首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hornblende lherzolite nodules from the Kirsh volcano, near Ataq, South Arabian Federation, are likely to have been derived from the upper mantle. The hornblende is a pargasitic variety, rich in sodium and chromium.  相似文献   

2.
Despite several lines of indirect evidence, there has hitherto been little unambiguous evidence of a volatile bearing phase in the upper mantle. Mica has been found as a primary phase in several specimens of peridotite and one specimen of garnet lherzolite from the Lashaine volcano, northern Tanzania.  相似文献   

3.
《International Geology Review》2012,54(10):1343-1352
The concept of tectonogen, a deep-seated tectonic mechanism (originating presumably in the Gutenberg layer), a narrow inclined zone of the maximum flow of energy from the mantle to the surface ("energovod" = "energagogue") is developed by analysis of deep-seated earthquakes, relations between island arcs and folded zones, positions of magmatic hearths, and other evidence. Evolution of the tectonogen is related to evolution of geosynclines, geoisotherms, types and composition of magmas, seismic and volcanic phenomena, migration of the sources of earthquakes, origin of the zone of deep fractures, and others. — IGR Staff.  相似文献   

4.
The oxygen fugacity condition of equilibration has been carefully determined from a spinel lherzolite from Mongolia, olivine xenocrysts from chrome pyrope-bearing peridotite nodules from kimberlites of Yakutia, and basaltic samples from ocean floor, iron arcs and the continental areas. These indicate that the spinel lherzolites occurring within alkali basalts from Mongolia, equilibrated under an \(f_{O_2 } \) condition similar to that of WM buffer. The diamond and chrome pyrope-bearing peridotites from the kimberlite pipes equilibrated between IW and WM buffers. Some of the ilmenite-bearing peridotite crystallized under \(f_{O_2 } \) conditions similar to that between WM and QFM buffers and chondrites equilibrated below the QFI buffer. It is concluded that during geochemical processes in the upper mantle the \(f_{O_2 } \) conditions vary broadly, and are similar to that between FMQ and IW buffers. There is a dramatic change in the composition of the kimberlitic fluid, which is CH4-bearing at an early stage, but is in equilibrium with H2O and CO2 at a later stage. This is related to mass transfer of fluids from the lower part of the mantle with a low oxidation state to the upper part having a higher \(f_{O_2 } \) condition.  相似文献   

5.
We combined microstructural observations and high-resolution crystallographic preferred orientation (CPO) mapping to unravel the active deformation mechanisms in garnet clinopyroxenites, garnet–spinel websterites, and spinel websterites from the Beni Bousera peridotite massif. All pyroxenites display microstructures recording plastic deformation by dislocation creep. Pyroxene CPOs are consistent with dominant slip on [001]{110} in clinopyroxene and on [001](100) or [001](010) in orthopyroxene. Garnet clinopyroxenites have however high recrystallized fractions and finer grain sizes than spinel websterites. Recrystallization mechanisms also differ: subgrain rotation dominates in garnet clinopyroxenites, whereas in spinel websterites nucleation and growth also contribute. Elongated shapes and strong intracrystalline misorientations suggest plastic deformation of garnet, but CPOs are weak. Clinopyroxene porphyroclasts in spinel websterites show deformation twins underlined by orthopyroxene exsolutions. Thermodynamic calculations indicate that garnet clinopyroxenites deformed at 2.0 GPa and 950–1000 °C and spinel pyroxenites at 1.8 GPa and 1100–1150 °C. The lower temperatures may explain the faster work rates implied by the finer grained microstructures in garnet clinopyroxenites. Greater stresses may have also reduced the competence contrast between garnet and pyroxene in the garnet pyroxenites and, at the outcrop scale, lowered the competence contrast between pyroxenites and peridotites, favoring mechanical dispersion of pyroxenites in the cooler lithospheric mantle.  相似文献   

