首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pegmatites and aplites enriched in P, Be, Nb, Ta and Li occur in the high-temperature metamorphic lithological units of the NE Bavarian Basement, SE Germany. They are accompanied by Ba mineralization, in vein-type deposits in the basement as well as in its foreland. Locally, Ba minerals are encountered in the late Variscan pegmatites and aplites too. The shallow discordant stock-like pegmatites (Hagendorf-type) are barren as to Ba, but in the tabular, concordant aplites and pegmatites Ba was concentrated (Plössberg-type). These concordant pegmatites and aplites are supposed to be the root zone of the intrusive pegmatites. In the rare case of low sulfur fugacity, Ba forms Ba–Zr–K–Sc phosphates/silicates in the pegmatites (transition of magmatic into the hydrothermal stages I/II). Under high sulfur fugacity, Ba is accommodated within the same stages in the structure of baryte. Barium is not accommodated in the lattice of phosphates during or in the immediate aftermaths of the emplacement of these Be–P–Nb–Ta pegmatites (stage III). This element shows up again in APS minerals during supergene alteration under acidic conditions (stage IV). Considering the host rocks of baryte mineralization, the Sr contents of baryte increased from the early Paleozoic to the Late Triassic. The Sr contents of baryte are a function of the depth below ground in the vein-type deposits and in the shear-zones bounding the tabular concordant pegmatites. Beryl is not only a marker mineral for the shear-zone-hosted pegmatites but can also be used as a tool for the geodynamic positioning of these pegmatites using its oxygen isotopes. A subdivision of the pegmatites into intrusive and shear-zone hosted may be achieved by its REE and minor elements.  相似文献   

2.
Summary Four types of pegmatites comprise the zoned pegmatite field in the eastern sector of the Albera Massif. Type I is represented by barren pegmatites with graphic textures; type II comprises transitional varieties with Li-Fe-Mn phosphates, Be (chrysoberyl) and scarce Nb-Ta and U oxide minerals; type III consists of pegmatites with significant zones of replacement containing Li-Fe-Mn phosphates, beryl and more abundant Nb-Ta oxide minerals; and type IV, muscovite-quartz-albite pegmatites are highly mineralized with Be, Nb-Ta and HREE. REE mineralization is strongly related to abundance of graphite in the late pegmatite units and in the host-rock. The individual pegmatite types are distributed within four subparallel zones concentric around anatectic muscovite-biotite leucogranites, with type I within the granites or close to the contact, and type IV pegmatites in the outermost areas. The zoning from type I to type IV could relate to fractionation processes which generated the pegmatites and is characterized by an enrichment of Mn, Ta, Na, Li, P, Be and REE. According to the pegmatite distribution and their fractionation trends, we propose an origin by differentiation of a granitic melt.
Résumé On a établi quatre types de pegmatites dans le champ pegmatitique zoné du secteur est du Massif des Albères (Pyrénées Orientales, France). Celles de type I sont des pegmatites non minéralisées avec des textures graphiques, celles de type II sont des variétés intermediaires avec des phosphates à Li-Fe-Mn, Be (chrysobéryl) et des rares oxides à Nb-Ta et U; celles de type Ill sont des pegmatites avec des zones de réplacement bien dévéloppées et qui contiennent des phosphates à Li-Fe-Mn, du béryl et des oxides à Nb-Ta plus abondants; celles de type IV sont des pegmatites bien minéralisées à Be, Nb-Ta et des T.R. La minéralisation à T.R. est liée à des phénomènes de graphitisation répandus dans les unités tardives de la pegmatite et dans l'encaissant. La distribution de chaque type de pegmatite correspond à quatre zones à peu près parallèles et concentriques autour des granites anatectiques à muscovite-biotite, avec le type I dans les granites ou prochain au contact, et les pegmatites à type IV dans la bande plus externe. La zonation serait due à des processus de fractionnement qui auraient généré les pegmatites et qui sont caracterisés par un enrichissement en Mn, Ta, Na, Li, P, Be et T.R. dès les pegmatites de type I vers celles de type IV. On propose un origine par différentiation des granites en vue de la distribution des pegmatites.


