共查询到20条相似文献,搜索用时 15 毫秒
1.
New mineralogical and bulk-rock geochemical data for the recently recognised Mesoproterozoic(ca.1100 Ma) and late Cretaceous(ca.90 Ma) kimberlites in the Timmasamudram cluster(TKC) of the Wajrakarur kimberlite field(WKF),Eastern Dharwar Craton,southern India,are presented.On the basis of groundmass mineral chemistry(phlogopite,spinel,perovskite and clinopyroxene),bulk-rock chemistry(SiO_2.K_2O,low TiO_2.Ba/Nb and La/Sm),and perovskite Nd isotopic compositions,the TK-1(macrocrystic variety) and TK-4(Macrocrystic variety) kimberlites in this cluster are here classified as orangeites(i.e.Group Ⅱ kimberlites),with geochemical characteristics that are very similar to orangeites previously described from the Bastar Craton in central India,as well as the Kaapvaal Craton in South Africa.The remaining kimberlites(e.g.,TK-2,TK-3 and the TK-1 microcrystic variant),are more similar to other 1100 Ma,Group Ⅰ-type kimberlites of the Eastern Dharwar Craton,as well as the typical Group Ⅰkimberlites of the Kaapvaal Craton.Through the application of geochemical modelling,based on published carbonated peridotite/melt trace element partition coefficients,we show that the generation of the TKC kimberlites and the orangeites results from low degrees of partial melting of a metasomatised,carbonated peridotite.Depleted mantle(T_(DM)) Nd perovskite model ages of the 1100 Ma Timmasamudram kimberlites show that the metasornatic enrichment of their source regions are broadly similar to that of the Mesoproterozoic kimberlites of the EDC.The younger,late Cretaceous(ca.90 Ma) TK-1(macrocrystic variant)and TK-4 kimberlites,as well as the orangeites from the Bastar Craton,share similar Nd model ages of1100 Ma,consistent with a similarity in the timing of source enrichment during the amalgamation of Rodinia supercontinent.The presence of late Cretaceous diamoncliferous orangeite activity,presumably related to the location of the Marion hotspot in southern India at the time,suggests that thick Iithosphere was preserved,at least locally,up to the late Cretaceous,and was not entirely destroyed during the breakup of Gondwana,as inferred by some recent geophysical models. 相似文献
2.
S.C. Patel S. Ravi Y. Anilkumar A. Naik S.S. Thakur J.K. Pati S.S. Nayak 《Journal of Asian Earth Sciences》2009,34(3):336-346
Mafic xenoliths of garnet pyroxenite and eclogite from the Wajrakarur, Narayanpet and Raichur kimberlite fields in the Archaean Eastern Dharwar Craton (EDC) of southern India have been studied. The composition of clinopyroxene shows transition from omphacite (3–6 wt% Na2O) in eclogites to Ca pyroxene (<3 wt% Na2O) in garnet pyroxenites. Some of the xenoliths have additional phases such as kyanite, enstatite, chromian spinel or rutile as discrete grains. Clinopyroxene in a rutile eclogite has an XMg value of 0.70, which is unusually low compared to the XMg range of 0.91–0.97 for all other samples. Garnet in the rutile eclogite is also highly iron-rich with an end member composition of Prp26.5Alm52.5Grs14.7Adr5.1TiAdr0.3Sps1.0Uv0.1. Garnets in several xenoliths are Cr-rich with up to 8 mol% knorringite component. Geothermobarometric calculations in Cr-rich xenoliths yield different P–T ranges for eclogites and garnet pyroxenites with average P–T conditions of 36 kbar and 1080 °C, and 27 kbar and 830 °C, respectively. The calculated P–T ranges approximate to a 45 mW m?2 model geotherm, which is on the higher side of the typical range of xenolith/xenocryst geotherms (35–45 mW m?2) for several Archaean cratons in the world. This indicates that the EDC was hotter than many other shield regions of the world in the mid-Proterozoic period when kimberlites intruded the craton. Textural and mineral chemical characteristics of the mafic xenoliths favour a magmatic cumulate process for their origin as opposed to subducted and metamorphosed oceanic crust. 相似文献
3.
