首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Printed circuit boards contain precious metals. They are produced in large volumes, rendering them an important component of the electronic waste. In view of the heterogeneity of the metals present, reprocessing of electronic waste is a heinous task. The present study focused on leaching of valuable metals from electronic waste printed circuit boards using Aspergillus niger DDNS1. The adaptation phases began at 0.1, 0.5 and 1.0% of fine powder of printed circuit boards with 10% inoculum and were optimized with three effective factors, viz. initial pH, particle size and pulp density, to achieve the maximum simultaneous recovery of the valuable metals. The interactions of these metals were also deciphered using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectrum and atomic absorption spectroscopy. The results indicated that extraction of the precious metals was accomplished mainly through the unique organic acids originating from A. niger DDNS1. The initial pH played an important role in the extraction of the precious metals and the metals precipitate formation. The leaching rate of the metals was generally higher at low powder dosage of printed circuit boards. The toxicity of the printed circuit boards had little effect on two-step bioleaching at the pulp density of 0.1% compared to one-step bioleaching. The two-step bioleaching process was followed under organic acid-forming conditions for the maximum mobilization of metals. Thus, the precious metals from printed circuit boards could be mobilized through fungal bioleaching which promises an important industrial application in recycling of electronic wastes.  相似文献   

2.
Research on recycling waste printed circuit boards is at the forefront of preventing environmental pollution and finding ways to recycle resources. A wet process for reclaiming metals from printed circuit boards applying a tapered diameter separation bed is described, and the separation mechanism of the device is proposed. The motion of a particle in the tapered diameter fluid flow field and particle separation within this field were studied. As the material passes through the fluid field, along with the water, differences in particle density, granularity, and shape cause particles to follow at different trajectories. A tapered diameter separation bed was used to process 1?C0.074?mm-sized crushed material from discarded printed circuit boards. The separation efficiency of 91.77?% and the recovery rate of 95.79?% for recovered metal were achieved with a discharge water flow rate of 4.5m3/h, a material feed rate of 300?g/min, and an obliquity of 30°. For ?0.074?mm printed circuit boards, the metal recovery is 93.42?% and the separation efficiency is 77.63?% when the water discharge is 2?m3/h, the obliquity is 35o, and the material feed rate is 450?g/min. The superfine products in a size range of ?0.074?mm can be recovered effectively under suitable operating condition using the tapered diameter separation bed. It indicates that the lower separation limit of the tapered diameter separation bed can be close to zero. The technique will prevent environmental pollution from waste printed circuit boards and allow efficient recovery.  相似文献   

3.
A number of previous studies established that the autoclave-mediated pretreatment enabled the efficient way of producing fermentable sugars from lignocellulosic residues. Hence, our emphasis was on studying the surface morphology of cassava stem to reveal its complex internal structure. In this study, combined organic (oxalic)–inorganic (sulfuric) acid was utilized for the pretreatment of cassava stem at 121 °C and 1 bar of pressure for 15 min. For the pretreatment, mixture containing 10 mL of 1% (w/v) of oxalic acid and 1% (w/v) sulfuric acid (5 mL each) was added to 1 g cassava stem and autoclaved. Pretreated samples were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet spectroscopy (UVS). FTIR spectral studies confirmed the removal of hemicellulose and lignin from the pretreated cassava stem (PCS) when compared with untreated cassava stem. SEM micrographs revealed the decimation in the surface of cassava stem after pretreatment. XRD motifs shown that crystallinity index of PCS decreased from 63 to 52%. Thus, this study established the structural modifications to unlock its valuable components for further applications.  相似文献   