With 5 Figures  相似文献   

3.
Minerals of the triphylite-lithiophilite, Li(Fe, Mn)PO4, and the triplite-zwieselite-magniotriplite series, (Mn, Fe, Mg)2PO4F, occur in the late stage period of pegmatite evolution. Unfortunately, neither are the genetic relationships between these phosphates fully understood nor are thermodynamic data known. Consequently, phosphate associations and assemblages from 8 granitic pegmatites — Clementine II, Rubicon II and III, and Tsaobismund (Namibia); Hagendorf-Süd and Rabenstein (Germany); Valmy (France); Viitaniemi (Finland) — have been tested for compositional zoning and intercrystalline partitioning of main elements by electron microprobe techniques. Although the selected pegmatites display varying degrees of fractionation, and the intergrowth textures indicate different genetic relationships between the phosphates, the plots of mole fractions X Fe=Fe/(Fe+Mn+Mg+Ca), X Mn=Mn/(Fe+Mn+Mg+Ca), and X Mg=Mg/(Fe+Mn+Mg+Ca) can be fitted relatively well with smooth curves in Roozeboom diagrams. Their deviations from symmetrical distribution curves are mainly dependent upon X Mg or X Ca, and upon non-ideal solutions. Surprisingly small differences between the partition coefficients were detected for intergrowths of different origin. However, the partitioning of shared components among coexisting phases is clearly dependent upon the conditions of formation. Compositional zoning is observed only when both Fe–Mn phosphates are intergrown mutually or with other Fe–Mn–Mg mineral solid-solutios. Thus, the zoning does not seem to be due to continuous crystallization, but to later diffusion processes. The triplite structure has preference for Mn, Mg, and Ca, while Fe prefers minerals of the triphylite series. A quantification of main element fractionation between minerals of the triphylite and the triplite series is possible in the cases where diffusion can be excluded. For the Fe/(Fe+Mn) ratios of core compositions an equation with a high correlation coefficient (R=0.988) was determined: Fe/(Fe+Mn)Tr=[Fe/(Fe+Mn)Li]/{2.737-(1.737)[Fe/(Fe+Mn)Li]} (Tr=triplite series, Li=triphylite series). Consequently, the Fe/(Fe+Mn) ratio of the triplite series can now also be used in the interpretation of pegmatite evolution, just like that of the triphylite series which has been successfully applied in the past.  相似文献   

4.
Summary Titanian ferrocolumbite is a rare accessory mineral in the spodumene-bearing pegmatites at Weinebene, Carinthia, Austria. It contains abundant exsolved niobian rutile and scarce inclusions of cassiterite that may be primary. The titanian ferrocolumbite is relatively homogeneous with Mn/(Mn + Fe) 0.24–0.33, Ta/(Ta + Nb) 0.09–0.13 (atomic ratios) and 0.47–0.88 Ti per 12 cations (2.7–5.0 wt.% TiO2). Natural specimens are considerably disordered but become more ordered on heating. Niobian rutile has Mn/(Mn + Fe) 0.00–0.04 and Ta/(Ta + Nb) 0.26–0.38; it concentrates Fe, Ta, Ti and Sn relative to the Mn- and Nb-enriched ferrocolumbite. The overall scarcity of Nb, Ta-oxide minerals in the spodumene-bearing pegmatites of southern Ostalpen conforms to their general features ranking them with the albite-spodumene type of rare-element pegmatites.With 4 Figures  相似文献   

5.
新疆大红柳滩伟晶岩型锂矿床近年来找矿取得了新进展。我们在该地区典型锂矿脉(90-1号)首次鉴定出磷铁锂矿,其在伟晶岩中呈树枝状、团簇状集合体分布岩脉的边缘带和中部。边缘带尤为富集磷铁锂矿,含量可达10%~15%。本文系统地开展了磷铁锂矿的岩相学和矿物学研究。利用电子探针和激光剥蚀等离子质谱测定了脉体边缘带和中间粗粒锂辉石-白云母-石英带磷铁锂矿的主微量元素含量。结果表明,磷铁锂矿除含有主要元素P、Fe、Mn及Li外,还含有较高的Mg、Ca和Zn,几乎不含高场强元素、稀土元素。综合电子探针和LA-ICP-MS分析结果,认为伟晶岩脉中部分磷铁锂矿已被氧化,成分向铁磷锂锰矿过渡。从脉体的边缘带往中间带,磷铁锂矿中Mg和Zn平均含量下降,而Mn/(Mn+Fe)比值由0.388升至0.409,显示逐渐富Mn特点,与前人关于花岗伟晶岩熔体演化过程中Fe-Mn的分离趋势一致,也与该伟晶岩脉中铌钽铁矿早期演化阶段Mn/(Mn+Fe)比值变化趋势相同;磷铁锂矿被晚期氟磷灰石部分交代,反映伟晶岩演化至热液阶段F、Ca活度增加。表明该矿物可以很好的记录伟晶岩岩浆及热液阶段的演化。  相似文献   

