首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat as a ground water tracer   总被引:40,自引:0,他引:40  
Anderson MP 《Ground water》2005,43(6):951-968
Heat carried by ground water serves as a tracer to identify surface water infiltration, flow through fractures, and flow patterns in ground water basins. Temperature measurements can be analyzed for recharge and discharge rates, the effects of surface warming, interchange with surface water, hydraulic conductivity of streambed sediments, and basin-scale permeability. Temperature data are also used in formal solutions of the inverse problem to estimate ground water flow and hydraulic conductivity. The fundamentals of using heat as a ground water tracer were published in the 1960s, but recent work has significantly expanded the application to a variety of hydrogeological settings. In recent work, temperature is used to delineate flows in the hyporheic zone, estimate submarine ground water discharge and depth to the salt-water interface, and in parameter estimation with coupled ground water and heat-flow models. While short reviews of selected work on heat as a ground water tracer can be found in a number of research papers, there is no critical synthesis of the larger body of work found in the hydrogeological literature. The purpose of this review paper is to fill that void and to show that ground water temperature data and associated analytical tools are currently underused and have not yet realized their full potential.  相似文献   

2.
Release of an estimated 150,000 gallons (568,000 L).of 1.2–dichloroethane (EDC) from a buried pipeline into a ditch and surrounding soil resulted in shallow subsurface contamination of a Gulf Coast site. Short-term remediation included removal of EDC DNAPI. (dense nonaqueous phase liquid) by dredging and vacuuming the ditch, and by dredging the river where the ditch discharged. EDC saturation in shallow impacted sediments located beneath the ditch was at or below residual saturation and these sediments were therefore left in place. The ditch was lined, backfilled, and capped. Long-term remediation includes EDC DNAPL recovery and hydraulic containment from the shallow zone with long-term monitoring of the shallow, intermediate, and deep (200 foot) aquifers. Ground water, DNAPL., and dissolved phase models were used to guide field investigations and the selection of an effective remedial action strategy. The DNAPL. modeling was conducted for a two-dimensional vertical cross section of the site, and included the three aquifers separated by two aquitards with microfractures. These aquitards were modeled using a dual porosity approach. Matrix and fracture properties of the aquitards used for DNAPL modeling were determined from small-scale laboratory properties. These properties were consistent with effective hydraulic conductivity determined from ground water flow modeling. A sensitivity analysis demonstrated that the vertical migration of EDC was attenuated by dissolution of EDC into the matrix of the upper aquitard. When the organic/water entry pressure of the aquitard matrix, or the solubility of EDC were decreased to unrealislically low values. EDC DNAPL. accumulated in the aquifer below the upper aquitard.
EDC DNALM, did not reach the regional (deepest) aquifer in any of the cases modeled. The limited extent of vertical EDC migration predicted is supported by ground water monitoring conducted over the four years since the spill.  相似文献   

3.
We investigated the effects of ditch blocking on fluvial carbon concentrations and fluxes at a 5‐year, replicated, control‐intervention field experiment on a blanket peatland in North Wales, UK. The site was hydrologically instrumented, and run‐off via open and blocked ditches was analysed for dissolved organic carbon (DOC), particulate organic carbon, dissolved carbon dioxide, and dissolved methane. DOC was also analysed in peat porewater and overland flow. The hillslope experiment was embedded within a paired control‐intervention catchment study, with 3 years of preblocking and 6 years of postblocking data. Results from the hillslope showed large reductions in discharge via blocked ditches, with water partly redirected into hillslope surface and subsurface flows, and partly into remaining open ditches. We observed no impacts of ditch blocking on DOC, particulate organic carbon, dissolved carbon dioxide or methane in ditch waters, DOC in porewaters or overland flow, or stream water DOC at the paired catchment scale. Similar DOC concentrations in ditch water, overland flow, and porewater suggest that diverting flow from the ditch network to surface or subsurface flow had a limited impact on concentrations or fluxes of DOC entering the stream network. The subdued response of fluvial carbon to ditch blocking in our study may be attributable to the relatively low susceptibility of blanket peatlands to drainage, or to physical alterations of the peat since drainage. We conclude that ditch blocking cannot be always be expected to deliver reductions in fluvial carbon loss, or improvements in the quality of drinking water supplies.  相似文献   