The Late Cretaceous (ca. 100 Ma) diamondiferous Fort à la Corne (FALC) kimberlite field in the Saskatchewan (Sask) craton, Canada, is one of the largest known kimberlite fields on Earth comprising essentially pyroclastic kimberlites. Despite its discovery more than two decades ago, petrological, geochemical and petrogenetic aspects of the kimberlites in this field are largely unknown. We present here the first detailed petrological and geochemical data combined with reconnaissance Nd isotope data on drill-hole samples of five major kimberlite bodies. Petrography of the studied samples reveals that they are loosely packed, clast-supported and variably sorted, and characterised by the presence of juvenile lapilli, crystals of olivine, xenocrystal garnet (peridotitic as well as eclogitic paragenesis) and Mg-ilmenite. Interclast material is made of serpentine, phlogopite, spinel, carbonate, perovskite and rutile. The mineral compositions, whole-rock geochemistry and Nd isotopic composition (Nd: + 0.62 to − 0.37) are indistinguishable from those known from archetypal hypabyssal kimberlites. Appreciably lower bulk-rock CaO (mostly < 5 wt%) and higher La/Sm ratios (12–15; resembling those of orangeites) are a characteristic feature of these rocks. Their geochemical composition excludes any effects of significant crustal and mantle contamination/assimilation. The fractionation trends displayed suggest a primary kimberlite melt composition indistinguishable from global estimates of primary kimberlite melt, and highlight the dominance of a kimberlite magma component in the pyroclastic variants. The lack of Nb-Ta-Ti anomalies precludes any significant role of subduction-related melts/fluids in the metasomatism of the FALC kimberlite mantle source region. Their incompatible trace elements (e.g., Nb/U) have OIB-type affinities whereas the Nd isotope composition indicates a near-chondritic to slightly depleted Nd isotope composition. The Neoproterozoic (~ 0.6–0.7 Ga) depleted mantle (TDM) Nd model ages coincide with the emplacement age (ca. 673 Ma) of the Amon kimberlite sills (Baffin Island, Rae craton, Canada) and have been related to upwelling protokimberlite melts during the break-up of the Rodinia supercontinent and its separation from Laurentia (North American cratonic shield). REE inversion modelling for the FALC kimberlites as well as for the Jericho (ca. 173 Ma) and Snap Lake (ca. 537 Ma) kimberlites from the neighbouring Slave craton, Canada, indicate all of their source regions to have been extensively depleted (~ 24%) before being subjected to metasomatic enrichment (1.3–2.2%) and subsequent small-degree partial melting. These findings are similar to those previously obtained on Mesozoic kimberlites (Kaapvaal craton, southern Africa) and Mesoproterozoic kimberlites (Dharwar craton, southern India). The striking similarity in the genesis of kimberlites emplaced over broad geological time and across different supercontinents of Laurentia, Gondwanaland and Rodinia, highlights the dominant petrogenetic role of the sub-continental lithosphere. The emplacement of the FALC kimberlites can be explained both by the extensive subduction system in western North America that was established at ca. 150 Ma as well as by far-field effects of the opening of the North Atlantic ocean during the Late Cretaceous. 相似文献
4.
Abhinay Sharma Alok Kumar Praveer Pankaj Dinesh Pandit Ramananda Chakrabarti N.V. Chalapathi Rao 《地学前缘(英文版)》2019,10(3):1167-1186
Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The TDm Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond. 相似文献
5.