6.
Experiments on compositions along the join MgO–NaA3+Si2O6 (A=Al, Cr, Fe3+) show that sodium can be incorporated into ferropericlase at upper mantle pressures in amounts commonly found in natural diamond inclusions. These results, combined with the observed mineral parageneses of several diamond inclusion suites, establish firmly that ferropericlase exists in the upper mantle in regions with low silica activity. Such regions may be carbonated dunite or stalled and degassed carbonatitic melts. Ferropericlase as an inclusion in diamond on its own is not indicative of a lower mantle origin or of a deep mantle plume. Coexisting phases have to be taken into consideration to decide on the depth of origin. The composition of olivine will indicate an origin from the upper mantle or border of the transition zone to the lower mantle and whether it coexisted with ferropericlase in the upper mantle or as ringwoodite. The narrow and flat three phase loop at the border transition zone—lower mantle together with hybrid peridotite plus eclogite/sediments provides an explanation for the varying and Fe-rich nature of the diamond inclusion suite from Sao Luiz, Brazil.  相似文献   

7.
Models of continental crust and of geosynclinal processes, in their historical perspective, and generalized views on composition and structure of the tectonosphere are presented and discussed, particularly in reference to the local inversion stage, regional metamorphism, and granitization in geosynclines. Because of the known variations of the tectonosphere, depending on its position (e.g., under geosynclines, platforms, or zones of tectonic activation), it stands to reason that it varies also depending on the stage of the evolution of the overlying zones. -- V.P. Sokoloff.  相似文献   

8.
The seismic probing of the crust and upper mantle in Canada started in 1938 and since then has involved many government and university groups using a wide variety of techniques. These have included simple profiling with both wide and narrow station spacing, areal time-term surveys, detailed deep reflection experiments, very long-range refraction studies and the analysis of surface wave dispersion between stations of the Canadian Standard Network.

A review of the published interpretation leads to the general conclusion that:

1. (1) Pn-velocities vary from a value possibly as low as 7.7 km/sec under Vancouver Island to 8.6 km/sec and higher in the extreme eastern part of the shield and some parts of the Atlantic coast.

2. (2) Large areas of Canada have a crustal thickness of 30–40 km, with Vancouver Island, the southwestern Prairies, the Lake Superior basin and parts of the eastern shield of Quebec being thicker. No continental area in Canada is known to have a crust thinner than 29 km.

3. (3) The Riel discontinuity — a deep intra-crustal reflector and sometime refractor, is widely reported in the Prairies and Manitoba. It is not seen to the north in the vicinity of Great Slave Lake, nor in the Hudson Bay, Lake Superior and Maritime regions, nor in the interior of British Columbia. It may be present in some areas of the eastern shield.

4. (4) As experiments have become more detailed, crustal structures of greater complexity have been revealed. The concept that crustal structure becomes simpler with increasing depth is apparently unfounded.

Long-range refraction studies suggest that the Gutenberg P-wave low-velocity channel is poorly developed under the Canadian Shield. The analysis of the dispersion of surface waves, however, suggests that the channel is better developed for S-waves, and is present throughout the country. The lid of the channel is deepest under the central shield and shallowest under the Cordillera.  相似文献   