4.
In this study, the changes of S DC curves (sum amount of dodecyl trimethyl ammonium cation and Ca2+/2 adsorbed on dodecyl dimethyl betaine-modified kaolin under different dodecyl trimethyl ammonium cation molar fractions) were analyzed to reveal the modification mechanism of cationic modifier (dodecyl trimethyl ammonium bromide) on amphoteric modified kaolin (kaolin modified by dodecyl dimethyl betaine). In addition, total organic carbon content and surface characteristics of different modified kaolins were analyzed using X-ray diffraction, specific surface area calculation, Fourier transform infrared spectroscopy, thermogravimetry, and scanning electron microscope. Results showed that: (1) “S DC” curves of compositely modified kaolin with dodecyl dimethyl betaine-modified ratios of 15, 30 and 60 % started to rise (appeared hydrophobic binding) at dodecyl trimethyl ammonium bromide-modified ratios of 16.80, 7.63, and 0.68 % (the critical point for different modification mechanisms), respectively. (2) Total organic carbon content of modified kaolins under different modification mechanisms showed hydrophobic modification mode > ion exchange and hydrophobic binding coexisting mode > ion exchange mode. Interlayer spacing showed no significant change under different modification modes. Specific surface area decreased slowly with enhanced hydrophobic modification mode. Fourier transform infrared spectroscopy and thermogravimetry results showed the modification effects of both dodecyl dimethyl betaine and dodecyl trimethyl ammonium bromide modification on kaolin surfaces. Scanning electron microscope results presented that the number of lamellar structures increased on clay surfaces with enhanced hydrophobic modification mode.  相似文献   

5.
Plastics are polymeric materials, and their disposal is a great problem in today’s society. Large quantities of single-use plastics are used every minute throughout the world. Peroxidase enzymes play a significant role in the biodegradation of polymeric materials due to oxidoreductase capability. The objective is to determine which set of conditions optimize the production of peroxidase enzymes by Phanerochaete chrysosporium so as to degrade polymeric materials. The sequential order of parameters in terms of their relevant performance in the bioprocess was determined as urea > polyvinyl chloride > incubation time > polyethylene > veratryl alcohol > sucrose > ammonium sulfate > glucose > ferrous sulfate and polystyrene. Statistical analysis was performed by using analysis of variance which indicated the significance of model Plackett–Burman and components on the basis of F value and P value of 0.012678 < 0.05. The Fourier transform infrared spectroscopy of enzyme-treated polymer revealed structural changes at 1091, 1638 cm?1. A new peak appeared at wave number 1029 and represented the aromatic ether and phenolic group as compared to control. Biosynthesis of lignin peroxidase at optimized conditions has the potential for biodegradation of recalcitrant polymeric waste, due to its oxidoreductase capability for chemically inert material in nature like lignin and can be used for waste treatment on a large scale.  相似文献   

6.
Batch sorption system using co-immobilized (activated carbon and Bacillus subtilis) beads as adsorbent was investigated to remove Cr(VI) from aqueous solution. Fourier transform infrared spectroscopy analysis showed the functional groups of both bacteria and activated carbon in co-immobilized beads. Experiments were carried out as a function of contact time (5–300 min), initial metal concentration (50–200 mg L?1), pH (2–8), and adsorbent dose (0.2–1 g L?1). The maximum percentage of removal was found to be 99 %. Langmuir model showed satisfactory fit to the equilibrium adsorption data of co-immobilized beads. The kinetics of the adsorption followed pseudo-second-order rate expression, which demonstrates that chemisorption plays a significant role in the adsorption mechanism. The significant shift in the Fourier transform infrared spectroscopy peaks and a Cr peak in the scanning electron microscope–energy dispersive spectroscopy spectra further confirmed the adsorption. The results indicate that co-immobilized beads can be used as an effective adsorbent for the removal of Cr(VI) from the aqueous solution.  相似文献   

7.
Dimethyl phthalate (DMP) is ubiquitous in aquatic environments due to extensively used as plasticizer, which has received increasing attention in recent years. In this study, the catalytic ozonation of dimethyl phthalate was performed using Ce-substituted goethite as a novel catalyst, which was prepared by isomorphous substitution method. The specific surface area, pHpzc and surface hydroxyl density of the catalyst were determined. The catalyst was characterized using X-ray diffraction, scanning electron microscope and Fourier transform infrared spectroscopy. The removal efficiency of DMP was almost 100% after 30 min, and about 40% DMP was mineralized after 60 min, which was nearly four times higher than single ozonation. During catalytic ozonation process, anions (PO4 3?, SO4 2?, Cl?) affected DMP degradation, indicating that surface hydroxyl groups on the surface of catalyst were main active sites. The electron transfer process by redox reaction between Ce3+/Ce4+, Fe2+/Fe3+ was proposed, and their interaction could also promote the formation of hydroxyl radicals. Ce-substituted goethite was an efficient catalyst for degradation of DMP by catalytic ozonation.  相似文献   

