首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of downward continuation is well known to those working in gravity, magnetic, SP and low-frequency electromagnetic exploration. It is demonstrated that the method of continuation can also be usefully employed in the interpretation of induced polarization gradient profiling using point electrodes to determine target depth. The apparent resistance Ra and chargeability Ma measurements obtained with point electrode excitation of the ground have been used to compute the values of (Ra)l and (Ma)l that would be obtained with a linear array. Continuation of the apparent polarizability profile thus obtained with the linear array gives a value for the depth of the target which agrees closely with that obtained by the continuation of the SP profile. On the other hand, continuation of the profile of the secondary transient signal (VS)L alone, yields a depth of the target which is in agreement with the borehole information. However, it is seen that the secondary transient voltage profiling response splits into two anomalies which fall on either side of the SP and/or (Ma)l anomaly centre, and does not coincide with that of the latter.  相似文献   

2.
The use of relaxation mechanisms has recently made it possible to simulate viscoelastic (Q) effects accurately in time-domain numerical computations of seismic responses. As a result, seismograms may now be synthesized for models with arbitrary spatial variations in compressional- and shear-wave quality factors (Q9, and Qs, as well as in density (ρ) and compressional- and shear-wave velocities (Vp, and Vs). Reflections produced by Q contrasts alone may have amplitudes as large as those produced by velocity contrasts. Q effects, including their interaction with Vp, Vs and p, contribute significantly to the seismic response of reservoirs. For band-limited data at typical seismic frequencies, the effects of Q on reflectivity and attenuation are more visible than those on dispersion. Synthetic examples include practical applications to reservoir exploration, evaluation and monitoring. Q effects are clearly visible in both surface and offset vertical seismic profile data. Thus, AVO analyses that neglect Q may produce erroneous conclusions.  相似文献   

3.
In this paper we study the variation of Vp/Vs and Poisson's ratio (δ) in the Yellowstone National Park region, using earthquakes which were well recorded by a local seismic network. We find that the average Vp/Vs value within the geothermally active Yellowstone caldera is about 7% lower than in the area outside the caldera. Within the caldera itself there may be a further 2–7% reduction of Vp/Vs in the hydrothermally active Norris Geyser Basin, the Upper and Lower Geyser Basins, and the Yellowstone Lake and Mud Volcano regions. After considering various possible causes for Vp/Vs changes, such as geologic and structural differences, thermal effects, partial melting, and hydrothermal activity, we conclude that the most plausible explanation for the observed Vp/Vs reduction is the presence of hot-water at temperatures and pore-pressures near the water steam transition in the caldera geothermal reservoirs.  相似文献   

4.
We estimated three-dimensional P- (Vp) and S-wave velocity (Vs) and Vp/Vs structures in and around the Onikobe volcanic area, northeastern Japan, by local travel time tomography. We used travel time data from source and receiver pairs located within and outside the study area, which plays an important role in obtaining the optimum ray coverage and in elucidating the deeper structure more accurately. Detailed information on deeper structures is essential for imaging the complete volcanic system from the magmatic source zone through areas of shallow hydrothermal circulation. More than 50 000 travel time data for the P-waves and 35 000 for the S-waves were used to image the velocity structure. Our results show the following dominant features: (1) two conduits in the upper crust with low Vp and low Vs indicative of H2O-rich fluid pathways: one lying beneath Naruko volcano, the other beneath the focal area of the 1962 Northern Miyagi earthquake (M6.5); (2) an underlying broad region in the lower crust with low Vp, low Vs and high Vp/Vs, suggestive of a zone of partial melt, from which the fluids in (1) are derived; and (3) low Vp/Vs areas near the surface of the Sanzugawa and Onikobe calderas, suggesting a diffuse vapor-saturated cap.  相似文献   