The southern segment of the Eastern Ghats Mobile Belt (EGMB) in India was an active convergent margin during Mesoproterozoic, prior to the final collision in Neoproterozoic during the assembly of the Rodinia supercontinent. Here we present mineralogical, whole-rock geochemical, zircon U–Pb and Hf isotopic data from a granitoid suite in the Bopudi region in the EGGB. The granitoid complex comprises quartz monzodiorite with small stocks of rapakivi granites. The monzodiorite, locally porphyritic, contains K-feldspar megacrysts, plagioclase, quartz, biotite and ortho-amphibole. The presence of mantled ovoid megacrysts of alkali feldspar embaying early-formed quartz, and the presence of two generations of the phenocrystic phases in the rapakivi granites indicate features typical of rapakivi granites. The K-feldspar phenocrysts in the rapakivi granite are mantled by medium-grained aggregates of microcline (Ab7 Or93), which is compositionally equivalent to the rim of Kfs phenocryst and Pl (An23–24 Ab75). The geochemistry of both the granitoids shows arc-like features for REE and trace elements. LA-ICP-MS zircon analyses reveal 207Pb/206Pb ages of 1582 (MSWD = 1.4) for the rapakivi granite 1605 ± 3 Ma (MSWD = 3.9) for the monzodiorite. The zircons from all the granitoid samples show high REE contents, prominent HREE enrichment and a conspicuous negative Eu anomaly, suggesting a common melt source. The zircons from the monzodiorite have a limited variation in initial 176Hf/177Hf ratios of 0.28171–0.28188, with εHf(t) values of −2.2 to +2.8. Correspondingly, their two-stage Hf isotope model ages (TDM2) ranging from 2.15 to 2.47 Ga probably suggest a mixed source for the magma involving melting of the Paleoproterozoic basement and injection of subduction-related juvenile magmas. The prominent Mesoproterozoic ages of these granitoids suggest subduction-related arc magmatism in a convergent margin setting associated with the amalgamation of the Columbia-derived fragments within the Neoproterozoic Rodinia assembly. 相似文献
6.
C.S.Sindhuja Arijit Pahari C.Manikyamba M.Santosh Li Tang Jyotisankar Ray K.S.V.Subramanyam Madhuparna Paul I.Gonzalez-Alvarez P.C.Sruthi 《地学前缘(英文版)》2022,13(1):101257
Cratonic stabilization was a critical crustal process during the Hadean to Archean for the formation of cratons.The understanding of how and where this process took place is significant to evaluate the architecture of continents.The Singhbhum Craton of eastern India has well preserved Precambrian volcanosedimentary sequences.The Simlipal volcano-sedimentary complex of Singhbhum Craton consists of circular bands of mafic volcanic rocks interlayered with quartzites/shales/phyllites.In the present study,we report petrographic and geochemical characteristics of quartzites from Simlipal Complex coupled with U–Pb ages of detrital zircons and zircon geochemistry to understand the provenance and depositional conditions and its connection with the crustal stabilization in the Singhbhum Craton.The quartzites are texturally mature with sub-angular to sub-rounded quartz grains followed by feldspars embedded in a silty matrix.Based on modal compositions and major element ratios,these quartzites are categorized as quartz arenite and sub-lithic arenites.Trace element abundances normalized to Archean Upper Continental Crust(AUCC)display positive anomalies at U,Zr,Hf and negative anomalies at Nb.REE patterns are characterized by negative Eu anomalies(Eu/Eu*=0.47–0.97)and flat HREE suggesting felsic provenance.These quartzites show depletion of LILE,enrichment of HFSE and transition metals relative to AUCC.High weathering indices such as CIA,PIA,and ICV are suggestive of moderate to intense chemical weathering.Low trace element ratios such as Th/Cr,Th/Sc,La/Sc,La/Co and Th/Co indicate a predominantly felsic source for these rocks.The overall geochemical signatures indicate passive margin deposition for these quartzites.Detrital zircons from the Simlipal quartzites yield U–Pb ages 3156±31 Ma suggesting Mesoarchean crustal heritage.The trace element geochemistry of detrital zircons suggests that the zircons are magmatic in origin and possibly derived from the 3.1 Ga anorogenic granite/granitoid provenance of Singhbhum Craton.These observations collectively indicate the Mayurbhanj Granite and Singhbhum Granite(SBG-III)provenance for these quartzites,thereby tracking the stabilization of the eastern Indian Shield/Singhbhum Craton back to Mesoarchean. 相似文献
7.