6.
A detailed mineralogical investigation using the classical methods of identification by X-ray diffraction and by optical properties in thin sections, has revealed thirty one phosphate minerals occurring in the Tsaobismund pegmatite. This investigation is complemented by wet chemical and, mainly, electron microprobe analyses performed on the phosphates known to be typomorphic or considered to be relevant to the hydrothermal alteration. Additionally, microprobe analyses are also given for garnet, gahnite, and ferrocolumbite associated with the phosphates. On the basis of their chemical composition, particularly in terms of their Fe, Mn, and Mg contents, three types of triphylites are distinguished. Triphylite 1 only occurs as a primary phase, triphylite 2 shows exsolution lamellae of sarcopside, and triphylite 3 is partly replaced by a fluorophosphate of the triplite-zwieselite series. These minerals constitute three generations of the parent phases, which were progressively transformed by metasomatic processes, hydrothermal alteration, and by weathering, to give finally three types of complex associations. The Li(Fe,Mn)PO4 minerals appear to be more sensitive to such transformations than those of the (Fe,Mn)2PO4F series. Four main stages of hydrothermal alteration processes have been recognized in the Tsaobismund pegmatite: (i) the Mason-Quensel sequence results from a progressive oxidation of Fe and Mn, and a concomitant Li-leaching of triphylite yielding ferrisicklerite and heterosite, successively; (ii) the metasomatic exchange of Na for Li produces alluaudite; in the present case, the formation of hagendorfite from triphylite 2 is considered to be earlier than the generation of alluaudite-Na occurring in the three associations; (iii) the hydration phase mainly transforms the parent Li(Fe,Mn)PO4 phase into grey hureaulite, associated with barbosalite and tavorite; (iv) the formation of fluorapatite, not particularly widespread, replaces alluaudite-Na, as well as zwieselite s.l. The following crystallization sequence of the initially formed phosphate minerals is proposed: triphylite 1 triphylite 2 + sarcopside (associated with garnet) triphylite 3 + zwieselite s.l. The most prominent feature of this succession is the increase in the Mg and Zn contents in the composition of the phosphates, as well as the decrease in their Li contents. The variations of the Fe/Mn ratios in this sequence are discussed. The succession triphylite-zwieselite within weakly differentiated and Li-poor pegmatites is of general significance.  相似文献   

7.
Compositional variation (results of electron microprobe analyses and mass-spectrometry analyses) of columbite-group minerals (CGM) from fully differentiated albite–spodumene pegmatites at Kolmozero in the Kola Peninsula is evaluated. Concentric zoning, typical of rare-metal pegmatites, was not observed in the Kolmozero pegmatites. Columbite-group minerals occur in all main parageneses of the pegmatites and form four generations, reflecting the sequence of pegmatite formation. These minerals demonstrate wide variations in the content of major and trace elements. The composition of CGM ranges from columbite-(Fe) to tantalite-(Mn). Fractionation trends were observed in Mn/(Mn + Fe) versus Ta/(Ta + Nb) diagrams and trace-element abundances plotted versus XTa and XMn. The early CGM paragenesis is characterized by homogeneous, oscillatory and progressive oscillatory zoning and corresponds to a primary magmatic type. Late-generation CGM show patchy irregular internal textures replacing earlier regular patterns of zoning. The irregular zoning points to metasomatic replacement processes. For the first time, it is shown that distributions of rare earth elements (REE) in CGM reflect the evolution of a pegmatite-forming system. At Kolmozero, the main trend of REE variation from early to late generations of CGM involves decreasing total REE contents due to a decrease in heavy REE and Y, decreasing negative Eu anomaly and decreasing magnitude of M-shape tetrad effect between Gd and Ho. These changes are accompanied by gradual flattening of the “bird-like” patterns of chondrite-normalized REE distribution. All these features are typical for late differentiates of granitic volatile-rich magma. Late metasomatic tantalite-(Mn) is characterized by sharp changes in its REE distribution pattern: decreasing total REE contents, changing shape of the REE distribution pattern, the absence of Eu anomaly and tetrad effects, and the appearance of a negative Ce anomaly. The textural characteristics and mineral chemistry of CGM indicate that the pegmatite-forming system underwent several stages of evolution. The earliest magmatic stage can be divided into two sub-stages, involving direct crystallization and collective recrystallization, respectively, and was succeeded by a late hydrothermal–metasomatic post-magmatic stage. Variations in chemical composition among the different generations of CGM are explained by the interplay of several processes: fractional crystallization; competitive crystallization of main rock-forming (feldspar, muscovite, spodumene) and accessory (triphylyte–lithiophilite, spessartine, fluorapatite, zircon, microlite) minerals; and evolution of the mineral-forming environment from a melt to a hydrothermal–metasomatic fluid.  相似文献   

8.

