首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid proliferation of Phragmites australis in North America has challenged resource managers to curb its expansion and reduce the loss of functional tidal marsh. We investigated whether native plant competition could reduce the ability of Phragmites to invade a tidal marsh, and if plant diversity (species richness, evenness, and composition) altered the competitive outcome. Immature Phragmites shoots and four native halophytes were transplanted to small but dense field plots (~1,200 shoots m−2) comprising three community structure types (Phragmites alone, Phragmites + 1 native species, and Phragmites + 4 native species). Interspecific competition significantly reduced Phragmites aboveground biomass, shoot length production, density, and survival by approximately 60%. Additionally, plots planted with greater native diversity contained Phragmites with the lowest growth and survival, potentially indicating diversity-enhanced resource competition. Competition consistently reduced the growth of Phragmites even under favorable conditions: lack of strong tidal flooding stresses as well as elevated nutrient pools.  相似文献   

2.
Phragmites expansion rates (linear at 1–3% yr−1) and impacts of this expansion on high marsh macroinvertebrates, aboveground production, and litter decomposition fromPhragmites and other marsh graminoids were studied along a polyhaline to oligohaline gradient. These parameters, and fish use of creeks and high marsh, were also studied inPhragmites control sites (herbicide, mowing, and combined herbicide/mow treatments).Phragmites clones established without obvious site preferences on oligohaline marshes, expanding radially. At higher salinities,Phragmites preferentially colonized creekbank levees and disturbed upland borders, then expanded into the central marsh. Hydroperiods, but not salinities or water table, distinguishedPhragmites-dominated transects. Pooled samples ofPhragmites leaves, stems, and flowers decompose more slowly than other marsh angiosperms;Phragmites leaves alone decompose as or more rapidly than those of cattail. AbovegroundPhragmites production was 1,300 to 2,400 g m−2 (about 23% of this as leaves), versus 600–800 g m−2 for polyhaline to mesohaline meadow and 1,300 g m−2 for oligohaline cattail-sedge marsh. Macroinvertebrates appear largely unaffected byPhragmites expansion or control efforts; distribution and densities are unrelated to elevation or hydroperiod, but densities are positively related to litter cover. Dominant fish captured leaving flooded marsh wereFundulus heteroclitus andAnguilla rostrata; both preyed heavily on marsh macroinvertebrates.A. rostrata andMorone americana tended to be more common inPhragmites, but otherwise there were no major differences in use patterns betweenPhragmites and brackish meadow vegetation. SAV and macroalgal cover were markedly lower within aPhragmites-dominated creek versus one withSpartina-dominated banks. The same fish species assemblage was trapped in both plus a third within the herbicide/mow treatment. Fish biomass was greatest from theSpartina creek and lowest from thePhragmites creek, reflecting abundances ofF. heteroclitus. Mowing depressedPhragmites aboveground production and increased stem density, but was ineffective for control.Phragmites, Spartina patens, andJuncus gerardii frequencies after herbicide-only treatment were 0.53-0.21; total live cover was <8% with a heavy litter and dense standing dead stems. After two growing seasonsAgrostis stolonifera/S. patens/J. gerardii brackish meadow characterized most of the herbicide/mow treatment area;Phragmites frequency here was 0.53, contributing 3% cover. Both values more than doubled after four years; a single treatment is ineffective for long-termPhragmites control.  相似文献   

3.
Quantifying the relative value ofPhragmites australis andSpartina alterniflora habitat is important to evaluate the benefits and risks of different attempts to addressPhragmites expansion on the U.S. eastern seaboard. Two contrasting approaches commonly used to restore tidal marsh habitats invaded byPhragmites communities involve sprayingPhragmites with herbicide only when its coverage of a particular marsh area is near or close to 100%. Alternatively, after the first application, herbicide is annually applied on any surviving patches ofPhragmites present in a mosaic of other marsh vegetation. A model is introduced to evaluate the relative habitat value of these control regimes, here termed the Intermittent and Continuous. Compared to the Intermittent approach, the area of herbicide application in the Continuous approach is higher in the first 6 yr, but lower the reafter. The cumulative gain in habitat quality after 20 yr in either approach is sensitive to the presumed relative values ofPhragmites versusSpartina habitat, and may even be negative if they are nearly equal. Annual applications of herbicide to patches ofPhragmites appears to generate more habitat value and with less herbicide than occasional applications whenPhragmites cover is at is maximum.  相似文献   