Girardi V.A. V. Teixeira W. Bettencourt J.S. Andrade S. Navarro M.S. Sato K. 《《幕》》2008,31(4):392-400
The Amazonian Craton comprises an Archean domain surrounded by four successively younger Proterozoic tectonic provinces. Within the Rio-Negro-Juruena province the Serra da Providencia Intrusive Suite (1.60 and 1.53 Ga) consists of A-type rapakivi gran- ites, charnockites and mangerites genetically associated with diabase dikes, gabbros and amphibolites. The original mafic melts were derived from a depleted mantle source (εN(T) +2.5 to +2.8;εSr(T) -12.1). Underplated mafic magma induced melting of a short-lived felsic crust, thus originating coeval felsic-mafic magmatism in a conti- nental intraplate setting. The Colorado Complex, assigned to the Rondonian-San Ignacio province, comprises 1.35-1.36 Ga intrusive bimodal magmatism represented by monzonite gneisses associated with amphibolite, gabbro and metadiabase dikes intercalated with metasediments with detrital zircon that yield U- Pb ages of 1.35 to 1.42 Ga. Mafic samples dis- play juvenile signatures (εNd(T) 0.0 to +5.2; εSr(T) --5.0 to --30.7) and are less contaminated than the Serra da Previdencia and Nova Brasilandia ones. The generation of the basaltic magma is related to the subduction of an oceanic slab below the peridotite wedge (intraoceanic arc setting). Fluids and/or small melts from the slab impregnated the mantle. The Nova Brasilandia Sequence (Sunsas-Aguapef province) comprises a metasedimentary sequence intruded by 1.10-1.02 Ga metadia- bases, gabbros, meta-gabbros, and amphibolites associated with granitic plutons (bimodal mag- matism). The original tholeiitic magmas, derived from a depleted source (εNd(T) = +3.1 to +5.0), in a proto-oceanic setting, underwent subsequent contamination by the host rocks, as indicated by the isotopic and trace element data. 相似文献
8.
The Trans-North China Orogen (TNCO), a Paleoproterozoic suture that amalgamates the Western and Eastern Blocks of the North China Craton (NCC), witnessed extensive magmatism and metallogeny during Mesozoic, associated with intraplate tectonics and differential destruction of the cratonic lithosphere. Here we investigate a suite of porphyry dykes surrounding the Mapeng batholith in the Fuping Complex within the TNCO in relation to the Mesozoic gold and molybdenum mineralization. The major element chemistry of these dykes show a range of SiO2 (57.92 to 69.47 wt.%), Na2O (3.20 to 4.77 wt.%), K2O (3.12 to 4.60 wt.%) and MgO (0.51 to 3.67 wt.%), together with high concentration of LREE and LILE, and relatively low contents of HREE and HFSE. The rocks display (La/Yb)N = 13.53–48.11, negative Nb, Ta, Th, U and Zr anomalies, and distinctly positive Ba, K and Sm anomalies. The mineralogy and geochemistry of the porphyry dykes indicate the rocks to be high-K calc-alkaline, and I-type, with adakitic features similar to those of the adjacent Mapeng batholith. The source magma for these rocks was derived from a mixture of reworked ancient continent crust and juvenile mantle materials. The zircon U–Pb data from these rocks show ages in the range of 124 to 129 Ma, broadly coinciding with the emplacement age of the Mapeng intrusion. The inherited zircons of ca. 2.5, 2.0 and 1.8 Ga in the dykes represent capture from the basement rocks during melting. The zircon Lu–Hf isotopic compositions show negative εHf(t) values varying from − 27.8 to − 11.3, with Hf depleted model ages (tDM) ranging from 1228 Ma to 1918 Ma and Hf crustal model ages (tDMC) of 1905 Ma to 2938 Ma, suggesting that the Mesozoic magmatism and associated metallogeny involved substantial recycling of ancient basement rocks of the NCC. We present an integrated model to evaluate the genesis of the porphyry systems and their relation to mineralization. We envisage that these dykes probably acted as stoppers (impermeable barriers) that prevented the leakage and run-off of the ore-bearing fluids, and played a key role in concentrating the gold and molybdenum mineralization. 相似文献
9.
10.
11.
《Ore Geology Reviews》2010,37(4):333-349
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems. 相似文献
12.