8.
Structural changes of synthetic opal by heat treatment   总被引:1,自引:0,他引:1  
The structural changes of synthetic opal by heat treatment up to 1,400 °C were investigated using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared and Raman spectroscopies. The results indicate that the dehydration and condensation of silanol in opal are very important factors in the structural evolution of heat-treated synthetic opal. Synthetic opal releases water molecules and silanols by heat treatment up to 400 °C, where the dehydration of silanol may lead to the condensation of a new Si–O–Si network comprising a four-membered ring structure of SiO4 tetrahedra, even at 400 °C. Above 600 °C, water molecules are lost and the opal surface and internal silanol molecules are completely dehydrated by heat effect, and the medium-temperature range structure of opal may begin to thermally reconstruct to six-membered rings of SiO4 tetrahedra. Above 1,000 °C, the opal structure almost approaches that of silica glass with an average structure of six-membered rings. Above 1,200 °C, the opal changes to low-cristobalite; however, minor evidence of low-tridymite stacking was evident after heat treatment at 1,400 °C.  相似文献   

9.
The accumulation of plastics in the environment is raising great concerns with respect to long-term environmental, economic and waste management problems. The aim of the present research was to investigate the biodegradability of starch blended polyvinyl chloride films in soil burial and controlled laboratory experiments using selective fungal isolates. Clear surface aberrations as color change and minor disintegration in polyvinyl chloride films were observed after 90 days and later confirmed through scanning electron microscopy. The fungal strains showing prominent growth and adherence on plastic films were isolated. One of the strains showing maximum activity was selected and identified as Phanerochaete chrysosporium PV1 by rDNA sequencing. Fourier transform infrared spectroscopy and nuclear magnetic resonance analyses indicated considerable structural changes and transformation in films in terms of appearance of new peaks at 3,077 cm?1 (corresponding to alkenes) and decrease in intensity of peaks at 2,911 cm?1 (C–H stretching). It was supported with a significant decrease in the molecular weight of polymer film from 80,275 to 78,866 Da (treated) through Gel permeation chromatography in shake flask experiment. Moreover, the biodegradation of starch blended polyvinyl chloride films was confirmed through release of higher CO2 (7.85 g/l) compared to control (2.32 g/l) in respirometric method. So fungal strain P. chrysosporium PV1 has great potential for use in bioremediation of plastic waste.  相似文献   

10.
The adsorption of cadmium from simulated mining wastewater by coal waste (CW) and calcination-modified coal waste (MCW) was investigated. Effects of pH, initial concentration, particle size of adsorbent, adsorbent dosage and temperature were studied in batch experiments. The adsorption efficiency for cadmium increased with increasing pH, and the optimum pH for cadmium adsorption onto MCW and CW was 6.0 and 6.5, respectively. Kinetic experiments showed that the adsorption equilibrium was reached within 120 min and followed pseudo-second-order model well. The adsorption isotherm data fit Langmuir and Freundlich models, and the adsorption capacity of cadmium on the two adsorbents increased with increasing temperature from 298 to 318 K. MCW had a higher adsorption capacity of cadmium than CW, because calcination treatment can make CW to have more loose structure and higher specific surface area. Thermodynamic parameters, the Gibbs free energy change (?G0), enthalpy change (?H0) and entropy change (?S0), were calculated and the results showed that the adsorption of cadmium on CW and MCW was spontaneous and endothermic. Fourier transform infrared studies indicated silanol and aluminol groups were responsible for cadmium binding. The desorption results indicated that the two adsorbents could be used repeatedly at least three times without significant decrease in the adsorption capacity for cadmium. The results suggested that modified CW could have high potential as low-cost adsorbent for cadmium removal.  相似文献   