4.
From January 1987 to February 1988 the annual biomass cycle and demography of the seagrass Zostera marina were assessed in San Quintin Bay, a shallow coastal lagoon on the Pacific coast of Baja California, Mexico. Shoot density and aboveground biomass were sampled monthly along two intertidal transects parallel to the shore. Belowground biomass was sampled every 2 mo. Shoot density differed between transects, ranging from 929±71 (SE) in July to 279 ±80 shoots m−2 in December, at the deeper transect (I). At the shallow transect (II) there was not a significant difference through time, and a mean of 737 shoots m−2 was calculated. Lateral shoots were present year round and represented between 1% and 30% of total density at transect I and between 3% and 25% at transect II. Reproductive shoots were present from March to September at both transects, with a density range of 77±28 shoots m−2 (March) to 9±3 shoots m−2 (September), and represented 5% of total shoot density. Neither aboveground biomass nor LAI (Leaf Area Index) differed between transects, with values ranging between 77±14.5 g dry wt m−2 (October 1987) and 13±2.4 g dry wt m−2 (February 1988) for aboveground biomass, and between 0.6±0.2 m2 leves m−2 substrate (January) and 2.7±0.3 m2 leaves m−2 substrate (September) for LAI. Neither root biomass nor rhizome biomass differed between transects, or as a function of time; the mean value for roots was 17 g dry wt m−2 and for rhizomes 29 g dry wt m−2. Belowground biomass represented 54% of total biomass. We found a significant correlation between aboveground biomass and LAI (r=0.949 for transect I, and 0.926 for transect II) as well as between total biomass (aboveground and belowground) and LAI (r=0.814), which allows us to consider using LAI as a predictor of these variables. Biomass changes were related to changes in shoot weight (r=0.676 at transect I; 0.582 at transect II), more than to changes in shoot number. Water temperature was found to be the driver of biomass changes in the aboveground compartment.  相似文献   

5.
We studied interactions between animal disturbance (geese, carp, and muskrat) and elevation in a field experiment in tidal freshwater marshes of the Patuxent River, Maryland, United States. Vegetation changes were recorded in fenced and unfenced plots in high and low marsh community types for 2 yr using measurements of areal cover and within-plot frequency (which were averaged to create a dominance index), Leaf Area Index (LAI), and aboveground biomass. We related light environment to differences in vegetation using below-canopy measurements of Photosynthetically Active Radiation (PAR). In the low marsh, total cover of all species, cover of annual species, biomass, and LAI were significantly higher in plots fenced to exclude animals (exclosures) than in unfenced plots (fenced/unfenced total cover=76/40%, annual cover=45/10%, biomass=936/352 g m?2, LAI=3.3/1.4). PAR was significantly lower in fenced than unfenced plots (fenced/unfenced=115/442 μmol s-1 m?2). Despite the strong effect of fencing on biomass, species richness per plot (i.e., the number of species per plot, or species density) was not affected significantly by fencing in the low marsh. Most of the observed differences in cover, biomass, LAI, and PAR were due to variation in the abundance of the herbaceous annual speciesBidens laevis (dominance index fenced/unfenced=45/10%) andZizania aquatica (30/12%). In the high marsh community, fencing had only minor effects on plant community composition and did not significantly affect species richness, cover, biomass, PAR, or LAI. Our results show that animals can dramatically affect low marsh vegetation, primarily via physical disturbance or herbivory of shallowly rooted seedlings of annual species.  相似文献   