Paleoproterozoic retrogressed eclogite (retroeclogite) occurs in the Itaguara Sequence included in the suture zone formed by collision between the Archean Divinópolis and Campo Belo/Bonfim Complexes in the southern São Francisco Craton, which represents the South American counterpart of the African Congo Craton. The Itaguara retroeclogite contains scarce omphacite and phengite but abundant garnet porphyroblasts embedded in a fine-grained, amphibole, biotite and quartz-bearing matrix. The 2.20 ± 0.05 Ga eclogitization event (garnet and whole rock Sm-Nd isochronic age) of the E-MORB protolith (TDM ~ 2.47 Ga) is recorded by omphacite formation during high-pressure prograde stage in amphibole eclogite facies due to ~70 km depth subduction process. Amphibole eclogite facies metamorphic peak stage of 17–20 kbar and 600–700 °C occurred during ~2.1 Ga continental collision. Tectonic exhumation-related decompression during collision probably triggered partial melting of the eclogitic rock. Finally, decompression late stage estimated between 5 and 8 kbar and 550–650 °C under amphibolite facies overprint during orogenic collapse was responsible for appearance of kelyphitic reaction rims (symplectite) around garnet crystals. As its Paleoproterozoic contemporary analogues from Congo Craton, the Itaguara retroeclogite is one of the oldest records of the modern-style plate tectonics. 相似文献
13.
《International Geology Review》2012,54(2):134-158
Geochemical and petrological studies of the well-preserved greywacke horizon of the ‘Middle Aravalli Group’ were carried out to constrain the early evolution of the Aravalli basin. Petrological and geochemical attributes of Middle Aravalli greywackes (MAGs) such as very poor sorting, high angularity of framework grains, presence of fresh plagioclase and K-feldspars, variable Chemical Index of Alteration (CIA) index (46.7–74.5, avg. 61), and high Index of Compositional Variability (ICV) value (~1.05) suggest rapid physical erosion accompanying an active tectonic regime. The sediments record post-depositional K-metasomatism and extraneous addition of 0–25% (avg. ~10%) K is indicated. Assuming close system behaviour of immobile elements during sedimentation, various diagnostic element ratios such as Th/Sc, La/Sc, Zr/Sc, and Co/Th, Eu anomaly and rare earth element patterns of MAG suggest that the Archaean Banded Gneissic Complex (BGC) basement was not the major source of sediments. In conjunction with the dominant 1.8–1.6 Ga detrital zircon age peaks of Middle Aravalli clastic rocks, these data rather indicate that the sediments were derived from a young differentiated continental margin-type arc of andesite–dacite–rhyodacite composition. A highly fractionated mid-oceanic-ridge-basalt-normalized trace element pattern of MAGs, with characteristic enrichment of large-ion lithophile elements (LILEs), depletion of heavy rare earth elements, negative Nb-Ta, Ti and P anomalies, positive Pb anomaly, and distinctive Nb/Ta, Zr/Sm, Th/Yb, and Ta/Yb, Ce/Pb ratios envelop the composition of modern continental arc magmas (andesite–dacite) of the Andes, suggesting a subduction zone tectonic setting for precursor magma. High magnitude of LILE enrichment and high Th/Yb ratios in these sediments indicate that thick continental crust (~70 km) underlay the ‘Middle Aravalli’ continental arc, similar to the Central Volcanic Zone of the modern Andes. We propose that eastward subduction of Delwara oceanic crust beneath the BGC continent led to the formation of a continental volcanic arc, which supplied detritus to the forearc basin situated to the west. This model also explains the opening of linear ensialic basins in the Bhilwara terrain, such as in Rajpura–Dariba and Rampura–Agucha in a classical back-arc extension regime, similar to the Andean continental margin of the Mesozoic. On the basis of the recent 207Pb/206Pb detrital zircon age of Middle Aravalli sediment, a time frame between 1772 and 1586 Ma can be assigned for Middle Aravalli continental arc magmatism. 相似文献
14.