9.
Metasomatic oxidation of upper mantle periodotite   总被引:1,自引:0,他引:1  
Examination of Fe3+ in metasomatized spinel peridotite xenoliths reveals new information about metasomatic redox processes. Composite xenoliths from Dish Hill, California possess remnants of magmatic dikes which were the sources of the silicate fluids responsible for metasomatism of the peridotite part of the same xenoliths. Mössbauer spectra of mineral separates taken at several distances from the dike remnants provide data on Fe3+ contents of minerals in the metasomatized peridotite. Clinopyroxenes contain 33% of total iron (FeT) as Fe3+ (Fe3+/FeT=0.33); orthopyroxenes contain 0.06–0.09 Fe3+/FeT; spinels contain 0.30–0.40 Fe3+/FeT; olivines contain 0.01–0.06 Fe3+/FeT; and metasomatic amphibole in the peridotite contains 0.85–0.90 Fe3+/FeT. In each mineral, Fe3+ and Fe2+ cations per formula unit (p.f.u.) decrease with distance from the dike, but the Fe3+/FeT ratios of each mineral do not vary. Clinopyroxene, spinel, and olivine Fe3+/FeT ratios are significantly higher than in unmetasomatized spinel peridotites. Metasomatic changes in Fe3+/FeT ratios in each mineral are controlled by the oxygen fugacity of the system, but the mechanism by which each phase accommodates this ratio is affected by crystal chemistry, kinetics, rock mode, fluid composition, fluid/rock ratio, and fluid-mineral partition coefficients. Ratio increases in pyroxene and spinel occur by exchange reactions involving diffusion of Fe3+ into existing mineral grains rather than by oxidation of existing Fe2+ in peridotite mineral grains. The very high Fe3+/FeT ratio in the metasomatic amphibole may be a function of the high Fe3+/FeT of the metasomatic fluid, crystal chemical limitations on the amount of Fe3+ that could be accommodated by the pyroxene, spinel, and olivine of the peridotite, and the ability of the amphibole structure to accommodate large amounts of 3 + valence cations. In the samples studied, metasomatic amphibole accounts for half of the bulk-rock Fe2O3. This suggests that patent metasomatism may produce a greater change in the redox state of mantle peridotite than cryptic metasomatism. Comparison of the metasomatized samples with unmetasomatized peridotites reveals that both Fe2+ and Fe3+ cations p.f.u. were increased during metasomatism and 50% or more of iron added was Fe3+. With increasing distance from the dike, the ratio of added Fe3+ to added Fe2+ increases. The high Fe3+/FeT of amphibole and phlogopite in the dikes and in the peridotite, and the high ratios of added Fe3+/added Fe2+ in pyroxenes and spinel suggest that the Fe3+/FeT ratio of the metasomatic silicate fluid was high. As the fluid perolated through and reacted with the peridotite, Fe3+ and C–O–H volatile species were concentrated in the fluid, increasing the fluid Fe3+/FeT.  相似文献   

10.
A synthesis of the heat-flow data for Romania enabled a study of the thermal regime of the crust and upper mantle to be made. This showed lateral thermal differences between various tectonic units. The thermal structure of the crust and upper mantle appears to be mainly the result of mantle convection and plate interaction in the studied area.  相似文献   

11.
The ambient pressure elastic properties of a natural clinopyroxene (C2/c symmetry) from Kilbourne Hole, NM have been determined. In terms of end-members, diopside (CaMgSi2O6), hedenbergite (CaFeSi2O6), jadeite (NaAlSi2O6), cosmochlor (NaCrSi2O6), and Mg-Tschermak (MgAl(AlSi)O6), its composition is Di72He9Jd3Cr3Ts12. The analytic density, based on chemistry and cell parameters is 3.327 (0.003) g/cm3. The elastic constants [c11, c12, c13, c15, c22, c23, c25, c33, c35, c44, c46, c55, c66] are [273.8 (0.9), 83.5 (1.3), 80.0 (1.1), 9.0 (0.6), 183.6 (0.9), 59.9 (1.6), 9.5 (1.0), 229.5 (0.9), 48.1 (0.6), 76.5 (0.9), 8.4 (0.8), 73.0 (0.4), 81.6 (1.0)] GPa where uncertainties are reported at the 95% confidence level. The aggregate (mean of Hashin-Strikman bounds) adiabatic bulk modulus is 117.2 (0.7) GPa, and the shear modulus is 72.2 (0.2) GPa. Although measured moduli are broadly consistent with trends in elasticity versus atomic volume, deviations from the systematics would produce significant (percent level) changes in calculated velocities for candidate mantle mineral assemblages. The compositional dependence of elasticity for several clinopyroxenes is explored on the basis of just the Di+He and Jd+Ts mole fractions. The bulk modulus lies within experimental uncertainties of the linear mixture of end-member properties while the shear modulus deviates by 3%. Received: 29 September 1997 / Revised, accepted: 4 March 1998  相似文献   