6.
The responses of Spartina alterniflora above- and belowground biomass to various combinations of N, P, and Fe were documented in a 1-year field experiment in a Louisiana salt marsh. Five levels of N additions to 0.25 m2 plots resulted in 18% to 138% more live aboveground biomass compared to the control plots and higher stem densities, but had no effect on the amount of live belowground biomass (roots and rhizomes; R&R). There was no change in the aboveground biomass when P or Fe was added as part of a factorial experiment of +P, +N, and +Fe additions, but there was a 40% to 60% decrease in the live belowground biomass, which reduced the average R&R:S ratio by 50%. The addition of various combinations of nutrients had a significant affect on the belowground biomass indicating that the addition of P, not N, eased the need for root foraging activity. The end-of-the-growing-season N:P molar ratios in the live above- and belowground tissues of the control plot was 16.4 and 32.7, respectively. The relative size of the belowground standing stocks of N and P was higher than in the aboveground live tissues, but shifted downwards to about half that in fertilized plots. We conclude that the aboveground biomass was directly related to N availability, but not P, and that the accumulation of belowground biomass was not limited by N. We suggest that the reduction in belowground biomass with increased P availability, and the lower absolute and relative belowground standing stocks of P as plant tissue N:P ratios increased, is related to competition with soil microbes for P. One implication for wetland management and restoration is that eutrophication may be detrimental to long-term salt marsh maintenance and development, especially in organic-rich wetland soils.  相似文献   

7.
Net primary production was measured in three characteristic salt marshes of the Ebre delta: anArthrocnemum macrostachyum salt marsh,A. macrostachyum-Sarcocornia fruticosa mixed salt marsh andS. fruticosa salt marsh. Above-ground and belowground biomass were harvested every 3 mo for 1 yr. Surface litter was also collected from each plot. Aboveground biomass was estimated from an indirect non-destructive method, based on the relationship between standing biomass and height of the vegetation. Decomposition of aboveground and belowground components was studied by the disappearance of plant material from litter bags in theS. fruticosa plot. Net primary production (aboveground and belowground) was calculated using the Smalley method. Standing biomass, litter, and primary production increased as soil salinity decreased. The annual average total aboveground plus belowground biomass was 872 g m−2 in theA. macrostachyum marsh, 1,198 g m−2 in theA. macrostachyum-S. fruticosa mixed marsh, and 3,766 g m−2 in theS. fruticosa biomass (aboveground plus belowground) was 226, 445, and 1,094 g m−2, respectively. Total aboveground plus below-ground net primary production was 240, 1,172, and 1,531 g m−2 yr−1. There was an exponential loss of weight during decomposition. Woody stems and roots, the most recalcitrant material, had 70% and 83% of the original material remaining after one year. Only 20–22% of leafy stem weight remained after one year. When results from the Mediterranean are compared to other salt marshes dominated by shrubbyChenopodiaceae in Mediterranean-type climates, a number of similarities emerge. There are similar zonation patterns, with elevation and maximum aboveground biomass and primary production occurring in the middle marsh. This is probably because of stress produced by waterlogging in the low marsh and by hypersalinity in the upper marsh.  相似文献   

8.
The extensive spread ofPhragmites australis throughout brackish marshes on the East Coast of the United States is a major factor governing management and restoration decisions because it is assumed that biogeochemical functions are altered by the invasion. Microbial activity is important in providing wetland biogeochemical functions such as carbon and nitrogen cycling, but there is little known about sediment microbial communities inPhragmites marshes. Microbial populations associated with invasivePhragmites vegetation and with native salt marsh cordgrass,Spartina alterniflora, may differ in the relative abundance of microbial taxa (community structure) and in the ability of this biota to decompose organic substrates (community biogeochemical function). This study compares sediment microbial communities associated withPhragmites andSpartina vegetation in an undisturbed brackish marsh near Tuckerton, New Jersey (MUL), and in a brackish marsh in the anthropogenically affected Hackensack meadowlands (SMC). We use phospholipid fatty acid (PLFA) analysis and enzymataic activity to profile sediment microbial communities associated with both plants in each site. Sediment analyses include bulk density, total organic matter, and root biomass. PLFA profiles indicate that the microbial communities differ between sites with the undisturbed site exhibiting greater fatty acid richness (62 PLFA recovered from MUL versus 38 from SMC). Activity of the 5 enzymes analyzed (β-glucosidase, acid phosphatase, chitobiase, and 2 oxidases) was higher in the undisturbed site. Differences between vegetation species as measured by Principal Components Analysis were significantly greater at the undisturbed MUL site than at SMC, and patterns of enzyme activity and PLFAs did not correspond to patterns of root biomass. We suggest that in natural wetland sediments, macrophyte rhizosphere effects influence the community composition of sediment microbial populations. Physical and chemical site disturbances may impose limits on these rhizosphere effects, decreasing sediment microbial diversity and potentially, microbial biogeochemical functions.  相似文献   