4.
An analytical solution is provided for predicting time dependent seepage into an array of equally spaced parallel ditch drains in a homogeneous and anisotropic soil medium underlain by an impervious layer and receiving water from a ponded horizontal field of infinite extent. The solution can account for both unequal levels of water in the adjacent drains and variable depths of ponding at the soil surface. The validity of the developed model is tested by first reducing it to a steady state solution and then comparing predictions obtained from it for a few flow situations with corresponding predictions obtained from the analytical works of others. A numerical comparison of the developed model for a flow situation is also carried out using MODFLOW. The surface discharge distribution is found to show relatively greater uniformity at the early stages of simulation but with the progress of time, the extent of uniformity is found to reduce particularly for cases where the soil is subjected to a uniform depth of ponding. However, even when a soil surface is subjected to a constant depth of ponding, a high anisotropy ratio (ratio of horizontal to vertical hydraulic conductivity of soil) of the soil alone may lead to a marked improvement on the uniformity of the surface discharge distribution at all times in comparison to a soil having a low anisotropy ratio. A better uniformity of surface discharge may also be achieved by suitably adjusting the depths of ponding over the surface of the soil – regions close to the ditches be provided with zero or negligible depths of ponding and the ponding depths may be made to progressively increase with the increase in distance from the ditch faces. As the developed analytical model is of a general nature, it is hoped that the solution provided herein will lead to a better and realistic design of ditch drainage networks for controlling waterlogged areas and in reclaiming salt affected soils.  相似文献   

5.
Regional ground water flow is most usually estimated using Darcy's law, with hydraulic conductivities estimated from pumping tests, but can also be estimated using ground water residence times derived from radioactive tracers. The two methods agree reasonably well in relatively homogeneous aquifers but it is not clear which is likely to produce more reliable estimates of ground water flow rates in heterogeneous systems. The aim of this paper is to compare bias and uncertainty of tracer and hydraulic approaches to assess ground water flow in heterogeneous aquifers. Synthetic two-dimensional aquifers with different levels of heterogeneity (correlation lengths, variances) are used to simulate ground water flow, pumping tests, and transport of radioactive tracers. Results show that bias and uncertainty of flow rates increase with the variance of the hydraulic conductivity for both methods. The bias resulting from the nonlinearity of the concentration–time relationship can be reduced by choosing a tracer with a decay rate similar to the mean ground water residence time. The bias on flow rates estimated from pumping tests is reduced when performing long duration tests. The uncertainty on ground water flow is minimized when the sampling volume is large compared to the correlation length. For tracers, the uncertainty is related to the ratio of correlation length to the distance between sampling wells. For pumping tests, it is related to the ratio of correlation length to the pumping test's radius of influence. In regional systems, it may be easier to minimize this ratio for tracers than for pumping tests.  相似文献   

6.
In Belgium, IWVA uses managed aquifer recharge (MAR) to recharge the aquifer with treated wastewater generated from the communities to sustain the potable water supply on the Belgian coast. This MAR facility is faced with a challenge of reduced infiltration rates during the winter season when pond water temperatures near 4°C. This study involves the identification of the predominant factor influencing the rate of infiltration through the pond bed. Several factors, including pumping rates, natural recharge, tidal influences of the North Sea and pond-water temperature, were identified as potential causes for variation of the recharge rate. Correlation statistics and linear regression analysis were used to determine the sensitivity of the infiltration rate to the aforementioned factors. Two groundwater flow models were developed in visual MODFLOW to simulate the water movement under the pond bed and to obtain the differences in flux to track the effects of variation of hydraulic conductivity during the two seasons. A 32% reduction in vertical hydraulic gradient in the top portion of the aquifer was observed in winter, causing the recharge rates to fluctuate. Results showed that water temperature caused a 30% increase in hydraulic conductivity in summer as compared with winter and has the maximum impact on infiltration rate. Cyclic variations in water viscosity, occurring because of seasonal temperature changes, influence the saturated hydraulic conductivity of the pond bed. Results from the models confirm the impact on infiltration rate by temperature-influenced hydraulic conductivity.  相似文献   

