again with the climactic eruption (~500?ppm). Maximum MI sulfur correlates with the Sr content (as a proxy for LREE, Ba, Rb, P2O5) of recharge magmas, represented by basaltic andesitic to andesitic enclaves and similar-aged lavas. These results suggest that oxidized Sr-rich recharge magmas dominated early and late in the development of the pre-climactic dacite–rhyodacite system. Dissolved H2O concentrations in MI do not, however, correlate with these changes in dominant recharge magma, instead recording vapor solubility relations in the developing shallow magma storage and conduit region. Dissolved H2O concentrations form two populations through time: the first at 3–4.6 wt% (with a few extreme values up to 6.1 wt%) and the second at ≤2.4 wt%. CO2 concentrations measured in a subset of these inclusions reach up to 240?ppm in early-erupted deposits (71?ka) and are below detection in climactic deposits (7.7?ka). Combined H2O and CO2 concentrations and solubility models indicate a dominant storage region at 4–7?km (up to 12?km), with drier inclusions that diffusively re-equilibrated and/or were trapped at shallower depths. Boron and Cl (except in the climactic deposit) largely remained in the melt, suggesting vapor–melt partition coefficients and gas fractions were low. Modeled Li, F, and S vapor–melt partition coefficients are higher than those of B and Cl. The decrease in maximum MI CO2 concentration following the earliest dacitic eruptions is interpreted to result from a broadening of the shallow storage region to greater than the diameter of subjacent feeders, so that greater proportions of reservoir magma were to the side of CO2-bearing vapor bubbles ascending vertically from the locus of recharge magma injection, thereby escaping recarbonation by streaming vapor bubbles. The Mazama melt inclusions provide a picture of a growing magma storage region, where chemical variations in melt and magma occur due to changes in the nature and supply rate of magma recharge, the timing of degassing, and the possible degree of equilibration with gases from below.  相似文献   

13.
Melt and fluid inclusions have been studied in olivine phenocrysts (Fo 81–79) from trachybasalts of the Southern Baikal volcanic area, Dzhida field. The melt inclusions were homogenized, quenched, and analyzed on an electron and ion microprobe. The study of homogenized glasses of nine inclusions showed that basaltic melts (SiO2 = 47.1–50.3 wt %, MgO = 5.0–7.7 wt %, CaO = 7.1–11.1 wt %) have high contents of Al2O3 (17.1–19.6 wt %), Na2O (4.1–6.2 wt %), K2O (2.2–3.3 wt %), and P2O5 (0.6–1.1 wt %). The volatile contents are low (in wt %): 0.24–0.31 H2O, 0.08 F, 0.03 Cl, and 0.02 S. Primary fluid inclusions in olivines from four trachybasalt samples contain high-density CO2 (0.73–0.87 g/cm3), indicating a CO2 fluid pressure of 4.3–6.6 kbar at 1200–1300°C and olivine crystallization depths of 16–24 km. Ion microprobe analyses of 20 glasses from melt inclusions for trace elements showed that the magmas of the Baikal rift were enriched in incompatible elements, thus differing from oceanic rift basalts and resembling oceanic island basalts. A comparison of our data on melt and fluid inclusions in olivine from trachybasalts of the Dzhida field with preexisting data on the Eastern Tuva volcanic highland in the Southern Baikal volcanic area showed that they had similar contents of volatiles, major, and trace elements.  相似文献   