9.
The Horqin Sandy Land is one of the most severely desertified regions in northern China. Plant communities and soil conditions at five stages of grassland desertification (potential, light, moderate, severe and very severe) were selected for the study of vegetation pattern variation relating to soil degradation. The results showed that vegetation cover, species richness and diversity, aboveground biomass (AGB), underground biomass, litter, soil organic carbon (C), total nitrogen (N), total phosphorus (P), electrical conductivity, very fine sand (0.1–0.05 mm) content and silt (0.05–0.002 mm) content decreased with the desertification development. Plant community succession presented that the palatable herbaceous plants gave place to the shrub species with asexual reproduction and sand pioneer plants. The decline of vegetation cover and AGB was positively related to the loss of soil organic C and total N with progressive desertification (P < 0.01). The multivariate statistical analysis showed that plant community distribution, species diversity and ecological dominance had the close relationship with the gradient of soil nutrients in the processes of grassland desertification. These results suggest that grassland desertification results in the variation of vegetation pattern which presents the different composition and structure of plant community highly influenced by the soil properties.  相似文献   

10.
This study investigates the influence ofPhragmites australis (common reed) invasion on the habitat of the resident marsh fish,Fundulus heteroclitus (mummichog) in the Hackensack Meadowlands, New Jersey. These abundant fish play an important role in the transfer of energy from the marsh surface to adjacent subtidal waters and thus estuarine food webs. The objectives of this 2-yr study (1999 and 2000) were to compare the distribution and abundance of the eggs, larvae, juveniles, and adults of mummichog and their invertebrate prey inhabitingSpartina alterniflora-dominated marshes withPhragmites-dominated marshes, and to experimentally investigate the influence of marsh surface microtoprography on larval fish abundance withinPhragmites-dominated marshes. In 2000, we verified that egg deposition does occur inPhragmites-dominated marshes. In both years, the abundance of larvae and small juveniles (4–20 mm TL) inS. alterniflora was significantly greater than inPhragmites-dominated marshes, while larger juveniles and adults (>20 mm TL) were similarly abundant in both habitat types. The overall abundance of larvae and small juveniles was significantly greater in experimentalPhragmites plots in which microtopography was manipulated to resemble that ofSpartina marshes than inPhragmites control plots. Major groups of invertebrate taxa differed between marsh types with potential prey for larval fish being significantly more abundant inS. alterniflora marshes.Phragmites-dominated marshes may not provide the most suitable habitat for the early life-history stages of the mummichog. The low abundance of larvae and small juveniles inPhragmites marshes is likely due to inadequate larval habitat and perhaps decreased prey availability for these early life history stages.  相似文献   

11.
Responses ofSpartina alterniflora marsh to combinations of feral horse grazing, clipping, simulated trampling, and a late winter burn were studied on Cumberland Island National Seashore, Georgia. Replicated 200-m2 plots were established and sampled bimonthly from July 1983 to November 1984. Clipping and trampling each reduced peak aboveground biomass by 20% in 1983 and 50% (clipping) and 55% (trampling) in 1984. A March burn reduced peak aboveground biomass by 35% in 1984. Trampling and burning earch reduced net aboveground primary production (NAPP) by 35%, but clipping did not reduce NAPP. Standing stocks of live rhizomes were correlated with aboveground biomass and were reduced with experimental treatments. Abundance of the periwinkle snail (Littorina irrorata) was also reduced. Horse grazing had a substantial impact on standing stocks and NAPP ofSpartina, but grazing was not uniform throughout the marsh. Moderately grazed plots had NAPP reduced by 25% compared to ungrazed plots. Heavily grazed plots had extremely low NAPP, and abovegroundSpartina never exceeded 40 g m?2 dry mass compared to 360 g m?2 within exclosures.  相似文献   