12.
Wencai Yang 《Tectonophysics》2009,475(2):226-234
All results from integrated geophysical investigations in the Sulu region are summarized in this paper, trying to reconstruct the Sulu UHPM processes. New seismic S-wave tomographic results suggest a velocity-abnormal zone occurs beneath the Sulu crust, revealing detailed upper mantle structures that high-velocity lumps within the abnormal zone are sequentially distributed beneath the bottom of the asthenosphere. These high-velocity lumps might represent delaminated eclogites or residuals of the subducted oceanic plate. Based on integrated interpretation of the geophysical data, we propose a working model for tectonic reconstruction of the Sulu UHPM processes, which can explain the crust and upper mantle structures of the area. The involved tectonic processes are related to north-eastward escaping of the Sulu terrane, subduction and delamination cycles of the Dabie-Sulu oceanic plate, and post-orogenic lithospheric thinning and magma underplating. The UHPM rocks are believed to have syn-subduction delaminated down to the bottom of the asthenosphere during 245-180 Ma, and the delamination process seemed smooth and nearly continuous without extensive violence.  相似文献   

13.
Tectonosphere of the Earth: upper mantle and crust interaction   总被引:1,自引:0,他引:1  
V.V. Beloussov 《Tectonophysics》1990,180(2-4):139-183
The endogenic geological processes, which include tectonic, magmatic and metamorphic processes, form regular combinations called endogenic regimes. These regimes are: géosynclinal, orogenic, platform, rift, tectonic-magmatic activation (diwa), taphrogenic, plateau-basalt, oceanic basins and mid-oceanic ridges. The endogenic regimes are connected with the peculiarities of the structure, composition and state of the entire tectonosphere, i.e. not only of the crust but of the upper mantle as well.

Heat flow is a major factor controlling the type of the regime. The other conditions are the temperature distribution in the tectonosphere and the degree and type of penetrability of the tectonosphere to melts and fluids. There is a certain regular succession of regimes. The structural evolution of the tectonosphere and the transformation of the matter in it are in close relationship.

The main trend in the development of the tectonospheric material is directed towards geochemical depletion of the upper mantle by fractioning. At the initial stages, fractioning occurred mostly by degassing, and under these conditions the continental crust was formed, rich in non-compatible elements. At that stage the calc-alkaline magmas prevailed. As the upper mantle was depleted and began to lose its volatiles, the mechanism of fractioning changed: degassing was substituted for selective melting, and in this environment most of the tholeiitic magmas were formed. This change in magma composition and in fractioning mechanism was combined with the destruction of the continental crust and the formation of the oceanic crust. The diwa regime and the rifts were the first steps in the destruction of continental crust. The stages that followed were represented by taphrogenic regimes at various levels. These kinds of regimes were manifested in deep continental and marine depressions, compensated and not compensated by sediments.

Taphrogenic regimes are advancing from the east and west onto the Eurasian continent: in the east they form marginal seas and cause subsidence of the eastern parts of the Chinese platform; in the west they produce collapses of the crust in the Mediterranean area.

The major crisis occurred between the Palaeozoic and Mesozoic and since that time the process of substitution of the continental crust by the oceanic crust has proceeded over increasingly large territories.