5.
Ultrasonic compressional (V p ) and shear (V s ) velocities have been measured on artificial sand-clay mixtures. The measurements were carried out in a drained triaxial load cell using a pulse transition method. The measuring device was equiped with a waveform storage facility. The investigated mixtures consisted mainly of kaolinite and quartz sand. Some mixtures also contained Na-montmorillonite, illites or quartz-flour. The acoustic behaviour was observed during a pressure increase up to 72 MPa vertical and 36 MPa horizontal pressure. At a given pressure,V p andV s in pure sand turned out to be similar to those in pure kaolinite. As predicted by the sand-clay model of Marion (1990), a velocity maximum corresponds to a minimum in total porosity. This porosity minimum marks the transition from a clayey sand to a sandy clay. It is not only reflected in bothV p andV s , but also in the quality of the received pulse. The effective tension of the received signal during 20µs after the first arrival, was used as an indication for P-wave pulse attenuation. This apparent attenuation decreases with increasing clay content and increases with increasing porosity. It is shown that clay mineralogy does not measurably affect wave velocities in clayey sands.  相似文献   

6.
Three component recordings from an array of five ocean bottom seismographs in the northwestern part of the Vøring basin have been used to obtain a 2-D shear-wave (S-wave) velocity-depth model. The shear waves are identified by means of travel-time differences compared to the compressional (P) waves, and by analyzing their particle motions. The model has been obtained by kinematic (travel-time) ray-tracing modelling of the OBS horizontal components.The shear-wave modelling indicates that mode conversions occur at several high velocity interfaces (sills) in the 4–10 km depth range, previously defined by a compressional-wave velocity-depth model using the same data set.An averageV p /V s ratio of 2.1 is inferred for the layers above the uppermost sill, indicative of both poorly consolidated sediments and a low sand/shale ratio. A significant decrease in theV p /V s ratio (1.7) below the first sill may in part be atributed to well consolidated sediments, and to a change in lithology to more sandy sediments. This layer is interpreted to lie within the lower Cretaceous sequence. At 5–10 km depthV p /V s ratios of 1.85 indicate a lower sand/shale ratio consistent with the expected lithologies. The averageV p /V s ratio inferred for the crust is 1.75, which is consistent with values obtained north of Vøring, in the Lofoten area. An eastward thinning of the crystalline basement is supported by the shear-wave modelling.  相似文献   

7.
This paper presents new data on the upper mantle characteristics, and on seismicity and volcanism in Kamchatka. It is shown that the seismic activity in the Pacific focal layer decreases sharply below that narrow line on which the foci of the active volcanoes are situated. A map of longitudinal wave velocitiesV p in the mantle upper layers under Kamchatka is given. The lowest values ofV p (7.3–7.6 km/sec) are found near the volcanic belt. The graphs Θ=lg (Es/Ep) (h) for the Kamchatka earthquakes indicate that Θmin at the depths of 120–250 km may be caused by a concentration of magmatic melts. A map of bodies (magma chambers?) screening S- and P-waves at the depths of 30–100 km under Kamchatka has been compiled. These bodies are mainly located under the belt of active volcanoes.  相似文献   

8.
The various useful source-parameter relations between seismic moment and common use magnitude lg(M 0) andM s,M L,m b; between magnitudesMs andM L,M s andm b,M L andm b; and between magnitudeM s and lg(L) (fault length), lg (W) (fault width), lg(S) (fault area), lg(D) (average dislocation);M L and lg(f c) (corner frequency) have been derived from the scaling law which is based on an “average” two-dimensional faulting model of a rectangular fault. A set of source-parameters can be estimated from only one magnitude by using these relations. The average rupture velocity of the faultV r=2.65 km/s, the total time of ruptureT(s)=0.35L (km) and the average dislocation slip rateD=11.4 m/s are also obtained. There are four strong points to measure earthquake size with the seismic moment magnitudeM w.
  1. The seismic moment magnitude shows the strain and rupture size. It is the best scale for the measurement of earthquake size.
  2. It is a quantity of absolute mechanics, and has clear physical meaning. Any size of earthquake can be measured. There is no saturation. It can be used to quantify both shallow and deep earthquakes on the basis of the waves radiated.
  3. It can link up the previous magnitude scales.
  4. It is a uniform scale of measurement of earthquake size. It is suitable for statistics covering a broad range of magnitudes. So the seismic moment magnitude is a promising magnitude and worth popularization.
  相似文献   