《Chemie der Erde / Geochemistry》2021,81(1):125688
An intrusive granitoid pluton into TTG-Dharwar Supergroup greenstone sequence is being reported for the first time from the Dharwar Foreland region. Based on field and petrographic characteristics, these granitoids are classified as - quartz-monzodiorites and granites. Occasional mafic bodies of dioritic-granodioritic composition with size ranging from small microgranular magmatic enclaves to bodies of several centimeters are common in these granitoids.The granitoids are devoid of any crystal-plastic fabric as well as high-strain characteristics. The textural (CSD) studies indicate that the quartz-monzodiorites are derived from magma mixing whereas the granites are derived from equilibrium crystallization of the magma derived from the reworking of quartz-monzodiorites. The P-T estimates indicate that the quartz-monzodiorites were crystallized at higher temperature (>950 °C) and pressure (3.09–4.36 kbar) conditions in a reducing environment at mid-crustal levels. However, the granites indicate lower temperature (<750 °C) and pressure (0.89–1.88 kbar) conditions of crystallization in an oxidizing environment at shallow-crustal levels. The bulk rock chemical characteristics indicate that the quartz-monzodiorites were derived from the melt generated by the mixing of two melts - a melt derived from the differentiation of sanukitoids senso lato (s.l.) and a melt derived from the partial melting of TTG. On the other hand, reworking of the hot crystallizing quartz-monzodiorite due to its rapid upliftment to shallow crustal levels resulted in a decompression melting which gave rise to granitic melts.The relative age of the Dharwad granitoids is estimated to be ∼2580–2560 Ma and unlike the other older granitoids (> 2.61 Ga) reported from the northern part of the Shimoga greenstone belt, the studied granitoids marks the final stage of cratonization in the Foreland region. 相似文献
15.
The Huangshannan magmatic Ni-Cu sulfide deposit is one of a group of Permian magmatic Ni-Cu deposits located in the southern Central Asian Orogenic belt in the Eastern Tianshan, northwest China. It is characterized by elevated Ni tenor (concentrations in recalculated 100% sulfide) in sulfide within ultramafic rocks (9–19 wt%), with values much higher than other deposits in the region. Sulfides of the Huangshannan deposit are composed of pentlandite, chalcopyrite, and pyrrhotite and the host rock is relatively fresh, indicating that the high-Ni tenor is a primary magmatic feature rather than formed by alteration processes. It is shown that sulfides with high-Ni tenor can be generated by sulfide-olivine equilibrium at an oxygen fugacity of QFM +0.5, for magmas containing 450 ppm Ni and 20% olivine. Ores with >10 wt% sulfur have relatively low PGE and Ni tenors compared to other ores, R factor (mass ratio of silicate to sulfide liquid) modeling of Ni indicates that they formed at moderate R values (150–600). Based on this constraint on R values, ores with <10 wt% sulfides in the Huangshannan deposit can be segregated from a similar parental magma with 0.05 ppb Os, 0.023 ppb Ir, and 0.5 ppb Pd at R values between 600 and 3000. This, coupled with the supra-cotectic proportions of sulfide liquid to cumulus silicates in the Huangshannan ores imply mechanical transport and deposition of sulfide liquid in a magma pathway or conduit, in which sulfides must have interacted with large volumes of silicate magma. Platinum and Pd depletion relative to other platinum group elements (PGEs) are observed in fresh and sulfide-rich samples (S > 4.5 wt%). As sulfide-rich samples are also depleted in Cu, and as interstitial sulfides in those samples are physically interconnected at a scale of several cms, the low Pt and Pd anomalies are attributed to solid Pt and Pd phases crystallization and retention with the monosulfide solid solution (MSS) and Cu-rich sulfide liquid percolation during MSS fractionation. This finding indicates that Pt anomalies in sulfide-rich rocks from magmatic Ni-Cu deposits in the Eastern Tianshan are the result of sulfide fractionation rather than a hydrothermal effect. 187Os/188Os(278Ma) values of the lherzolite samples vary from 0.27 to 0.37 and γOs(278Ma) values vary from 110 to 189, indicating significant magma interaction with crustal sulfides, rich in radiogenic Os. Well constrained γOs values and δ34S values (−0.4 to 0.8‰) indicate that crustal contamination occurred at depth before the arrival of the magma in the Huangshannan chamber. Regionally, deposits with high-Ni tenor have not been reported other than the Huangshannan deposit; however, many intrusions with high-Ni contents in olivine are present in NW China, such as the Erhongwa, Poyi and Poshi intrusions. Those intrusions are capable of forming high-Ni tenor sulfides due to olivine-sulfide-silicate equilibrium and relative high-Ni content in parent magma, making them attractive exploration targets. 相似文献
16.