11.
It is demonstrated that single titanium dioxide (TiO2) has high potential for photodegradation of pollutants. However, it is still far from becoming an effective photocatalyst system, due to issues of adsorption process, separation, as well as dissolution. Therefore, this study highlights the high adsorption capacity, simplified separation, and the promising stability of TiO2(SY) (synthesized via sol–gel method) photocatalyst, fabricated using chitosan–TiO2(SY) and supported by glass substrate (Cs–TiO2(SY)/glass substrate) photocatalysts. Chitosan (Cs), with abundant –R–NH and NH2 groups, promotes the adsorption sites of methyl orange (MO) and OH groups for major attachment to TiO2(SY). Meanwhile, the glass substrate increases stability and assists separation of the photocatalysts. Initially, nano-TiO2(SY) has been characterized using high-resolution transmission electron microscope. Cs–TiO2(SY)/glass substrate was fabricated via dip-coating. The distribution and interface between the photocatalytic components were characterized by Fourier transform infrared absorption spectroscopy, UV–Vis diffuse reflectance spectroscopy, field emission scanning electron microscopy, and energy-dispersive spectrometer. UV–Vis analysis of the multilayer photocatalyst (2, 4, 6, and 8 layers) was further carried out by the adsorption–photodegradation, with MO as model of pollutant. Seventy percent of the total removal of MO via optimized eight layers of photocatalyst was achieved within 1 h of UV irradiation. The adsorption photocatalyst achieved 50 % with no exposure to UV light for 15 min of irradiation. It is concluded that suitable photocatalytic conditions and sample parameters possessing the multilayer photocatalyst of Cs–TiO2(SY) are beneficial toward the adsorption–photodegradation process in wastewater treatment.  相似文献   

12.
Biofilms wasted from biotrickling filters was dried and used as biosorbent for Cd(II) removal from aqueous solutions. The adsorption condition and effect, adsorption isotherms and kinetics of Cd(II) removal were investigated, and the effects of competitive metal ions on Cd(II) removal were also examined. Results showed that the dry waste biofilms reached the maximum adsorption capacity of 42 mg/g of Cd(II) at 25 °C for 120 min when the initial concentration of Cd(II) and their pH were 50 mg/L and 6.0, respectively. Under these conditions, the removal efficiency of Cd(II) reached to 89.3% when the biosorbent dosage was 2.0 g/L. The Langmuir isotherm model correlated with the isotherm data better than the Freundlich isotherm model, and the pseudo-second-order model fitted the kinetic data better than the pseudo-first-order model. These results indicated that the adsorption was monolayer accompanied with chemical adsorption. In the presence of other metal ions, divalent metal ions of Ca and Zn inhibited the performance of Cd(II) biosorption significantly, while Na(I), K(I) and Fe(III) which had a higher or lower valence than Ca(II) affected slightly when containing 50 mg/L Cd(II), 0.5 g/L adsorbent dosage and pH 6.0. The analyses of scanning electron microscopy and Fourier transform infrared spectroscopy illuminated that the biosorbent had porous structures and the amide group was the majorly responsible for Cd(II) removal. Dry biofilms were novel sorbents for effective removal Cd(II), and it could be reused and recycled if necessary.  相似文献   

13.
This study focuses on the performance of nanostructured banana peels in lanthanide-laden mine water treatment. Specifically, nanostructure formation via mechanical milling, characterization in detail and application of this sorbent media in rare earth elements (REEs) removal from synthetic and real mine water are thoroughly investigated. The sorbent samples were characterized by transmission electron microscopy, Brunauer–Emmett–Teller, X-ray diffraction and Fourier transform infrared analyses, while the amount of REEs adsorbed was analysed using inductively coupled plasma optical emission spectroscopy. Results revealed that the particle and crystallite sizes were reduced from <65,000 to <25 nm and 108 to 12 nm, respectively, as the milling progressed. Furthermore, the fracture of particles resulted in a surface area increment from 1.07 to 4.55 m2 g?1. Through Fourier transform infrared analysis, the functional groups responsible for the coordination and removal of metal ions were found to be carboxylic group (at absorption bands of 1730 cm?1) and amine groups (889 cm?1). The Langmuir maximum adsorption capacity was 47.8 mg g?1 for lanthanum and 52.6 mg g?1 for gadolinium. Meanwhile, results revealed that banana peels have a high affinity for Sm, Eu, Nd, Pr, Gd, Tb and Lu compared to other lanthanides present in the mine water samples. The results obtained so far indicate that nanostructured banana peel is a potential adsorbent for REEs removal from mine water. However, for any application, the water matrix to be treated substantially influences the choice of the sorbent material.  相似文献   