12.
Nitrogen and phosphorus content ofSpartina alterniflora Loisel and soil nitrogen were measured along a transect perpendicular to a stream in a Louisiana salt marsh in order to provide information on differences between the so-called streamside and inland regions. Total plant nitrogen and phosphorus levels in June and September tended to be greater at streamside than inland sites. Total soil nitrogen on a dry soil weight basis increased with distance inland from a natural stream toward an interdistributary basin in the marsh. Soil extractable ammonium-nitrogen levels measured in June were very low in vegetated streamside and inland areas, but they were much higher in inland areas devoid of plants. Nitrogen and phosphorus utilization byS. alterniflora was also investigated at an inland location in the salt marsh. Labelled ammonium-nitrogen and phosphate-phosphorus were added in May at a rate of 200 kg/ha to the soil of replicated plots. Added nitrogen significantly increased total above-ground plant biomass and plant height by 28 and 25%, respectively, 4 months after application. The ratio of belowground macro-organic matter to total aboveground biomass was decreased from 5.7 to 4.7 by the additional nitrogen. Added phosphorus did not significantly affect plant height and biomass. The use of15N-depleted nitrogen tracers showed that about half of the nitrogen in the aboveground portion ofS. alterniflora from 1 to 4 months after the nitrogen addition was derived from the added ammonium-nitrogen. After 4 months, 28 and 29% of the added labelled nitrogen was recovered in the aboverground and belowground biomass ofS. alterniflora, respectively. Recovery of added nitrogen was overestimated with a non-tracer method based on the difference in total nitrogen uptake between nitrogen-amended plots and untreated plots. Soil organic nitrogen comprised the majority of the nitrogen in the salt marsh. Nitrogen in the standing crop biomass ofS. alterniflora represented only about 2% of the total nitrogen in the plantsoil system of an inland marsh to a 20 cm soil depth.  相似文献   

13.
The invasion ofPhragmites australis into tidal marshes formerly dominated bySpartina alterniflora has resulted in considerable interest in the consequences of this invasion for the ecological functions of marsh habitat. We examined the provision of trophic support for a resident marsh fish,Fundulus heteroclitus, in marshes dominated byP. australis, byS. alterniflora, and in restored marshes, using multiple stable isotope analysis. We first evaluated our ability to distinguish among potential primary producers using the multiple stable isotope approach. Within a tidal creek system we found significant marsh and elevation effects on microalgal isotope values, and sufficient variability and overlap in primary producer isotope values to create some difficulty in identifying unique end members. The food webs supportingF. heteroclitus production were examined using dual isotope plots. At both sites, the δ13C values ofF. heteroclitus were clustered over values for benthic microalgae (BMI) and approximately midway between δ13C values ofSpartina andPhragmites. Based on comparisons of fish and primary producer δ13C, δ15N, and δ34S values, and consideration ofF. heteroclitus feeding habits, we conclude that BMI were a significant component of the food web supportingF. heteroclitus in these brackish marshes, especially recently-hatched fish occupying pools on the marsh surface. A 2‰ difference in δ13C betweenFundulus occupying nearly adjacentSpartina andPhragmites marshes may be indicative of relatively less reliance on BMI and greater reliance onPhragmites production inPhragmites-dominated marshes, a conclusion consistent with the reduced BMI biomass found inPhragmites marshes. The mean δ13C value ofF. heteroclitus from restored marshes was intermediate between values of fish from naturally occurringSpartina marshes and areas invaded byPhragmites. We also examined the isotopic evidence for ontogenetic changes in the trophic position of larval and juvenileF. heteroclitus. We found significant positive relationships betweenF. heteroclitus δ15N values and total length, reflective of an increase in trophic position as fish grow.F. heteroclitus δ15N values indicate that these fish are feeding approximately two trophic levels above primary producers.  相似文献   

14.
Negative connotations of invasive plants worldwide have implicated them as the bearers of unfavorable ecosystem change. We contrasted 5-yr-old and 20-yr-oldPhragmites populations with pre-invasion areas occupied byTypha spp. andPanicum virgatum in an oligohaline tidal marsh of Chesapeake Bay. Peak live biomass was 3 times greater, while standing dead and litter was twice as great in the 20-yr-oldPhragmites. It is this abundance of concentrated litter on the marsh surface of maturePhragmites populations that we implicate as encouraging the trapping of organic and mineral matter. The rate of vertical accretion in 20-yr-oldPhragmites populations is 3–4 mm yr−1 above the adjacent populations. By integrating the constant initial concentration and constant rate of supply models on individual210Pb cores, we estimate thatPhragmites populations require a minimum of 7-yr post-colonization to enhance rates of accretion in this system. In ligh of the considerable loss of marsh habitat from relative sea-level rise, this finding contests the view that invasion creates strictly undesirable change at the ecosystem level.  相似文献   

15.