14.
The investigation of rocks, minerals, and melt inclusions showed that porphyritic alkaline picrites and meimechites crystallized from different parental magmas. At a similar ultrabasic composition, the alkaline picrite melts were enriched in K2O relative to Na2O, and contained up to 0.12–0.13 wt % F and less Cr, Ni, and H2O (only 0.01–0.16 wt % H2O, versus 0.6–1.6 wt % in the meimechite melts) compared with the meimechite magmas. The crystallization of alkaline picrite melts occurred under stable conditions at relatively low temperatures without abrupt changes: olivine and clinopyroxene crystallized at 1340–1285 and 1230–1200°C, respectively, as compared with 1600–1450 and 1230–1200°C in the meimechites. The alkaline picrite melts evolved toward melanephelinite, nephelinite, tephrite, and trachydolerite; whereas the meimechite magmas gave rise to subalkaline picritic rocks. The partitioning of vanadium between olivine and melt suggests that the meimechite magma crystallized under more oxidizing conditions compared with the alkaline picrite melts: the KDV values for the meimechite melts (0.011–0.016) were three times lower than those for the alkaline picrite melts (0.045–0.052). The parental magmas of the alkaline picrites and meimechites were enriched in trace elements relative to mantle levels by factors of tens to hundreds. The alkaline picrite magma showed lower LILE and LREE contents compared with the meimechite magma. The magmas had also different indicator ratios of incompatible elements, including those immobile in aqueous fluids. It was concluded that the meimechite and alkaline picrite melts were derived from different mantle sources. The former were generated at lower degrees of melting of an undepleted mantle source, and the meimechite melts were produced by high-degree melting of a probably lherzolite-harzburgite source.  相似文献   

15.
The results of a complex study of melt inclusions in olivine phenocrysts contained in unaltered kimberlites from the Udachnaya-East pipe indicate that the inclusions were captured late during the magmatic stage, perhaps, under a pressure of <1 kbar and a temperature of ≤800°C. The inclusions consist of fine crystalline aggregates (carbonates + sulfates + chlorides) + gas ± crystalline phases. Minerals identified among the transparent daughter phases of the inclusions are silicates (tetraferriphlogopite, olivine, humite or clinohumite, diopside, and monticellite), carbonates (calcite, dolomite, siderite, northupite, and Na-Ca carbonates), Na and K chlorides, and alkali sulfates. The ore phases are magnetite, djerfisherite, and monosulfide solid solution. The inclusions are derivatives of the kimberlite melt. The complex silicate-carbonate-salt composition of the secondary melt inclusions in olivine from the kimberlite suggests that the composition of the kimberlite melt near the surface differed from that of the initial melt composition in having higher contents of CaO, FeO, alkalis, and volatiles (CO2, H2O, F, Cl, and S) at lower concentrations of SiO2, MgO, Al2O3, Cr2O3, and TiO2. Hence, when crystallizing, the kimberlite melt evolved toward carbonatite compositions. The last derivatives of the kimberlite melt had an alkaline carbonatite composition.  相似文献   

16.
The distribution of H2O, F, Cl and S in the Campanian Ignimbrite (CI) magma chamber was investigated through study of primary glass inclusions and matrix glasses from pumices of the Plinian fall deposit. The eruption, fed by trachytic to phono-trachytic magmas, mainly produced a trachytic non-welded to partially welded tuff, underlain by a minor cogenetic fallout deposit. The entire chemical variability of the eruptive products is well represented in the pumices of the Plinian fall deposit, which we divide into a basal Lower Fall Unit (LFU) and an overlying Upper Fall Unit (UFU). Primary glass inclusions were only found in clinopyroxenes associated with the LFU pumice and contain a mean of 1.60ǂ.32 wt% H2O (analysed by FTIR), 0.11ǂ.08 wt% F, 0.37ǂ.03 wt% Cl and 0.08ǂ.04 wt% SO3 (EMP analysis); CO2 concentrations were below the FTIR detection limit (10-20 ppm). The coexisting matrix glasses contain similar amounts of halogens and sulfur but less water (~0.60 wt%). Partially degassed matrix glasses from UFU pumices contain a mean of 0.30ǂ.02 H2O, 0.28ǂ.10 F, 0.04ǂ.02 SO3 and 0.80ǂ.04 wt% Cl. To reconstruct the total amount of volatiles dissolved in the most evolved trachytes we have used experimental solubility data and mass balance calculations concerning the amount of crystal fractionation required to produce the most evolved trachyte from the least evolved trachyte; these yield an estimated pre-eruptive magma volatile content (H2O + Cl + F) of ~5.5 wt% for the most evolved magmas. On the basis of new determinations of Cl solubility limits in hydrous trachytic melts coexisting with an aqueous fluid phase + hydrosaline melt (brine), we suggest that the upper part of the magma chamber which fed the CI eruption was fluid(s) saturated and at a minimum depth of ~2 km. Variations in eruptive style (Plinian fallout, pyroclastic flows) do not appear to be related to significant variations in pre-eruptive volatile contents.  相似文献   