14.
The need for renewable environmentally friendly energy resources is growing every day. Biodiesel is one of the most promising alternatives to the conventional non-renewable energy resources. Heterogeneous catalysts proved a high efficiency in the transesterification of oils to produce biodiesel. In this research, activated carbon was tested as a heterogeneous catalyst in the transesterification of two non-edible oils (waste cooking oil and Jatropha oil) with methanol to produce biodiesel. Activated carbon was characterized using X-ray diffraction, scanning electron microscope and Fourier transformed infrared. The effect of different operating parameters, namely operation time (30, 60, 120 and 180 min), alcohol-to-oil molar ratio (4:1, 6:1, 8:1 and 10:1), catalyst loading [0.5, 1, 2, 3 and 5% (w/w)] and rotational speed (100, 200, 300 and 400 rpm), was investigated. Results showed that increasing the operational time, the alcohol-to-oil molar ratio and the catalyst loading increases the conversion to biodiesel but only to some extent; increasing the stirring rate was found to be beneficial to the process. The optimum conditions were found to be 2 h of heating, 6:1 alcohol-to-oil ratio, 1 wt% catalyst loading and 400 rpm stirring. Under optimum conditions, the conversion to biodiesel reached 93.95 and 93.27% for the waste cooking oil and the Jatropha oil, respectively. The properties of the obtained biodiesel (density, viscosity, flash point, pour point and cloud point) were measured giving promising results.  相似文献   

15.
Magnesium hydroxide-coated pyrolytic bio-char composite was prepared by chemical precipitation, and the adsorption behavior of anionic dye (directly frozen yellow) onto magnesium hydroxide-coated pyrolytic bio-char was investigated in the batch mode. The Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy and X-ray fluorescence spectroscopy of adsorbents were characterized. Adsorption studies were performed at different pH, salt concentration, contacting time and dye concentration. The pH value of the solution influenced the adsorption capacity significantly, and adsorption is favored of pH 6–8. Salt coexisted in solution increased slightly directly frozen yellow adsorption capacity. The isotherm data were analyzed by Langmuir and Freundlich isotherm model, and Langmuir model was better to predict the equilibrium data. Thermodynamic calculations showed that the adsorption was a spontaneous and endothermic process. Exhausted magnesium hydroxide-coated pyrolytic bio-char was treated by microwave irradiation, and yield of regeneration was 98 % in the case of microwave irradiated time 5 min at 320 W. The magnesium hydroxide-coated pyrolytic bio-char can be reused.  相似文献   

16.
In the present study, the effectiveness of physicochemical treatment processes (coagulation and Fenton’s oxidation) was investigated for simulated dairy wastewater (pH = 7.3, chemical oxygen demand (COD) = 3600 mg/l, 5-day biochemical oxygen demand (BOD5) = 1950 mg/l, total Kjeldahl nitrogen (TKN) = 87 mg/l, and total phosphorous (TP) = 14 mg/l). Plain and ballasted coagulation runs were carried out in a jar apparatus, while Fenton’s oxidation was performed in a three-neck glass reactor. Ballasted coagulation caused an enhancement in the settling rate of sludge though no significant enhancement in the removal of organics was observed. Individually, coagulation and Fenton’s oxidation processes resulted in ~67 and 80 % COD removals, respectively, from the wastewater. The sequential treatment exploring coagulation followed by Fenton’s oxidation showed overall COD, BOD5, TKN, and TP reductions of ~93, 97, 84, and 70 %, respectively, from the wastewater. However, a biological post-treatment would be required to achieve the effluent discharge standards. The removal of proteins, fats, and amino acids from wastewater was confirmed from Fourier transform infrared analysis of the settled sludge (obtained after coagulation process). Preliminary cost analysis suggested coagulation and the sequential treatment (i.e. coagulation followed by Fenton’s oxidation) as the preferred options.  相似文献   