9.
Small‐scale aerial photographs and high‐resolution satellite images, available for Ethiopia since the second half of the twentieth century as for most countries, allow only the length of gullies to be determined. Understanding the development of gully volumes therefore requires that empirical relations between gully volume (V) and length (L) are established in the field. So far, such V–L relations have been proposed for a limited number of gullies/environments and were especially developed for ephemeral gullies. In this study, V–L relations were established for permanent gullies in northern Ethiopia, having a total length of 152 km. In order to take the regional variability in environmental characteristics into account, factors that control gully cross‐sectional morphology were studied from 811 cross‐sections. This indicated that the lithology and the presence of check dams or low‐active channels were the most important controls of gully cross‐sectional shape and size. Cross‐sectional size could be fairly well predicted by their drainage area. The V–L relation for the complete dataset was V = 0 · 562 L 1·381 (n = 33, r2 = 0 · 94, with 34 · 9% of the network having check dams and/or being low‐active). Producing such relations for the different lithologies and percentages of the gully network having check dams and/or being low‐active allows historical gully development from historical remote sensing data to be assessed. In addition, gully volume was also related to its catchments area (A) and catchment slope gradient (Sc). This study demonstrates that V–L and V–A × Sc relations can be very suitable for planners to assess gully volume, but that the establishment of such relations is necessarily region‐specific. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A tomographic study of the V p and V p/V s structures in the crust and upper mantle beneath the Taiwan region of China is conducted by simultaneous inversion of P and S arrival times. Compared with the previous tomographic results, the spherical finite difference technique is suitable for the strong heterogeneous velocity structure, and may improve the accuracy in the travel time and three-dimensional ray tracing calculations. The V p and V p/V s structures derived from joint inversion and the relocated earthquakes can provide better constraints for analyzing the lateral heterogeneity and deep tectonic characters in the crust and upper mantle. Our tomographic results reveal significant relations between the seismic wavespeed structure and the tectonic characters. In the shallow depth, sedimentary basins and orogen show distinct wavespeed anomalies, with low V p, high V p/V s in basins and high V p, low V p/V s in orogen. As the suture zone of Eurasian Plate and Philippine Sea Plate, Longitudinal Valley is characterized by a significant high V p/V s anomaly extending to the middle-lower crust and upper mantle, which reflects the impact of rock cracking, partial melting, and the presence of fluids. In the northeast Taiwan, the V p, V p/V s anomalies and relocated earthquakes depict the subducting Philippine Sea Plate under the Eurasian Plate. The high V p of oceanic plate and the low V p, high V p/V s atop the subducted oceanic plate extend to 80 km depth. Along the east-west profiles, the thickness of crust reaches 60 km at the east of Central Range with eastward dipping trend, which reveals the eastward subduction of the thickened and deformed crust of the Eurasian continental plate. Supported by Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-234-2), National Basic Research Program of China (Grant No. 2007CB411701), National High Technology Research and Development Program of China (Grant No. 2006AA09A101-0201) and National Natural Science Foundation of China (Grant Nos. 40804016, 40704013)  相似文献   

11.
Array measurements of microtremors at 16 sites in the city of Thessaloniki were performed to estimate the Vs velocity of soil formations for site effect analysis. The spatial autocorrelation method was used to determine phase velocity dispersion curves in the frequency range from 0.8–1.5 to 6–7 Hz. A Rayleigh wave inversion technique (stochastic method) was subsequently applied to determine the Vs profiles at all the examined sites. The determination of Vs profiles reached a depth of 320 m. Comparisons with Vs values from cross-hole tests at the same sites proved the reliability of the SPAC method. The accuracy of the Vs profiles, the ability to reach large penetration depths in densely populated urban areas and its low cost compared to conventional geophysical prospecting, make Mictrotremor Exploration Method very attractive and useful for microzonation and site effects studies. An example of its application for the site characterization in Thessaloniki is presented herein.  相似文献   

12.
Compressional (Vp) and shear (Vs) wave velocities have been measured to 10 kb in 32 cores of basalt from 14 Pacific sites of the Deep Sea Drilling Project. Both VpandVs show wide ranges (3.70to6.38km/sec forVpand1.77to3.40km/sec forVsat0.5kb) which are linearly related to density and sea floor age, confirming earlier findings by Christensen and Salisbury of decreasing velocity with progressive submarine weathering based on studies of basalts from five sites in the Atlantic. Combined Pacific and Atlantic data give rates of decreasing velocity of ?1.89and?1.35km/sec per100my forVpandVs respectively. New analyses of oceanic seismic refraction data indicate a decrease in layer 2 velocities with age similar to that observed in the laboratory, suggesting that weathering penetrates to several hundred meters in many regions and is largely responsible for the extreme range and variability of layer 2 refraction velocities.  相似文献   