17.
Relicts of silicate-iron fluid media were found in the Early Cretaceous rhyolites of the Nilginskaya depression, Central Mongolia. They are localized in matrix cavities and in the inclusions in quartz and sanidine phenocrysts. The mineral composition of rhyolites and aggregates of silicate-iron phases has been studied. Calculations showed that crystallization of ilmenite and magnetite in a matrix occurred within a temperature range of 593–700°C and oxygen fugacity $\Delta \log f_{O_2 }$ NNO from ?2.29 to 1.68. The average compositions of the rhyolites and residual glasses in melt inclusions (MI) have A/CNK index of 1.03–1.05. The compositions of MI glasses define a trend from agpaitic to plumasitic types (A/NK and A/CNK change from 0.8–0.9 to 1.1–1.2). According to calculations, the rhyolitic melt was solidified at 640–750°C. Based on cathodoluminescent study, inclusions with silicate-iron phases are observed separately or together with MI in the early and intermediate growth zones of quartz and sanidine crystals. Aggregates found in the inclusions are represented by loose matter consisting of silica with small admixture of Al, Na, K, and Cl; silicate-iron aggregates with wide variations of Fe and Si; essentially Fe-rich micaceous and mica-silicate-iron aggregates. They usually have variable composition (wt %): 30–60 SiO2, 10–25 Al2O3, 10–30 FeO, up to 3 TiO2, 1.5–4 MgO, up to 3 CaO, up to 3 Na2O, up to 3 K2O, and up to 4 P2O5. They presumably contain up to 10–15 wt % H2O. Some inclusions comprise large segregations of siderophyllite enriched in F (3–10 wt %) and Cl (0.1–3.3 wt %). Evolution of the rhyolitic melt from magmatic chamber to its vitrification after ejection led to the decrease of F content. The highest F content (1–1.8 wt %) is typical of MI glasses, while the lowest content (0.05–0.1 wt %) was found in the glassy matrix and rhyolitic samples. The melt degassing was accompanied by the release of F-rich fluid containing up to 1.3 wt % F (based on partition coefficient fluid/meltDF) or 0.2–0.8 mol/dm3 HF (based on composition of micas from matrix and inclusions). Segregations of silicate-iron media existed in the rhyolitic magma. During formation of rhyolitic pile, these media were in a liquid state. The silicate-iron fluid media captured in MI could not be true fluids or silicate melts. They were likely formed during fluid-magmatic interaction and transformation of fluid phases of different density (vapor and liquid true solutions) that existed in a F-rich melt. The high concentrations of F and Cl and elevated alkalinity of fluids contribute their enrichment in silica and other elements, which could lead to the formation of hydrosilicate liquids. It is suggested that such liquids (gels) in dispersed (colloidal) state extracted F and many trace elements (P, Ti, Mg, Ca, REE, As, Nb, Th, and V) from surrounding rhyolitic magma.  相似文献   