7.
In glacial outwash deposits, the movement of ground water Is determined by small scale irregularities in the pattern of hydraulic conductivity. Permeability determinations on split spoon samples obtained from coring the site are not sufficient to predict the patchiness of flow since it cannot define continuity of the strata. The lattice work pattern can be determined by vertical profiling with direct ground water flow measurement. The rate and direction of flow is combined with head gradient changes to compute hydraulic conductivity changes across the site.
The results of the tests can be plotted on triangular graphs depicting the fundamental Darcy equation. The local conditions reflect a mathematical "patchiness" of hydraulic conductivity unique to outwash deposits.
The procedure was employed to determine flow characteristics and define the zone of contribution to porous bottom kettle lakes. The zone of contribution was defined by projecting backward from the vertical profiling and shallow measurements and taking into account the daily rain water recharge rate across the site.
For the unconfined aquifer north of the pond, shallow ground water flow measurements were necessary to define the recharge portion of the shoreline. Vertical profiling was required to define the recharge volume since the rate of flow was not even with depth. A simple differential equation for determining the recharge area is presented along with the calculations.  相似文献   

8.
Anisotropy and heterogeneity of hydraulic conductivity (K) are seldom considered in models of mire hydrology. We investigated the effect of anisotropy and heterogeneity on groundwater flow in bog peat using a steady‐state groundwater model. In five model simulations, four sets of K data were used. The first set comprised measured K values from an anisotropic and heterogeneous bog peat. These data were aggregated to produce the following simplified data sets: an isotropic and heterogeneous distribution of K; an isotropic and homogeneous distribution; and an anisotropic and homogeneous distribution. We demonstrate that, where anisotropy and heterogeneity exist, groundwater flow in bog peat is complex. Fine‐scale variations in K have the potential to influence patterns and rates of groundwater flow. However, for our data at least, it is heterogeneity and not anisotropy that has the greater influence on producing complex patterns of groundwater flow. We also demonstrate that patterns and rates of groundwater flow are simplified and reduced when measured K values are aggregated to create a more uniform distribution of K. For example, when measured K values are aggregated to produce isotropy and homogeneity, the rate of modelled seepage is reduced by 28%. We also show that when measured K values are used, the presence of a drainage ditch can increase seepage through a modelled cross‐section. Our work has implications for the accurate interpretation of hydraulic head data obtained from peat soils, and also the understanding of the effect of drainage ditches on patterns and rates of groundwater flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The study of runoff is a crucial issue because it is closely related to flooding, water quality and erosion. In cultivated catchments, agricultural ditch drainage networks are known to influence runoff. As anthropogenic elements, agricultural ditch drainage networks can therefore be altered to better manage surface runoff in cultivated catchments. However, the relationship between the spatial configuration, i.e. the density and the topology, of agricultural ditch drainage networks and surface runoff in cultivated catchments is not understood. We studied this relationship by using a random network simulator that was coupled to a distributed hydrological model. The simulations explored a large variety of spatial configurations corresponding to a thousand stochastic agricultural ditch drainage networks on a 6.4 km² Mediterranean cultivated catchment. Next, several distributed hydrological functions were used to compute water flow paths and runoff for each simulation. The results showed that (i) denser networks increased the drained volume and the peak discharge and decreased hillslopes runoff, (ii) greater network density did not affect the surface runoff any further above a given network density, (iii) the correlation between network density and runoff was weaker for small subcatchments (< 2 km²) where the variability in the drained area that resulted from changes in agricultural ditch drainage networks increased the variability of runoff and (iv) the actual agricultural ditch drainage network appeared to be well optimized for managing runoff as compared with the simulated networks. Finally, our results highlighted the role of agricultural ditch drainage networks in intercepting and decreasing overland flow on hillslopes and increasing runoff in drainage networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Patterns and Age Distribution of Ground-Water Flow to Streams   总被引:2,自引:0,他引:2  
Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the down gradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Base flow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.  相似文献   