The evolution of the tectonosphere, instigated by the changes in its matter, was further complicated by temporal and spatial irregularities in deep heat escape, which caused the alternation of excited and quiescent endogenic regimes (tectonomagmatic periodicity) and their co-existence. The combination of all these phenomena creates the structural inhomogeneity of the Earth's crust at any stage of its history.  相似文献   


14.
A rheological model of the Indian shield has been constructed using the thermal structure derived from available surface heat flow and heat generation data and the flow properties of characteristic minerals and rocks like quartz, diabase and olivine which respectively represent the upper crust, lower crust and upper mantle. Lateral variations in the thicknesses of the brittle and ductile crust and of the brittle upper mantle have thus been obtained for different tectonic environments. Implications of these results to interpretation of the seismic structure of the Indian shield have been pointed out.  相似文献   

15.
Redox states of lithospheric and asthenospheric upper mantle   总被引:24,自引:7,他引:24  
The oxidation state of lithospheric upper mantle is heterogeneous on a scale of at least four log units. Oxygen fugacities ( ) relative to the FMQ buffer using the olivine-orthopyroxene-spinel equilibrium range from about FMQ-3 to FMQ+1. Isolated samples from cratonic Archaean lithosphere may plot as low as FMQ-5. In shallow Proterozoic and Phanerozoic lithosphere, the relative is predominantly controlled by sliding Fe3+-Fe2+ equilibria. Spinel peridotite xenoliths in continental basalts follow a trend of increasing with increasing refractoriness, to a relative well above graphite stability. This suggests that any relative reduction in lithospheric upper mantle that may occur as a result of stripping lithosphere of its basaltic component is overprinted by later metasomatism and relative oxidation. With increasing pressure and depth in lithosphere, elemental carbon becomes progressively refractory and carbon-bearing equilibria more important for control. The solubility of carbon in H2O-rich fluid (and presumably in H2O-rich small-degree melts) under the P,T conditions of Archaean lithosphere is about an order of magnitude lower than in shallow modern lithosphere, indicating that high-pressure metasomatism may take place under carbon-saturated conditions. The maximum in deep Archaen lithosphere must be constrained by equilibria such as EMOG/D. If the marked chemical depletion and the orthopyroxene-rich nature of Archaean lithospheric xenoliths is caused by carbonatite (as opposed to komatiite) melt segregation, as suggested here, then a realistic lower limit may be given by the H2O +C=CH4+O2 (C-H2O) equilibrium. Below C –H2O a fluid becomes CH4 rather than CO2-bearing and carbonatitic melt presumably unstable. The actual in deep Archaean lithosphere is then a function of the activities of CO2 and MgCO3. Basaltic melts are more oxidized than samples from lithospheric upper mantle. Mid-ocean ridge (MORB) and ocean-island basalts (OIB) range between FMQ-1 (N-MORB) and about FMQ +2 (OIB). The most oxidized basaltic melts are primitive island-arc basalts (IAB) that may fall above FMQ+3. If basalts are accurate probes of their mantle sources, then asthenospheric upper mantle is more oxidized than lithosphere. However, there is a wide range of processes that may alter melt relative to that of the mantle source. These include partial melting, melt segregation, shifts in Fe3+/Fe2+ melt ratios upon decompression, oxygen exchange with ambient mantle during ascent, and low-pressure volatile degassing. Degassing is not very effective in causing large-scale and uniform shifts, while the elimination of buffering equilibria during partial melting is. Upwelling graphite-bearing asthenosphere will decompress along -pressure paths approximately parallel to the graphite saturation surface, involving reduction relative to FMQ. The relative will be constrained to below the CCO equilibrium and will be a function of . Upwelling asthenosphere whose graphite content has been exhausted by partial melting, or melts that have segregated and chemically decoupled from a graphite-bearing residuum will decompress along -decompression paths controlled by continuous Fe3+-Fe2+ solid-melt equilibria. These equilibria will involve increases in relative to the graphite saturation surface and relative to FMQ. Melts that finally segregate from that source and erupt on the earth's surface may then be significantly more oxidized than their mantle sources at depth prior to partial melting. The extent of melt oxidation relative to the mantle source may be directly proportional to the depth of graphite exhaustion in the mantle source.  相似文献   