18.
Melt inclusions were investigated in olivine phenocrysts from the New Caledonia boninites depleted in CaO and TiO2 and enriched in SiO2 and MgO. The rocks are composed of olivine and pyroxene phenocrysts in a glassy groundmass. The olivine phenocrysts contain melt inclusions consisting of glass, a fluid vesicle, and daughter olivine and orthopyroxene crystals. The daughter minerals are completely resorbed in the melt at 1200?C1300°C, whereas the complete dissolution of the fluid phase was not attained in our heating experiments. The compositions of reheated and naturally quenched melt inclusions, as well as groundmass glasses were determined by electron microprobe analysis and secondary ion mass spectrometry. Partly homogenized melts (with gas) contain 12?C16 wt % MgO. The glasses of inclusions and groundmass are significantly different in H2O content: up to 2 wt % in the glasses of reheated inclusions, up to 4 wt % in naturally quenched inclusions, and 6?C8 wt % in groundmass glasses. A detailed investigation revealed a peculiar zoning in olivine: its Mg/(Mg + Fe) ratio increased in a zone directly adjacent to the glass of inclusions. This effect is probably related to partial water (hydrogen) loss and Fe oxidation after inclusion entrapment. The numerical modeling of such a process showed that the water loss was no higher than a few tenths of percent and could not be responsible for the considerable difference between the compositions of inclusions and groundmass glasses. It is suggested that the latter were enriched in H2O after the complete solidification of the rock owing to interaction with seawater. Based on the obtained data, the compositions of primary boninite magmas were estimated, and it was supposed that variations in melt composition were related not only to olivine and pyroxene fractionation from a single primary melt but also to different degrees and (or) depths of magma derivation.  相似文献   

19.
Gold mineralization of the Seolhwa mine occurs in a single stage of massive quartz veins which filled the north‐east‐trending fault shear zones in the Jurassic granitoid of 161 Ma within the Gyeonggi Massif. The vein quartz contains three main types of fluid inclusions at 25°C: (i) aqueous type I inclusions (0–15 wt.% NaCl) containing small amounts of CO2; (ii) gas‐rich (more than 70 vol. %), vapor‐homogenizing, aqueous type II inclusions; and (iii) low‐salinity (less than 5 wt.% NaCl), liquid CO2‐bearing, type III inclusions. The H2O‐CO2‐CH4‐N2‐NaCl inclusions represent immiscible fluids trapped earlier along the solvus curve in the temperature range 250–430°C at pressures of ~1 kb. Detailed fluid inclusion chronologies suggest a progressive decrease in pressure during the mineralization. Aqueous inclusion fluids represent either later fluids evolved through extensive fluid unmixing from a homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters. Initial fluids were homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluids as follows: 250° to 430°C, 16–62 mol% CO2, 5–14 mol% CH4, 0.06–0.31 mol% N2 and salinities of 0.4–4.9 wt.% NaCl. The T‐X data for the Seolhwa mine suggest that the hydrothermal system has been probably located nearer to the granitic melt, which facilitated the CH4 formation and resulted in a reduced fluid state indicated by the predominance of pyrrhotite. Measured and calculated isotopic compositions of the hydrothermal fluids [δ18O = 5.3–6.5‰; δD =?69 to ?84‰] provide evidence of the CH4‐H2O equilibria and further indicate that the auriferous fluids were magmatically derived. Both the dominance of δ34S values of sulfides close to the meteoric reference (?0.6–1.4‰; δ34SΣS values of 0.3–1.1‰) and the available δ13C data (?4‰) are consistent with their deep igneous source. The Seolhwa mine was probably formed by extensive fracturing and veining due to the thermal expansion of water derived from the Jurassic granitoid melt.  相似文献   

20.
H2O, CO2, and H2OCO2 inclusions were observed in quatz from deep-seated granitic intrusions belonging to the Precambrian Farsund plutonic complex, south Norway. These inclusions represent solidus and/or sub-solidus fluids that were present in these rocks at some period between the initial melt and the present. Early CO2 and H2OCO2 inclusions with about 20 mole% CO2 contain up to 10 mole% CH4 in the CO2 phase and have densities from 0.96 to 0.85 g/cc. These inclusions are considered to most nearly approximate solidus vapour phases and suggest conditions of final solidification of the magma at 5 to 6 Kb and 700°C to 800°C. The H2O inclusions have salinities between 2 and 60 wt%; the majority contain 5 to 20 equivalent wt.% NaCl and have densities from 1.05 to 0.85 g/cc. Microthermometry indicates that other cations such as K+, Ca2+ and / or Mg2+ are present in these aqueous fluids. The H2O inclusions primarily represent fluids present at a post-magmatic stage of fracturing and healing of these rocks during uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号