13.
Rocks ranging in composition from trondhjemite to diorite (plagiogranites) have been recovered from ocean ridges and are common constituents of ophiolites. Velocities and densities of diorite and trondhjemite from the Mid-Atlantic Ridge are shown to differ significantly from similar properties of metadolerite and gabbro. Compressional (Vp) and shear (Vs) velocities of plagiogranites are relatively low (Vp = 4.78–5.91km/s at1kbar,Vs = 2.81–3.37km/s at1kbar), as are densities (2.57–2.64 g/cm3) and Poisson's ratios (0.24–0.27). These data lend strong support to the probable existence of a low-velocity/density zone within layer 3 of the oceanic crust. Based on observations in ophiolites, it is postulated that this zone can be up to 1 km in thickness and is laterally discontinuous.  相似文献   

14.
From a great variety of in situ shear wave experiments, i.e., reflection, refraction and borehole surveys in the shallow sediments of the north German plains, several specific properties have been derived. Shear waves (S) differ from compressional waves (P) in that:
  • 1 they are not affected by the degree of water saturation. Thus, they provide a better correlation between the velocity Vs and (solid) lithology;
  • 2 they generally have lower frequencies, but shorter wavelength and, hence, a better resolution of thin layers;
  • 3 they have lower absorption Qs?1 and hence a better penetration in partially saturated and gas-containing sediments than P-waves.
Correlations have been established between Vs and the confining pressure and between reduced Vs values and several lithological parameters like the grain size of sandy material. More lithological and hydrological information is obtained by using S- and P-wave surveys along the same profile. The best information on a sedimentological structure is obtained by the simultaneous observation of Vs, Vp, Qs and Qp.  相似文献   

15.
On the basis of S wave information from Tai’an-Xinzhou DSS profile and with reference to the results from P-wave interpretation, the 2-D structures, including S-wave velocity V s, ratio γ between V p and V s; and Poisson’ s ratio σ, are calculated; the structural configuration of the profile is presented and the relevant inferences are drawn from the above results. Upwarping mantle districts (V s≈4.30 km/s) and sloping mantle districts (V s≈4.50 km/s) of the profile with velocity difference about −4% at the top of upper mantle are divided according to the differences of V s, γ and σ in different media and structures, also with reference to the information of their neighbouring regions; the existence of Niujiaqiao-Dongwang high-angle ultra-crustal fault zone is reaffirmed; the properties of low and high velocity blocks (zones) including the crust-mantle transitionalzone and the boudary indicators of North China rift valley are discussed. A comprehensive study is conducted on the relation of the interpretation results with earthquakes. It is concluded that the mantle upwarps, thermal material upwells through the high-angle fault, the primary hypocenter was located at the crust-mantle juncture 30.0∼33.0 km deep, and additional stress excited the M S=6.8 and M S=7.2 earthquakes at specific locations around 9.0 km below Niujiaqiao-Dongwang, the earthquakes took place around the high-angle ultra-crustal fault and centered in the brittle media and rock strata with low γ and low σ values. This subject is part of the 85-907-02 key project during the “8th Five-Year Plan” from the State Science and Technology Commission.  相似文献   

16.
We describe an approach to the construction of an engineering geological expert system for identification of sub-bottom soils in accordance with some predefined nomenclature. The following principles of integrated interpretation of engineering geophysical and geotechnical data are presented: Firstly, the transformation of physical data (compressional- and shear-wave velocities, compressional-wave attenuation coefficients, electrical conductivity, etc.) for each of the medium points into subjective probabilities for the soil belonging to each type listed in the nomenclature, and secondly, the extrapolation of local geotechnical data (primarily drilling data) to the surrounding space by means of diffusion of the initial membership function distribution, resulting in the same set of probabilities for soil types at each point in the medium under consideration. Aggregation of the fuzzy information obtained, sufficient for reaching a conclusion for most points in the medium, is carried out by means of Bayesian summation. An example is given of integrated interpretation of real data obtained from four different sources (compressional- and shear-wave velocity sections Vp(x, z) and Vs(x, z), and two boreholes) related to the same profile.  相似文献   