11.
Langevin CD 《Ground water》2003,41(5):587-601
A method is presented for incorporating the hydraulic effects of vertical fracture zones into two-dimensional cell-based continuum models of ground water flow and particle tracking. High hydraulic conductivity features are used in the model to represent fracture zones. For fracture zones that are not coincident with model rows or columns, an adjustment is required for the hydraulic conductivity value entered into the model cells to compensate for the longer flowpath through the model grid. A similar adjustment is also required for simulated travel times through model cells. A travel time error of less than 8% can occur for particles moving through fractures with certain orientations. The fracture zone continuum model uses stochastically generated fracture zone networks and Monte Carlo analysis to quantify uncertainties with simulated advective travel times. An approach is also presented for converting an equivalent continuum model into a fracture zone continuum model by establishing the contribution of matrix block transmissivity to the bulk transmissivity of the aquifer. The methods are used for a case study in west-central Florida to quantify advective travel times from a potential wetland rehydration site to a municipal supply wellfield. Uncertainties in advective travel times are assumed to result from the presence of vertical fracture zones, commonly observed on aerial photographs as photolineaments.  相似文献   

12.
A New System for Ground Water Monitoring   总被引:4,自引:0,他引:4  
This paper describes a new system for ground water monitoring, "the BAT System," which includes the following functions: (a) sampling of ground water in most types of soils, (b) measurement of pore water pressure, and (c) in situ measurement of hydraulic conductivity. The system can also be used for tracer tests. The system utilizes a permanently installed filter tip attached to a steel or PVC pipe. Installation is normally performed by pushing the tip down to the desired depth. The filter tip can also be buried beneath a landfill. The primary feature of the new system is that the filter tip contains a self-sealing quick coupling unit, which makes it possible to temporarily connect the filter tip to adapters for various functions, e.g. water sampling and for measurement of pore pressure and hydraulic conductivity. The new technique makes sampling of both pressurized water and gas possible. Samples are obtained directly in hermetically sealed, pre-sterilized sample cylinders. Sampling of ground water and measurement of pore pressure can be repeated over a long period of time with undiminished accuracy. This technique is also well-adapted for taking water samples from different strata in a soil profile, in both the saturated and unsaturated zones. Actual installations range from 0.5 to 60m depth.  相似文献   

13.
A simple method of determining the anisotropy ratio of hydraulic conductivity in near-surface granular aquifers using tracer test and piezometer measurements is presented. Depending on the length of time allowed, the test will yield anisotropy ratios that are representative of the distance traversed by the tracer during the test, up to tens of feet from the injection point for some systems. This method is illustrated with an application to a ground water flow system in northern Wisconsin.  相似文献   

14.
Measurement of the saturated hydraulic conductivity of material in the unsaturated zone beneath proposed surface impoundments is important for predicting seepage rates of water and contaminants. Hazardous waste disposal facilities are commonly sited on the basis of the low permeability of the geologic materials beneath the site. Field measurement of the saturated hydraulic conductivity of low-permeability materials may be accomplished using air-entry permeameters and borehole permeameters. The results of a coordinated field and laboratory investigation of low-permeability materials at a hazardous waste facility are presented. The different methods of testing and analysis are compared and discussed. In general, air-entry permeameters and borehole permeameters are useful for measuring the saturated hydraulic conductivity of low-permeability materials.  相似文献   

15.
Coastal lagoons are significant wetland environments found on coastlines throughout the world. Groundwater seepage may be a key component of lagoon water balances, though only a few studies have investigated large (>100 km2) coastal lagoons. In this study, we combined airborne thermal infrared imagery with continuous measurements of radon (222Rn—a natural groundwater tracer), conductivity, water temperature and dissolved oxygen to map groundwater seepage to a large coastal lagoon in New Zealand. We found evidence of seepage along the margins of the lagoon but not away from the margins. Our findings confirmed previously known seepage zones and identified new potential locations of groundwater inflow. Both point source and diffuse seepage occurred on the western and northwestern margins of the lagoon and parallel to the barrier between the lagoon and sea. These observations imply geologic controls on seepage. The combination of remote sensing and in-situ radon measurements allowed us to effectively map groundwater discharge areas across the entire lagoon. Combined, broad-scale qualitative methods built confidence in our interpretation of groundwater discharge locations in a large, dynamic coastal lagoon.  相似文献   