207Pb–206Pb ages of zircons in samples of metasediments as well as ortho- and para-gneisses from both the western and the eastern parts
of the Dharwar craton have been determined using an ion microprobe. Detrital zircons in metasedimentary rocks from both yielded
ages ranging from 3.2 to 3.5 Ga. Zircons from orthogneisses from the two parts also yielded similar ages. Imprints of younger
events have been discerned in the ages of overgrowths on older zircon cores in samples collected throughout the craton. Our
data show that the evolution of the southwestern part of eastern Dharwar craton involved a significant amount of older crust
(>3.0 Ga). This would suggest that crust formation in both the western and eastern parts of the Dharwar craton took place
over similar time interval starting in the Mesoarchaean at ca. 3.5 Ga and continuing until 2.5 Ga. Our data coupled with geological
features and geodynamic setting of the Dharwar craton tend to suggest that the eastern Dharwar craton and the western Dharwar
craton formed part of a single terrane. 相似文献
17.
《Journal of Asian Earth Sciences》2006,26(6):903-913
The Gondwana (Early Permian to Early Cretaceous) basins of eastern India have been intruded by ultramafic–ultrapotassic (minette, lamproite and orangeite) and mafic (dolerite) rocks. The Salma dike is the most prominent among mafic intrusives in the Raniganj basin. This dike is tholeiitic in composition; MgO varies from 5.4 to 6.3% and the mg number from 54 to 59. In general, the major and trace element abundances are uniform both along and across the strike. There is geochemical and mineralogical evidence for fractional crystallization. The chondrite normalized REE pattern of the Salma dike (La/Ybn=3.5) is similar to that of Deccan dikes of the Son–Narmada rift zone, western India. 87Sr/86Sr varies from 0.70552 to 0.70671 suggesting assimilation of crustal material. Some trace element abundances (e.g. Ti, Zr, Y) of the Salma dike are comparable to Group I Rajmahal basalts. The 40Ar–39Ar whole rock age of 65 Ma for the Salma dike is less than the ca. 114 Ma age for the Rajmahal basalt, but is similar to the generally accepted age for Deccan volcanic rocks. Despite geographical proximity with the Rajmahal basalt, the Salma dike is believed to be related to late phase of Deccan volcanic activity. 相似文献
18.
In this paper, we, for the first time, report geochemistry of sandstone from Somanpalli Group from Pomburna area in the Eastern Belt of Pranhita–Godavari (PG) Valley, central India and studied to infer their provenance, intensity of paleo-weathering and depositional tectonic setting. Petrographic study of sandstones show QFL modal composition of arenite. Chemical results show high \(\hbox {SiO}_{2}\) and CIA but lower \(\hbox {Al}_{2}\hbox {O}_{3}, \hbox {TiO}_{2}\), Rb, Sr, \(\hbox {K}_{2}\hbox {O}\) indicating mixed sources. Major elements chemistry parameters such as, \(\hbox {K}_{2}\hbox {O/Al}_{2}\hbox {O}_{3}\) ratio and positive correlation of Rb with \(\hbox {K}_{2}\hbox {O}\), reflects a warm and humid climate for study area. The tectonic discrimination plots (\(\hbox {SiO}_{2}/20\)–\(\hbox {K}_{2}\hbox {O} + \hbox {Na}_{2}\hbox {O}\)–\(\hbox {TiO}_{2} + \hbox {Fe}_{2}\hbox {O}_{3} + \hbox {MgO};\,\hbox {K}_{2}\hbox {O}/\hbox {Na}_{2}\hbox {O}\) vs. \(\hbox {SiO}_{2}\); Th–Sc–Zr/20) indicate dominantly passive margin and slight active tectonic setting. Concentrations of Zr, Nb, Y, and Th are higher compared to the UCC values and the trends in Th/Cr, Th/Co, La/Sc and Cr/Zr ratios support a felsic and mafic source for these sandstones and deposition in passive margin basin. Chondrite normalized REE pattern reflects LREE depletion, negative Eu anomaly and flat HREE similar to UCC, felsic components. ICV value (0.95) also supports tectonically quiescent passive margin settings. CIA values (74) indicate high degree of chemical weathering and warm and humid paleoclimatic condition. 相似文献
19.