We examined fish assemblages in tidal salt marsh creeks in Delaware Bay in order to evaluate their response to treatment forPhragmites removal following initial treatment in 1996. In Alloway Crrek, a tributary to Delaware Bay, reference creeks draining marsh of untreatedPhragmites or naturally occurringSpartina were compared with creeks in marshes treated forPhragmites removal. These reference and treated creeks occur in close proximity and share many characteristics including salinity, temperature, dissolved oxygen, and turbidity, although creeks inPhragmites sites differed slightly in bathymetry. We analyzed a time series of otter trawl collections (22 monthly sample periods from 1999 to 2001) for differences in juvenile fish assemblage among creeks with different vegetation history. Periodically, young-of-the-year (YOY) and age 1+ white perch (Morone americana), YOY spot (Leiostomus xanthurus), YOY Atlantic menhaden (Brevoortia tyrannus), and other species were relatively more abundant atPhragmites sites, but other dominant species were preiodically abundant at all sites. Among-treatment differences based on principal response curves analysis accounted for about 19% of the total species variation, but differences varied widely among sample periods and there is little or no indication of a trend over the 3-yr period. Larger collections were often associated with subtidal structure, which was more common atPhragmites sites and potentially represents a sampling artifact. Assemblages of creeks with differing vegetation history differ weakly but recognizably, suggesting slow or little response to treatment, at least based on otter trawl collections in subtidal marsh creeks.

  相似文献   

16.
The invasion and expansion of the introduced haplotype of Phragmites australis across North America is of growing concern. Previous studies in the Chesapeake Bay region found that Phragmites was more abundant, had higher foliar nitrogen, and produced more viable seeds in brackish wetland subestuaries with more anthropogenic development of the watershed. Here, we focus on a different scale and address issues related to the invasion of Phragmites within a single subestuary, the Rhode River. We evaluated patterns in seed viability, foliar nutrient concentrations, patch size, and genetic variation in ten Phragmites patches in wetlands that occur in the side of the subestuary that is surrounded by forest and 10 patches in wetlands that are in the side of the subestuary that has extensive anthropogenic development. Seed viability varied from 0–60% among the 20 patches but did not differ significantly between patches on the developed vs. forested sides of the Rhode River. Foliar nutrients also did not differ between patches on the two sides of the Rhode River. Seed viability, however, was negatively related to foliar nutrients. Most Phragmites patches consisted of >1 genotype. Larger patches had multiple genotypes, and patches with more genotypes produced more viable seeds. Our study indicates that the Rhode River subestuary behaves as one system with no differences in the measured Phragmites variables between the forested vs. developed sides of the watershed. Our findings also suggest a cyclical process by which Phragmites can spread: larger patches contain more genetic diversity, which increases the chances for cross-fertilization. The subsequent increased production of viable seeds can increase local levels of genetic diversity, which can further facilitate the spread of Phragmites by seed.  相似文献   

17.
We examined the effect of nutrients and grazers on Thalassia testudinum in Jobos Bay, Puerto Rico by fertilizing sediment and manipulating grazer abundances. Bottom-up effects were variable: Added nutrients did not increase seagrass aboveground biomass, but decreased belowground biomass—perhaps as a result of less biomass being allocated to belowground structures in response to greater nutrient supply in porewater. Experimental fencing of 1.5 × 1.5 m plots provided shelter that attracted large aggregations of fish, including seagrass herbivores. Seagrass biomass and shoot density decreased with increasing abundance of herbivorous fish, indicating a significant top-down effect. There were interactions between nutrient supply, provision of shelter, and grazing pressure. Fertilization enhanced seagrass %N; however, %N also increased in unfertilized plots that were fenced, most likely due to uptake of N excreted from the large numbers of fish associated with the fences. Only plots where shelter was provided and fertilizer was applied to sediments exhibited evidence of heavy grazing, reducing both seagrass cover and aboveground biomass. In the unfertilized fenced plots, signs of grazing were fewer despite large abundances of fish and enhanced nutritional quality of seagrass leaves. This suggests the possibility that high nutrient availability in sediments lowered concentrations of chemical defense compounds in the seagrass and that cues other than %N may have been involved in stimulating grazing. This study highlights the complexity of bottom-up and top-down interactions in seagrass systems and the important role of refuge availability in shaping the relative strengths of these controls.  相似文献   