东秦岭地区是我国重要的花岗伟晶岩区及稀有金属成矿区。电气石在东秦岭各类花岗伟晶岩中广泛发育,通常在无矿化伟晶岩、铍矿化及锂矿化伟晶岩中呈黑色-深蓝色。本文旨在通过各类伟晶岩中电气石的对比研究揭示电气石地球化学特征对东秦岭伟晶岩矿化类型的指示作用。本文所研究电气石为作为东秦岭各类伟晶岩贯通矿物的黑电气石系列。在双峰村、碾盘及风原无矿化伟晶岩中,黑电气石生长环带发育,单偏光下呈蓝绿色-棕色,具有较高的Mg、Ti、Sc含量,较低Li、Mn、Zn含量,δ11B值变化较大(约-19.00‰~-12.00‰)。街子沟富铍伟晶岩中黑电气石单偏光下呈蓝色-草绿色,Ti、V、Sc含量低于无矿化伟晶岩中黑电气石,δ11B值约-16.00‰~-12.00‰。丰庄伟晶岩具弱铌钽矿化,黑电气石具有核-边结构,单偏光下呈蓝色-深蓝色,比无矿化和铍矿化伟晶岩中黑电气石含有更高Li、Zn含量,δ11B值-21.92‰~-14.75‰。在蔡家沟Li矿化伟晶岩中,黑色-深蓝色电气石Li2O含量达到约1.0%,成分上过渡至黑电气石-锂电气石系列,具有最高Li、Mn、Zn含量,而Mg、Ti、Sc、V含量极低,其δ11B值-18.96‰~-16.89‰。硼同位素分析揭示碾盘、风原及丰庄伟晶岩中存在两类电气石,Ⅰ类电气石富重B同位素,可能为较早从伟晶岩熔体中结晶形成;而Ⅱ类电气石具有更负的δ11B值,可能为伟晶岩流体出溶时由流体中晶出。流体出溶导致围岩中形成热液电气石,其δ11B值与伟晶岩中Ⅱ类电气石相似,表明出溶流体与围岩的作用并未导致显著的B同位素分馏。但伟晶岩与围岩之间的作用,使得Mg、Ti、V进入伟晶岩,同时Li、B、Al进入围岩。在研究区内,从无矿化至锂矿化伟晶岩,随伟晶岩分异程度增加,岩浆成因的黑电气石中Li、Mn、Zn、F含量升高而δ11B值降低,表明黑电气石的Li、Mn、Zn及F含量和B同位素组成可以有效指示伟晶岩矿化类型。

  相似文献   

9.
东秦岭地区和阿尔泰造山带均产出大量稀有金属伟晶岩,是中国重要的稀有金属产地。前者工作程度低,远景尚不明朗;后者规模巨大。开展成矿条件对比研究十分必要。东秦岭地区产出铍矿、锂矿和复杂稀有金属矿,以锂矿化为主,伟晶岩类型复杂,包括绿柱石-铌铁矿型、复杂型锂辉石亚型、复杂型锂云母亚型和钠长石-锂辉石型。阿尔泰稀有金属伟晶岩发育多种稀有金属矿化组合,伟晶岩类型为绿柱石-铌铁矿型、复杂型锂辉石亚型和钠长石-锂辉石型。东秦岭稀有金属伟晶岩的内部结构分带型式包括对称分带结构、均一结构和分层结构,阿尔泰稀有金属伟晶岩以对称分带结构为主,也见均一结构。东秦岭与阿尔泰稀有金属矿石矿物相近,东秦岭产出更多含锂磷酸盐矿物。东秦岭稀有金属伟晶岩分异演化程度相对集中且高,阿尔泰稀有金属伟晶岩分异演化程度跨度大。东秦岭和阿尔泰锂矿的锂矿化主要发生于岩浆就位前,复杂稀有金属矿稀有金属富集作用发生在岩浆就位前和就位后,但阿尔泰复杂稀有金属矿经历了更为复杂和极度的分异演化过程。东秦岭稀有金属伟晶岩可能与同期花岗岩为同一熔融事件的产物,与早期花岗岩来自同一物质来源。阿尔泰稀有金属伟晶岩与花岗岩关系复杂,但大量早期花岗岩的形成提高了地壳成熟度,有利于形成晚期稀有金属伟晶岩。东秦岭稀有金属伟晶岩产出于北秦岭单元中,形成于晚造山和造山后阶段,集中于造山后阶段,稀有金属矿化呈多期断续叠加特征。阿尔泰稀有金属伟晶岩主要产出于琼库尔-阿巴宫地体和中阿尔泰山地体内,集中于造山后和非造山阶段。伟晶岩岩浆活动受控于物质来源和造山作用。储存稀有金属的岩石在造山作用中熔融,发生多期的大规模花岗质岩浆活动,稀有金属通过长期复杂的分异演化过程在残余熔体中不断富集。这种富挥发分和稀有金属的过铝质硅酸盐岩浆随后上升就位,可经后续冷却结晶和不混溶作用进一步富集稀有金属,从而形成稀有金属伟晶岩。东秦岭具有形成含稀有金属高度分异演化岩浆的有利条件,该区具有寻找铍矿和复杂稀有金属矿的潜力。  相似文献   