17.
The relationship between Vp and Vs may be used to predict Vs where only Vp is known. Vp/Vs is also used to identify pore fluids from seismic data and amplitude variation with offset analysis. Theoretical, physical, as well as statistical empirical Vp‐Vs relationships have been proposed for reservoir characterization when shear‐wave data are not available. In published work, the focus is primarily on the Vp‐Vs relationship of quartzitic sandstone. In order to broaden the picture we present Vp‐Vs relationships of greensand composed of quartz and glauconite by using data from the Paleocene greensand Nini oil field in the North Sea. A Vp‐Vs relationship derived from modelling is compared with empirical Vp‐Vs regressions from laboratory data as well as from log data. The accuracy of Vs prediction is quantified in terms of root‐mean‐square error. We find that the Vp‐Vs relationship derived from modelling works well for greensand shear‐wave velocity prediction. We model the seismic response of glauconitic greensand by using laboratory data from the Nini field. Our studies here reveal that brine‐saturated glauconitic greensand can have a similar seismic response to that from oil‐saturated quartzitic sandstone and that oil‐saturated strongly cemented greensand can have a similar amplitude variation with offset response to that from brine‐saturated weakly cemented greensand.  相似文献   

18.
Flow velocity is one of the most important hydrodynamic variables for both channelized (rill and gullies) and interrill erosive phenomena. The dye tracer technique to measure surface flow velocity Vs is based on the measurement of the travel time of a tracer needed to cover a known distance. The measured Vs must be corrected to obtain the mean flow velocity V using a factor αv = V/Vs which is generally empirically deduced. The Vs measurement can be influenced by the method applied to time the travel of the dye-tracer and αv can vary in different flow conditions. Experiments were performed by a fixed bed small flume simulating a rill channel for two roughness conditions (sieved soil, gravel). The comparison between a chronometer-based (CB) and video-based (VB) technique to measure Vs was carried out. For each slope-discharge combination, 20 measurements of Vs, characterized by a sample mean Vm, were carried out. For both techniques, the frequency distributions of Vs/Vm resulted independent of slope and discharge. For a given technique, all measurements resulted normally distributed, with a mean equal to one, and featured by a low variability. Therefore, Vm was considered representative of surface flow velocity. Regardless of roughness, the Vm values obtained by the two techniques were very close and characterized by a good measurement precision. The developed analysis on αv highlighted that it is not correlated with Reynolds number for turbulent flow regime. Moreover, αv is correlated neither with the Froude number nor with channel slope. However, the analysis of the empirical frequency distributions of the correction factor demonstrated a slope effect. For each technique (CB, VB)-roughness (soil, gravel) combination, a constant correction factor was statistically representative even if resulted in less accurate V estimations compared to those yielded by the slope-specific correction factor.  相似文献   

19.
Following a brief overview of past applications of, and more recent advances on seismic microzonation, the results of a seismic microzonation study for the city of Chania, Greece, are presented. The study was based on Vs vs. depth profiles obtained at 19 sites of the urban area by performing SASW measurements. The spatial distribution of Vs values was utilized in estimating Vs30 values, depth to bedrock and the fundamental ground period variation across the area of the city as well as for conducting 1-D finite element non-linear inelastic site response analyses. The input earthquake excitations employed in the response analyses were based on the results of an available seismic hazard study for the Chania Area. The results of analyses were utilized for establishing the spatial distribution of rock motion amplification, the expected ground motions and spectral values in the area of the city. Contour maps providing values of the expected ground motion in the urban area are given which may become a practical tool in assessing the seismic risk and expected damage in the Chania area. The maps can also be used in the design of new earthquake resistant structures or the seismic retrofitting of existing ones. Finally, the results were utilized to demonstrate the inadequacy of using Vs,30 values for classifying the soil conditions in the Chania area.  相似文献   

20.
The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (V s)-void ratio (e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR-V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s-e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号