18.
Through their physiological effects on ion, oxygen, and carbon balance, respectively, salinity, sulfide, and prolonged flooding combine to constrain the invasion and spread ofPhragmites in tidal wetlands. Initial sites of vigorous invasion by seed germination and growth from rhizome fragments appear limited to sections of marsh where salinity is <10‰, sulfide concentrations are less than 0.1 mM, and flooding frequency is less than 10%. In polyhaline tidal wetlands the invasion sites include the upland fringe and some high marsh creek banks. The zones of potential invasion tend to be larger in marshes occupying lower-salinity portions of estuaries and in marshes that have been altered hydrologically. Owing to clonal integration and a positive feedback loop of growth-induced modification of edaphic soil conditions, however, a greater total area of wetland is susceptible toPhragmites expansion away from sites of establishment. Mature clones have been reported growing in different marshes with salinity up to 45‰, sulfide concentration up to 1.75 mM, and flooding frequency up to 100%. ForPhragmites establishment and expansion in tidal marshes, windows of opportunity open with microtopographic enhancement of subsurface drainage patterns, marsh-wide depression of flooding and salinity regimes, and variation in sea level driven by global warming and lunar nodal cycles. To avoidPhragmites monocultures, tidal wetland creation, restoration, and management must be considered within the context of these different scales of plant-environment interaction.  相似文献   

19.
We investigated if the success of the invasive common reed Phragmites australis could be attributed to a competitive ability to use dissolved organic nitrogen (DON) when compared to the dominant macrophyte Spartina alterniflora in tidal wetlands. Short-term nutrient uptake experiments were performed in the laboratory on two genetic lineages of Phragmites (native and introduced to North America) and S. alterniflora. Our results provide the first evidence for direct assimilation of DON by temperate marsh plants and indicate that amino acids are assimilated intact by all plant types at similar rates. Both Phragmites lineages had significantly greater urea–N assimilation rates than S. alterniflora, and the affinity for dissolved inorganic nitrogen (DIN) species was the greatest in native Phragmites > introduced Phragmites > S. alterniflora. Field studies demonstrated uptake of both DON and DIN in similar proportion as those determined in the laboratory experiments. Based on these uptake rates, we estimate that DON has the potential to account for up to 47% of N demand for Phragmites plants, and up to 24% for S. alterniflora plants. Additionally, we suggest that differences in N uptake between native and introduced Phragmites lineages explain one mechanism for the success of the introduced type under increasingly eutrophic conditions.  相似文献   

20.
Kirdyanov, A. V., Hagedorn, F., Knorre, A. A., Fedotova, E. V., Vaganov, E. A., Naurzbaev, M. M., Moiseev, P. A. & Rigling, A. 2012 (January): 20th century tree‐line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas, Vol. 41, pp. 56–67. 10.1111/j.1502‐3885.2011.00214.x. ISSN 0300‐9483. Ongoing climatic changes potentially affect tree‐line ecosystems, but in many regions the observed changes are superimposed by human activities. We assessed how the forest‐tundra ecotone has changed during the last century in the Putorana Mountains, northern Siberia, an extremely remote and untouched area in Eurasia. A space‐for‐time approach was used to determine the spatio‐temporal dynamics of forest structure and biomass along an altitudinal transect. From the closed larch forest to the upper tree line, the mean age of Larix gmelinii (Rupr.) decreased considerably from 220 to 50 years ago. At the current upper species line, there is a strong and successful germination of larch, with 1500 saplings per hectare, indicating an ongoing filling‐in, a densification of a formerly open forest and an upslope shift of the tree‐line position (approximately 30 to 50 m in altitude during the last century). The forest expansion coincided with large increases in winter precipitation during the 20th century. In contrast, tree growth rates were significantly positively related to summer temperatures, neither of which increased markedly. The total aboveground biomass decreased from approximately 40 t ha?1 in the closed larch forest to 5 t ha?1 at the tree line. Our study demonstrates that ongoing climatic changes lead to an upslope expansion of forests in the remote Putorana Mountains, which alters the stand structure and productivity of the forest‐tundra ecotone. These vegetation changes are very probably of minor importance for aboveground carbon sequestration, but soil carbon data are needed to estimate the impact of the forest expansion on the total ecosystem carbon storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号