17.
Reverse osmosis (RO) concentrate generated from tannery was treated by advanced electrochemical oxidation using graphite electrodes. Catechol was selected as model organic pollutant in the RO concentrate. The influence of applied current density, catechol concentration, pH, temperature and inner electrode space of electrodes was investigated in electrochemical oxidation system. The optimized conditions were found to be current density (j), 100 mA/cm2; electrolysis time (t eco), 60 min; pH, 7.0; and temperature, 25 °C at an inner electrode space, 2 cm. The average mass transport coefficient for the removal of catechol as COD was found to be 3.0 × 10?5 m/s at optimum conditions. Faradic efficiency and specific energy consumption were also calculated for the applied current density. Further, the treatment of catechol was confirmed through Fourier transform infrared spectroscopy. Theoretical evaluation of current density suggested that the removal of catechol was controlled when supplied at above limiting applied current densities and mass transport controlled at lower of limiting current densities.  相似文献   

18.
Here, a novel one-dimensional composite of poly(m-phenylenediamine)s coating on filamentous Streptomyces was successfully constructed via a controllable polymerization reaction. The synthesized composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Their adsorption isotherm and kinetics for aqueous hexavalent chromium were also systematically examined. The results of scanning electron microscopy analysis indicated that the obtained composites based on Streptomyces were showed a uniform and stable one-dimensional morphology with distinct core–shell configuration. Moreover, the Langmuir isotherm model (R 2 > 0.96) and pseudo-second-order equation (R 2 = 0.9996) described well the equilibrium adsorption behavior and kinetics of hexavalent chromium adsorption by the composites. In addition, bath adsorption experiments demonstrated the highest adsorption capacity of hexavalent chromium by the composites reached 320.03 mg g?1 in an acid solution, which was 5.6 times as that of the pure Streptomyces filaments. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses suggested that the adsorption of hexavalent chromium by the composites possibly involved the protonation, redox, and chelation reactions. Therefore, a promising application of these composites in treating acid hexavalent chromium-contaminated wastewater is expectable.  相似文献   

19.
Bimetallic Fe/Ni nanoparticles were synthesized and used for the removal of profenofos organophosphorus pesticide from aqueous solution. These novel bimetallic nanoparticles (Fe/Ni) were characterized by scanning electron microscopy, energy-dispersive X-ray analysis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The effect of the parameters of initial pesticide concentration, pH of the solution, adsorbent dosage, temperature, and contact time on adsorption was investigated. The adsorbent exhibited high efficiency for profenofos adsorption, and equilibrium was achieved in 8 min. The Langmuir, Freundlich, and Temkin isotherm models were used to determine equilibrium. The Langmuir model showed the best fit with the experimental data (R 2 = 0.9988). Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were tested to determine absorption kinetics. The pseudo-second-order model provided the best correlation with the results (R 2 = 0.99936). The changes in the thermodynamic parameters of Gibb’s free energy, enthalpy, and entropy of the adsorption process were also evaluated. Thermodynamic parameters indicate that profenofos adsorption using Fe/Ni nanoparticles is a spontaneous and endothermic process. The value of the activation energy (E a = 109.57 kJ/mol) confirms the nature of the chemisorption of profenofos onto Fe/Ni adsorbent.  相似文献   

20.
Indole is a highly recalcitrant aromatic heterocyclic organic compound consisting of a five-membered nitrogen-containing pyrrole ring fused to a six-membered benzene ring. This study presents the results of the electro-chemical mineralization of indole in an aqueous solution using platinum-coated titanium (Pt/Ti) electrode. A central composite design was used to investigate the effect of four parameters namely initial pH (pHo), current density (j), conductivity (k) and treatment time (t) at 5 levels. Multiple responses namely chemical oxygen demand (COD) removal (Y 1) and specific energy consumption (Y 2) were simultaneously maximized and minimized, respectively, by optimizing the parameters affecting the mineralization of indole by using the desirability function approach. At the operating conditions of pH 8.6, j = 161 A/m2, k = 6.7 mS/cm and t = 150 min, 83.8% COD removal with specific energy consumption of 36.3 kWh/kg of COD removed was observed. Ultra performance liquid chromatography, UV–visible spectroscopy, Fourier transform infrared spectroscopy and cyclic voltammetry of the indole solution were performed at the optimum condition of the treatment so as to report a plausible mechanism of indole degradation. Field emission scanning electron microscopy analysis of electrodes before and after treatment was performed for determining the changes on anode surface during the treatment. Thermal analysis of the solid residue (scum) obtained was also performed for exploring its disposal prospects. Present study shows that electro-chemical oxidation can be used for mineralization of nitrogenous heterocyclic compounds such as indole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号