10.
Biotites from unaltered Sn granites in southeastern Australia are highly ferroan, Fe/(Fe+Mg+Mn) >0.75, whereas biotites from barren granites are less Ferich, Fe/(Fe+Mg+Mn)<0.65. Similar distinctions between Sn-specialized and barren granites can be observed in the other phyllosilicates, especially chlorite. Biotites and muscovites from Sn granites have greater Be, Cs, (F), Li, Mo, Rb, Sc, Sn, Tl, (Y) and Zn and lesser Ba abundances than corresponding micas from barren granites in the same district. Alteration of barren granites also results in similar enrichments in micas. Of these elements, Sn and Zn, because of their abundance and retention during degradation of biotite to chlorite, are the best trace element discriminants between barren granites and Sn granites/altered granites, with the Sn content of phyllosilicates being a better indicator than Zn. Rutile inclusions within phyllosilicates from unaltered Sn granites have Nb2O5 contents up to 26%. The Ta content tends to increase with Nb content but especially high Ta contents occur in the rutile inclusions of granites that give rise to pegmatitic deposits. The rutile inclusions in Sn granites may also have substantial Sn and W contents. The rutiles of barren granites have low Nb, Ta, Sn and W contents but Sn and W increase with alteration. Together, the ratio Fe/(Fe+Mg+Mn) and Sn contents in phyllosilicates and rutile compositions can be used to identify the Sn mineralization potential of a granite.  相似文献   

11.
华南晚中生代幕阜山花岗复式岩基内部及周缘广泛发育花岗伟晶岩脉,部分岩脉富含Li-Nb-Ta等元素,形成大型-超大型稀有金属矿床.本文以幕阜山北缘断峰山地区贫锂伟晶岩类和南缘仁里地区新发现的富锂伟晶岩为主要研究对象,通过详细的岩相学和主要及特征矿物(长石、云母、电气石、石榴子石、绿柱石、铌钽铁矿)的微区原位EPMA和LA-ICP-MS主微量元素地球化学的对比分析,深入探讨了伟晶岩的分类、成因演化及成矿潜力.按照特征矿物组合将伟晶岩划分为断峰山地区电气石伟晶岩、电气石-绿柱石伟晶岩、绿柱石伟晶岩、铌钽铁矿-绿柱石伟晶岩和仁里地区的锂电气石-锂云母伟晶岩5类.5类岩脉中的长石、云母、电气石和/或石榴子石的化学成分记录了不同程度花岗伟晶岩脉的演化阶段,按岩浆演化程度由低至高依次为电气石伟晶岩→电气石-绿柱石伟晶岩→绿柱石伟晶岩→铌钽铁矿-绿柱石伟晶岩→锂电气石-锂云母伟晶岩,并分别对应伟晶岩稀有金属富集程度分类中的无矿→(含Be)→富Be→富Be、Nb、Ta→富Li、Be、Nb、Ta阶段.这一结果表明仁里地区伟晶岩已演化至晚期富集多种稀有金属元素阶段,具有Li-Nb-Ta多金属成矿潜力,而断峰山地区的伟晶岩演化程度相对较低.断峰山电气石-绿柱石伟晶岩中的色带电气石晶体发育强烈成分环带,由内向外可明显分为5环,自核部至边部,Li、Zn、Ga、Ge、Nb、Ta、Sn、Pb等不相容元素和金属元素含量逐渐升高,清晰记录了正常岩浆演化序列及稀有金属富集过程.结合前人有关幕阜山花岗岩类的研究资料,本文认为幕阜山伟晶岩为该地区晚中生代巨量花岗质岩浆经历长期结晶分异作用晚期的分异产物.   相似文献   

12.
The geochemistry of K‐feldspar for K, P, Sr, Ba, Rb, Cs, Ga, and of muscovite for the same elements plus Nb and Ta, was used for proving the parental relationships of S‐type granites and LCT (Li, Cs, Ta) rare‐element pegmatites in the southernmost pegmatitic field of the Pampean pegmatite province in Argentina. The variation of K/Rb‐Cs, K/Cs‐Rb, K/Rb‐Rb/Sr, K/Rb‐Ba in K‐feldspar from the granites and pegmatites show that they form an association with the evolutional sequence: granites → barren‐ to transitional pegmatites → beryl type, beryl‐columbite‐phosphate pegmatites → complex type of spodumene subtype pegmatites → albite‐spodumene type → albite type pegmatites. This sequence reflects the regional distribution of the different magmatic units. The Ta‐Cs diagram for muscovite reveals that none of the studied pegmatites exceed the threshold established in previous studies for being considered with important tantalum oxide mineralization. The granites and pegmatites constitute a rare‐element pegmatitic field in which different magmatic units form a continuous fractionation trend, extended from the less evolved granitic facies to the most geochemically specialized pegmatites  相似文献   