16.
A natural gradient tracer test using perdeuterated MTBE was conducted in an anaerobic aquifer to determine the relative importance of dispersion and degradation in reducing MTBE concentrations in ground water. Preliminary ground water chemistry and hydraulic conductivity data were used to place the tracer within an existing dissolved MTBE plume at Port Hueneme, California. Following one year of transport, the tracer plume was characterized in detail.
Longitudinal dispersion was identified as the dominant mechanism for lowering the perdeuterated MTBE concentrations. The method of moments was used to determine the longitudinal and lateral dispersion coefficients (0.85 m2/day and 0.08 m2/day, respectively). A mass-balance analysis, carried out after one year of transport, accounted for 110% of the injected mass and indicated that no significant mass loss occurred. The plume structure created by zones of higher and lower hydraulic conductivity at the site was complex, consisting of several localized areas of high tracer concentration in a lower concentration plume. This is important because the aquifer has generally been characterized as exhibiting fairly minor heterogeneity. In addition, the tracer plume followed a curved flowpath that deviated from the more macroscopic direction of ground water flow inferred from local ground water elevation measurements and the behavior of the existing plume. Understanding the mass balance, plume structure, curvature of the tracer plume, and consequently natural attenuation behavior required the detailed sampling approach employed in this study. These data imply that a detailed understanding of site hydrogeology and an extensive sampling network may be critical for the correct interpretation of monitored natural attenuation of MTBE.  相似文献   

17.
Electro-osmosis (EO), the movement of water through porous media in response to an electric field, offers a means for extracting contaminated ground water from fine-grained sediments, such as clays, that are not easily amenable to conventional pump-and-treat approaches. The EO-induced water flux is proportional to the voltage gradient in a manner analogous to the flux dependence on the hydraulic gradient under Darcy's law. The proportionality constant, the soil electro-osmotic conductivity or keo, is most easily measured in soil cores using bench-top tests, where flow is one-dimensional and interfering effects attributable to Darcy's law can be directly accounted for. In contrast, quantification of EO fluxes and keo in the field under deployment conditions can be difficult because electrodes are placed in ground water wells that may be screened across a heterogeneous mixture of lithologies. As a result, EO-induced water fluxes constitute an approximate radial flow system that is superimposed upon a Darcy flow regime through permeable pathways that may or may not be coupled with hydraulic head differences created by the EO-induced water fluxes. A single well comparative tracer test, which indirectly measures EO fluxes by comparing wellbore tracer dilution rates between background and EO-induced water fluxes, may provide a means for routinely quantifying the efficacy of EO systems in such settings. EO fluxes measured in field tests through this technique at a ground water contamination site were used to estimate a mean keo value through a semianalytic line source model of the electric field. The resulting estimate agrees well with values reported in the literature and with values obtained with bench-top tests conducted on a soil core collected in the test area.  相似文献   

18.
Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.  相似文献   

19.
Seepage rate and direction measured with a seepage metre modified for use in flowing water were greatly variable along a 300‐m reach of a shallow, gravel‐bed river and depended primarily on the local‐scale bed topography. The median value of seepage measured at 24 locations was 24 cm/day, but seepage measured at specific sites ranged from ?340 to +237 cm/day. Seepage also varied substantially over periods of hours to days and occasionally reversed direction in response to evolution of the sediment bed. Vertical hydraulic conductivity was related to seepage direction and was larger during upward seepage than during downward seepage; with differences ranging from 4 to 40% in areas of active sediment transport to more than an order of magnitude in areas where current was too slow to mobilize bed sediment. Seepage was poorly related to hydraulic gradient measured over vertical distances of 0·3 m and appeared to be opposite the hydraulic gradient at 18% of the locations where both parameters were measured. Results demonstrate the scale dependence of these measurements in coarse‐grained hyporheic settings and indicate that hydraulic gradients should be determined over a much shorter vertical increment if used to indicate exchange across the sediment–water interface. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

20.
We investigated submarine ground water discharge and salt water-fresh water interactions at two locations along the shoreline of the Upper Gulf of Thailand to evaluate mechanisms of water and material transport into the coastal zone. Our data set illustrates the value of using a combined approach consisting of automatic seepage meters to monitor flow rates while assessing the conductivity (salinity) of the subterranean fluids via remote resistivity measurements. Negative correlations between electric conductivities of fluids measured directly inside seepage meter chambers and the remotely assessed resistivities of subsurface pore water show that such measurements may evaluate the spatial distribution of flow rates as well as the subterranean water quality in the coastal zone. Combined seepage and resistivity measurements may thus provide a more complete understanding of coastal ground water dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号