《International Geology Review》2012,54(2):165-182
The NNW-trending Nova Lacerda tholeiitic dike swarm in Mato Grosso State, Central Brazil, intrudes the Nova Lacerda granite (1.46 Ga) and the Jauru granite-greenstone terrain (ca. 1.79–1.77 Ga). The swarm comprises diabases I and II and amphibolites emplaced at ca. 1.38 Ga. Geochemical data indicate that these are evolved tholeiites characterized by high LILE/HSFE and LREE/HSFE ratios. Isotopic modelling yields positive ?Nd(T) values (+0.86 to?+2.65), whereas values for ?Sr(T) range from positive to negative (+1.96 to -5.56). Crustal contamination did not play a significant petrogenetic role, as indicated by a comparison of isotopic data (Sr–Nd) from both dikes and country rocks, and by the relationship between isotopic and geochemical parameters (SiO2, K2O, Rb/Sr, and La/Yb) of the dikes. We attribute the origin of these tholeiites to fractional crystallization of evolved melts derived from a heterogeneous mantle source. Comparison of the geochemical and isotopic data of the studied swarm and other tholeiitic Mesoproterozoic mafic intrusions of the SW Amazonian Craton – the Serra da Providência, Colorado, and Nova Brasilândia bimodal suites – indicates that parental melts of the Nova Lacerda swarm were derived from the most enriched mantle source. This enrichment was probably caused by the stronger influence of the EMI component on the DMM end-member. These data, coupled with trace element bulk-rock geochemistry of the country rocks, and comparisons with the Colorado Complex of similar age, suggest a continental-margin arc setting for the emplacement of the Nova Lacerda dikes. 相似文献
20.
The Hongshi gold deposit is located in the southwestern margin of the Kanggur–Huangshan ductile shear zone in Eastern Tianshan, Northwest China. The gold ore bodies are predominantly hosted in the volcanogenic metasedimentary rocks of the Lower Carboniferous Gandun Formation and the Carboniferous syenogranite and alkali-feldspar granite. The syenogranite and the alkali-feldspar granite yield SHRIMP zircon U–Pb ages of 337.6 ± 4.5 Ma (2σ, MSWD = 1.3) and 334.0 ± 3.7 Ma (2σ, MSWD = 1.1), respectively, indicating that the Hongshi gold deposit is younger than 334 Ma. The granitoids belong to shoshonitic series and are relatively enriched in large ion lithophile elements (Rb, K, Ba, and Pb) and depleted in high field-strength elements (Nb, Ta, P, and Ti). Moreover, these granitoids have high SiO2, Al2O3, and K2O contents, low Na2O, MgO, and TiO2 contents, low Nb/Ta ratios, and slightly positive Eu anomalies. The εHf(t) values of the zircons from a syenogranite sample vary from + 1.5 to + 8.8 with an average of + 5.6; the εHf(t) values of the zircons from an alkali-feldspar granite sample vary from + 5.0 and + 10.1 with an average of + 7.9. The δ34S values of 10 sulfide samples ranged from − 11.5‰ to + 4.2‰, with peaks in the range of + 1‰ to + 4‰. The above-mentioned data suggest that the Hongshi granitoids were derived from the melting of juvenile lower crust mixed with mantle components formed by the southward subduction of the paleo-Tianshan ocean plate beneath the Aqishan–Yamansu island arc during the Early Carboniferous. The Hongshi gold deposit was formed by post-collisional tectonism during the Permian. The granitoids most likely acted as impermeable barriers that prevented the leakage and runoff of ore-bearing fluids. Thus, the granitoids probably played an important role in controlling gold mineralization. 相似文献