13.
Tantalum, an important metal for high-technology applications, is recovered from oxide minerals that are present as minor constituents in rare-metal granites and granitic rare-element pegmatites. Columbite-group minerals (CGM) account for the majority of the current tantalum production; other Ta–Nb oxides (TNO) such as tapiolite, wodginite, ixiolite, rutile and pyrochlore-supergroup minerals may also be used.In this paper mineralogical and geochemical data with a focus on opaque minerals as well as age determinations on CGM using the U–Pb method are presented for 13 rare-element granite and pegmatite districts in Africa, covering Archean, Paleoproterozoic, Neoproterozoic, Paleozoic and Mesozoic provinces. Geological, economic and geochronological data are reviewed.Each period of Ta-ore formation is characterised by peculiar mineralogical and geochemical features that assist in discriminating these provinces. Compositions of CGM are extremely variable: Fe-rich types predominate in the Man Shield (Sierra Leone), the Congo Craton (Democratic Republic of the Congo), the Kamativi Belt (Zimbabwe) and the Jos Plateau (Nigeria). Mn-rich columbite–tantalite is typical of the Alto Ligonha Province (Mozambique), the Arabian–Nubian Shield and the Tantalite Valley pegmatites (southern Namibia). Large compositional variations through Fe–Mn fractionation, followed by Nb–Ta fractionation are typical for pegmatites of the Kibara Belt of Central Africa, pegmatites associated with the Older Granites of Nigeria and some pegmatites in the Damara Belt of Namibia. CGM, tapiolite, wodginite and ixiolite accommodate minor and trace elements at the sub-ppm to weight-percent level. Trace elements are incorporated in TNO in a systematic fashion, e.g. wodginite and ixiolite carry higher Ti, Zr, Hf, Sn and Li concentrations than CGM and tapiolite. Compared to tapiolite, CGM have higher concentrations of all trace elements except Hf and occasionally Zr, Ti, Sn and Mg. The composition of TNO related to rare-element pegmatites is rather different from rare-metal granites: the latter have high REE and Th concentrations, and low Li and Mg. Pegmatite-hosted TNO are highly variable in composition, with types poor in REE, typical of LCT-family pegmatites, and types rich in REE — showing affinity for NYF-family or mixed LCT–NYF pegmatites. Major and trace elements show regional characteristics that are conspicuous in normalised trace element and REE diagrams. In general, CGM from Ta-ore provinces are characterised by the predominance of one type of REE distribution pattern characterised by ratios between individual groups of REE (light, middle, heavy REE) and the presence and intensity of anomalies (e.g. Eu/Eu*).Despite textural complexities such as complex zoning patterns and multiple mineralisation stages, the chemical compositions of CGM, tapiolite and wodginite–ixiolite from rare-metal granite and rare-element pegmatite provinces indicate that they are cogenetic and reflect specific source characteristics that may be used to discriminate among rocks of different origin.Geochronological data produced for CGM from ore districts are discussed together with the respective ore mineralogy and minor and trace element geochemistry of TNO to reconsider the geodynamics of pegmatite formation. In Africa, formation of rare element-bearing pegmatites and granites is related to syn- to late-orogenic (e.g., West African Craton, Zimbabwe Craton), post-orogenic (Kibara Belt, Damara Belt, Older Granites of Nigeria, Adola Belt of Ethiopia) and anorogenic (Younger Granites of Nigeria) tectonic and magmatic episodes. The late-orogenic TNO mineralisation associated with A-type granites in the Eastern Desert of Egypt shares geochemical features with the anorogenic Younger Granites of Nigeria.  相似文献   

14.
The geology of the Komu area, south-western Nigeria was investigated in order to determine the nature of occurrence, petrography and chemical composition, and to evaluate the mineral potential of granitic pegmatites. The pegmatites are hosted by para-gneisses, amphibolites and granitic rocks. These host rocks are characterized by low pressure mineral assemblages of upper greenschist to lower amphibolite facies grades. The pegmatites consist of four lithological units: alkali feldspar unit, graphic granite unit, quartz-albite-muscovite-tourmaline unit and saccharroidal albite-muscovite-tourmaline-garnet unit.
A K/Rb ratio of below 100 is indicative of a mineralization potential in most pegmatites, except for the saccharroidal albite-muscovite-tourmaline-garnet unit which has exceptionally high ratios. The discrimination diagrams Rb versus K/Rb, Zn versus K/Rb and Th versus K/Rb show a limited range of fractionation, suggesting that the pegmatites belong to the barren muscovite and rare element classes. The rare element class is moderately enriched in beryl, tourmaline and niobium–tantalum minerals. The pegmatite has affinity for beryl columbite sub-type and lithium–cesium–tantalum (LCT) family. The ores plot mainly in the field of mangano-tantalite of tantalite-columbite quadrilateral diagram. These results indicate that the pegmatites are promising hosts for Nb-Ta ores.  相似文献   