16.
Imaging the continental upper mantle using electromagnetic methods   总被引:9,自引:0,他引:9  
Alan G. Jones 《Lithos》1999,48(1-4):57-80
The internal structure of the continental lithosphere holds the key to its creation and development, and this internal structure can be determined using appropriate seismic and electromagnetic methods. These two are complementary in that the seismic parameters usually represent bulk properties of the rock, whereas electrical conductivity is primarily a function of the connectivity of a minor constituent of the rock matrix, such as the presence of a conducting mineral phase, e.g. carbon in graphite form, or of a fluid phase, e.g. partial melt or volatiles. In particular, conductivity is especially sensitive to the top of the asthenosphere, generally considered to be a region of interconnected partial melt. Knowledge of the geometry of the lithosphere/asthenosphere boundary is important as this boundary partially controls the geodynamic processes that create, modify, and destroy the lithosphere. Accordingly, collocated seismic and electromagnetic experiments result in superior knowledge than would be obtained from using each on its own. This paper describes the state of knowledge of the continental upper mantle obtained primarily from the natural-source magnetotelluric technique, and outlines how hypotheses and models regarding the development of cratonic lithosphere can be tested using deep-probing electromagnetic surveying. The resolution properties of the method show the difficulties that can be encountered if there is conducting material in the crust. Examples of data and interpretations from various regions around the globe are discussed to demonstrate the correlation of electromagnetic and seismic observations of the lithosphere–asthenosphere boundary. Also, the observations from laboratory measurements on candidate mineralogies representative of the mantle, such as olivine, are presented.  相似文献   

17.
A mechanism responsible for the “range-basin” topography is suggested, on the assumption of a high (fluid)viscosity of the asthenosphere, and hence a significant difference between the densities on either side of the Benioff surface sufficient for a development of the vertical component of the pressure against the lithosphere.– V. P. Sokoloff.  相似文献   

18.
The travel-times of waves coming from distant earthquakes, recorded by seismological stations in the Carpathians and the Caucasus were used to construct a model of horizontal inhomogeneities in the upper layer of the mantle in these regions. In comparison with the adjoining platform, the East Carpathians are characterized by higher velocity, the South Carpathians and the Carpathian foredeep by lower velocity, while the West Carpathians have a velocity similar to that of the platform. The Vrinci earthquakes originate in the high-velocity block of the East Carpathians, at its boundary with the low-velocity block of the South Carpathians. The Caucasian territory can be divided into several different mantle blocks. The western part of the Great Caucasus has a higher velocity. A submeridional belt of low velocities, extending west of the line Piatigorsk—Tiflis, has been determined; the belt passes through the Stavropol part of the Great Caucasus, the Transcaucasian central massif and part of the Little Caucasus. More to the east there extends a parallel belt of greater velocities, which also intersects a series of different structures. In the East Caucasus, a low-velocity block has been established in the Caucasian foredeep and the Great Caucasus regions; the boundary between this block and a high-velocity block lying west of it passes through the Caspian Sea.The mantle earthquakes of 1935 occurring NE of Derbent seem to be connected with this boundary. The low-velocity region of the mantle also exists in the Caspian Sea, in the vicinity of the Apsheron Peninsula. A relationship between the determined velocity variations and other geophysical fields has been discussed; some known gravity anomalies in the Caucasus, interpreted as being connected with the earth's crust, are believed to be due to the vertical inhomogeneities of density in the upper mantle.  相似文献   