15.
Summary Titanium placer deposits occur in alluvial-fluvial drainage systems which dissect Moldanubian gneisses intruded by Late Variscan pegmatites (Hagendorf province) in southern Germany. Based upon their texture (zonation, exsolution lamellae, intergrowth), microchemical data (Nb, Cr, Ta, V, Fe, W, Sn) and mineral inclusions, two major grain types of intergrown rutile and ilmenite have been established. Grains of type A are always zoned and consist of rutile cores enveloped by ilmenite containing small inclusions of wolframite. A core-rim transition zone is characterized by complex relations of rutile and ilmenite, with rutile lamellae being rich in Nb, V and Fe. Types B1 and B2 aggregates consist of ilmenite with lamellae of niobian rutile and/or ilmenorutile, and additionally have inclusions of ferrocolumbite, pyrochlore, betafite, sphalerite, pyrrhotite and Fe oxides. Such grain types featuring an intimate intergrowth of rutile and ilmenite were called nigrine. Type-C grains are quite similar in their morphological appearance but consist of W-enriched rutile devoid of mineral inclusions and reaction products. Pseudorutile and leucoxene replacing minerals of the nigrine aggregates are presumably caused by supergene alteration under fluctuating redox conditions. Phosphate and aluminum remobilized by supergene processes led to the formation of hydrous Ti-rich phases containing Al, P and Fe. High Nb and W concentrations in nigrine aggregates and in rutile type C may be taken as a marker for highly differentiated granites or pegmatites. This has implications for both, heavy-mineral-based provenance analysis and stream sediment exploration.  相似文献   

16.
Recent exploration work in South Morocco revealed the occurrence of several carbonatite bodies, including the Paleoproterozoic Gleibat Lafhouda magnesiocarbonatite and its associated iron oxide mineralization, recognized here as iron-oxide-apatite (IOA) deposit type. The Gleibat Lafhouda intrusion is hosted by Archean gneiss and schist and not visibly associated with alkaline rocks. Metasomatized micaceous rocks occur locally at the margins of the carbonatite outcrop and were identified as glimmerite fenite type. Rare earth element (REE) and Nb mineralization is mainly linked to the associated IOA mineralization and is represented by monazite-(Ce) and columbite-(Fe) as major ore minerals. The IOA mineralization mainly consists of magnetite and hematite that usually contain large apatite crystals, quartz and some dolomite. Monazite-(Ce) is closely associated with fluorapatite and occurs as inclusions within the altered parts of apatite and along cracks or as separate phases near apatite. Monazite shows no zonation patterns and very low Th contents (<0.4 wt%), which would be beneficial for commercial extraction of the REE and which indicates monazite formation from apatite as a result of hydrothermal volatile-rich fluids. Similar monazite-apatite mineralization and chemistry also occurs at depth within the carbonatite, although the outcropping carbonatite is barren, suggesting an irregular REE ore distribution within the carbonatite body. The barren carbonatite contains some tiny unidentified secondary Nb-Ta-U phases, synchysite and monazite. Niobium mineralization is commonly represented by anhedral minerals of columbite-(Fe) which occur closely associated with magnetite-hematite and host up to 78 wt% Nb2O5, 7 wt% Ta2O5 and 1.6 wt% Sc2O3. This association may suggest that columbite-(Fe) precipitated by an interaction of Nb-rich fluids with pre-existing Fe-rich minerals or as pseudomorphs after pre-existing Nb minerals like pyrochlore. Our results most strongly suggest that the studied mineralization is economically important and warrants both, further research and exploration with the ultimate goal of mineral extraction.  相似文献   