19.
Temperature and pressure estimates for Earth's upper mantle generally are based on indirect information derived from phase equilibria studies and the measurement of temperature and pressure dependent physical and chemical properties for relevant mantle materials. This paper describes an alternative approach, based on solid-inclusion piezothermometry, which utilizes the thermoelastic properties of direct mantle derived mineral samples. In particular, this study provides the theoretical development, based on the Murnaghan equation of state for solids, for a simple method of calculating isomeke lines for host and inclusion minerals of cubic symmetry which may be extrapolated accurately to upper mantle pressure and temperature conditions. The method is demonstrated for the particular case of garnet inclusions in diamond, for which adequate laboratory thermoelastic data are available. A specific application is made in the evaluation of the depth of formation of the D1 garnet-diamond inclusion system described by Harris et al. (1970). The pressure and temperature conditions of inclusion formation lie along the calculated isomeke line within the range constrained by recent graphite-diamond phase equilibria data. However, because the isomeke line for the garnet-diamond system and the graphite-diamond phase transition are very similar in slope, a further constraint is required. Assuming, therefore, that temperature in the upper mantle is bounded by the “Oceanic” and “Shield” geotherms of Clark and Ringwood (1964), the present results indicate that the D1 garnet-diamond system formed within the depth range 138 to 155 km (about 45 to 53 kbar pressure). This result, which relates to the genesis of kimberlite xenoliths, is generally consistent with the results of other studies which utilize phase equilibria data.  相似文献   

20.
Summary Due to the slow equilibration rate of feldspar, its zoning pattern is likely to be of primary origin. Initial studies of zoning patterns of cumulus feldspar within the interval between the UG2 chromitite and the Merensky Reef have shown postcumulus growth to affect only the outermost rims of grains. Therefore, present-day grain sizes of plagioclase are considered to resemble the original cumulus grain sizes. A correlation between grain size of plagioclase and its composition and zoning pattern has been established: larger, complexly zoned grains correlate with more calcic compositions. It is inferred that the residence time of neutrally buoyant plagioclases within a periodically replenished host liquid determined their size and zoning pattern. Older and more calcic grains are larger and more complexly zoned, whereas finer grain sizes, which are associated with relatively primitive (Mg-rich) orthopyroxenes, are the result of partial resorption of plagioclase. Grain sizes of plagioclase, furthermore, show regional variation: grains are larger in the vicinity of Union Section than in the southeastern parts of the Western Bushveld Complex, which is interpreted as a consequence of the increasing distance from a putative feeder zone located near Union Section.
Variationen in der Korngröße von Kumulus-Plagioklas in der Upper Critical Zone des Bushveld Komplexes
Zusammenfassung Aufgrund der hohen Reaktionsträgheit von Feldspat ist dessen Zonierung höchstwahrscheinlich primärer Natur. Einführende Untersuchungen über Zonierungsmuster in Kumulus-Plagioklas im Interval zwischen der UG2 Chromitit-Lage und dem Merensky-Reef zeigten, daß Postkumulus-Wachstum nur den äußeren Rand der einzelnen Körner kennzeichnet. Demzufolge wird angenommen, daß die hier beobachteten Korngrößen den ursprünglichen Kumulus-Korngrößen entsprechen. Eine Korrelation zwischen der Korngröße von Plagioklasen und deren Chemismus und Zonierungs-muster konnte etabliert werden: größere, komplex zonierte Plagioklase haben einen höheren Anorthit-Gehalt. Diese Beziehung erklärt sich aus der relativ niedrigen Dichte von Plagioklas, die ein gravitatives Absinken verhindert. Demzufolge wurden Korngröße und Zonierungsmuster der in Schwebe befindlichen Plagioklase von der Verweildaner innerhalb einer sich periodisch ernenernden Schmelze bestimmt. Ältere, Ca-reiche Plagioklase sind relativ groß und komplex zoniert, während feinere Korngrößen, die zusammen mit relativ primitiven (Mg-reichen) Orthopyroxenen auftreten, das Ergebnis partieller Assimilation sind. Regionale Unterschiede existieren insofern, als daß Plagioklas in der Nähe einer postulierten Magmen-Zufuhrzone im Bereich von Union Section grobkörniger ist als in den südöstlichen Bereichen des westlichen Bushveld Komplexes.


With 9 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号