17.
Summary Elevated P contents of up to 0.086 apfu (1.21 wt.% P2O5) were found in garnet from leucocratic granitic rocks (orthogneisses, granites, barren to highly evolved pegmatites) in the Moldanubicum and Silesicum, Czech Republic, and in complex granitic pegmatites from southern California, USA, and Australia. Minor concentrations (0.15–0.55 wt.% P2O5) appear ubiquitous in garnet from leucocratic granitic rocks of different origins and degrees of fractionation. Concentrations of P are not related to Mn/(Mn + Fe) that vary from 0.12–0.86 and to textural types of garnet (i.e., isolated anhedral to euhedral grains and nodules, graphic and random garnet–quartz aggregates, subsolidus veins of fine-grained garnet). Garnet compositions exhibit negative correlations for P/Si and P/R2+ where R2+ = Fe + Mn + Mg + Ca, while Al is constant at ∼2.05 apfu. Concentrations of Na are largely below 0.02 apfu but positively correlate with P. The main substitution may involve A-site vacancy and/or the presence of some light element(s) in the crystal structure. The substitution □P2 R2+ −1Si−2 and/or alluaudite-type Na□P3 R2+ −1Si−3 seem the most likely P-incorporating mechanisms. The partitioning of P among garnet and associated minerals in granitic systems remains unclear; however, it directly affects the distribution of Y and REEs.  相似文献   

18.
The Slyudyangorsk muscovite deposit in the southern Urals was explored and mined in 1926–1957. By the mid-1950s, 104 veins of quartz–feldspar pegmatites including 21 muscovite-bearing veins have been found. Pegmatites with giant black Y-bearing epidote crystals are crosscut by veins with giant muscovite crystals, which, in turn, are intersected by veins of two-mica–quartz–two-feldspar pegmatites with rare-metal and REE mineralization. Microprobe data on compositions of complex Ti–Ta–Nb oxides [fergusonite-(Y), samarskite-(Y), euxenite-(Y), polycrase-(Y), columbite-(Fe), pyrochlore supergroup] are characterized, as well as of uraninite, ilmenorutile, scheelite, Y-bearing epidote, certain sulfides and rock-forming minerals from the Slyudyanogorsk deposit. The morphology and interrelation of minerals indicate that they are the result of crystal growth in cavities rather than of metasomatic replacement of gneisses, as has been suggested earlier. Thus, it is more promising for rare-metal and REE minerals in the Slyudorudnik area to be found in igneous rocks (granitic muscovite–quartz–feldspar pegmatites with the Nb–Ta–Ti–Y–U–W–Mo mineralization) than in metasomatic rocks.  相似文献   

19.

稀有金属矿物记录了花岗伟晶岩成岩成矿的重要信息。喜马拉雅是全球著名的淡色花岗岩带,库曲岩体位于喜马拉雅东段的特提斯喜马拉雅岩系中。本文调查了库曲岩体的二云母花岗岩、白云母花岗岩、电气石花岗岩和花岗伟晶岩,其中,花岗伟晶岩涉及花岗岩的伟晶岩相和独立伟晶岩脉。库曲岩体产出的稀有金属矿物包括锂辉石、锂绿泥石、绿柱石、铌铁矿-钽铁矿、钇铀钽烧绿石和细晶石,它们主要赋存于似文象伟晶岩、石英-钠长石-白云母伟晶岩、块体长石-钠质细晶岩、块体长石-电气石钠质细晶岩、锂辉石-块体长石-细晶岩、白云母花岗岩的伟晶岩相以及电气石花岗岩内。显微镜观察、电子探针和LA-ICP-MS测试结果显示锂辉石具有四种产状,包括粗粒锂辉石自形-半自形晶、细粒锂辉石-石英镶嵌晶、中细粒锂辉石-钾长石-钠长石-云母镶嵌晶以及发育锂绿泥石的粗粒锂辉石,揭示了其形成时复杂的熔流体动荡结晶环境。绿柱石背散射电子图像(BSE)下呈均一结构和不均一结构(蚀变边、不规则分带和补丁分带),元素替代机制包括通道-八面体替代、通道-四面体替代以及通道中碱金属阳离子间的置换。铌铁矿族矿物包括原生、蚀变边和不规则分带结构,部分被钇铀钽烧绿石和细晶石交代。与原生铌铁矿相比,蚀变边和不规则分带铌铁矿族矿物总体上富钽贫锰,显示了结晶分异、过冷却引起的过饱和以及流体作用。根据稀有金属矿物揭示的成因信息,独立伟晶岩脉(似文象伟晶岩)、白云母花岗岩的伟晶岩相和电气石花岗岩在岩浆分异程度、经历的演化过程、以及流体活动方面存在差异,很可能是不同期次岩浆活动的产物。库曲岩体绿柱石的Rb和Zn含量、以及铌铁矿族矿物的Sc2O3、SiO2和PbO含量,与已有指示标志存在相关性,作为潜在指示标志仍需开展更多的研究工作。综合含锂辉石伟晶岩的产出、岩浆分异演化程度、多期花岗质岩浆活动、复杂的流体作用以及所属锂丰度高值区等因素,库曲岩体是喜马拉雅东段找锂的有利地段。

  相似文献   

20.
Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号