首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit.  相似文献   

2.
The use of electrical resistivity surveys to locate karst conduits has shown mixed success. However, time‐lapse electrical resistivity imaging combined with salt injection improves conduit detection and can yield valuable insight into solute transport behaviour. We present a proof of concept above a known karst conduit in the Kentucky Horse Park (Lexington, Kentucky). A salt tracer solution was injected into a karst window over a 45‐min interval, and repeat resistivity surveys were collected every 20 min along a 125‐m transect near a monitoring well approximately 750 m downgradient from the injection site. In situ fluid conductivity measurements in the well peaked at approximately 25% of the initial value about 3 h after salt injection. Time‐lapse electrical resistivity inversions show two broad zones at the approximate conduit depth where resistivity decreased and then recovered in general agreement with in situ measurements. Combined salt injection and electrical resistivity imaging are a promising tool for locating karst conduits. The method is also useful for gaining insight into conduit geometry and could be expanded to include multiple electrical resistivity transects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The study site at Lamalou karst spring (Hortus karst plateau) is situated 40 km north of Montpellier in France. It consists of a limestone plateau, drained by a karst conduit discharging as a spring. This conduit extends for a few dozen meters in fractured and karstified limestone rocks, 15 to 70 m below the surface. The conduit is accessible from the surface. The main goal of this study is to analyze the surface part of the karst and to highlight the karstic features and among them the conduit, and to test the performances of ground penetrating radar (GPR) in a karstic environment. This method thus appears particularly well adapted to the analysis of the near-surface (<30 m in depth) structure of a karst, especially when clayey coating or soil that absorbs and attenuates the radar is rare and discontinuous. A GPR pulseEKKO 100 (Sensors and Software) was used on the site with a 50-MHz antenna frequency. The results highlight structures characterizing the karstic environment: the epikarst, bedding planes, fractured and karstified zones, compact and massive rock and karrens, a typical karst landform. One of the sections revealed in detail the main conduit located at a depth of 20 m, and made it possible to determine its geometry. This site offers possibilities of validation of the GPR data by giving direct access to the karstic conduits and through two cored boreholes. These direct observations confirm the interpretation of all the GPR sections.  相似文献   

4.
阿尔山火山区地壳上地幔电性结构初探   总被引:11,自引:7,他引:11       下载免费PDF全文
在阿尔山活火山区一条北北西向测线上进行了7个大地电磁测深点的观测。2-D解释结果表明,研究区内新、老两条火山带可能存在通往深部的岩浆通道。其中,新发现的活火山带地下在10~12km还保持着较高的热状态,很可能富含流体,在30~50km处可能是地幔向上的供热通道;而老火山带30km以上可能存在一个正在冷却的岩浆通道,两条火山条带的深部可能是同源的。  相似文献   

5.
The Wadi El Natrun area is characterized by a very complicated geological and hydrogeological system. 45 vertical electrical soundings (Schlumberger array) were measured in the study area to elucidate the peculiarity of this unique regime, specifically the nature of waterless area. 2D and 3D resistivity inversion based on the finite element technique and regularization method were applied on the data set. 2D and 3D model resolution was investigated through the use of the Depth and Volume of Investigation Indexes. A very good matching was found between the zones of high resistivity, the waterless area, and the non-productive wells. The low resistivity zones (corresponding to Lower Pliocene clay) were also identified. The middle resistivity fresh water aquifer zones were recognized. Available results can assist in the aquifer management by selecting the most productive zone of groundwater.  相似文献   

6.
Abstract Distinctive fault ruptures, the Nojima Fault and Ogura Fault, appeared along the northwestern coast of Awaji Island at the time of the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). In order to delineate the shallow resistivity structures around the faults just after they formed, Very Low Frequency Magnetotelluric (VLF-MT) surveys were made at five sites along the Nojima Fault and at one site along the Ogura Fault. Fourteen transects were made at the one site on the Ogura Fault, and another transect covers the area between the two faults. Changes in apparent resistivity or phase, or both, commonly occur when crossing the surface location of one of the faults, except for the northern transects at OGR-0 on the Ogura Fault. Apparent resistivity values of less than 100 Ωm were observed for Tertiary and Quaternary sediments and values larger than 200 Ωm for granitic rocks. The resistivity structures are related to the morphological characteristics of the fault ruptures. Remarkably conductive zones (less than 10 Ωm in apparent resistivity and 30–40 m in width) were found where the surface displacement is distinct and prominent along a single fault plane. If remarkably conductive zones were formed at the time of the 1995 Hyogo-ken Nanbu earthquake, the results provide a good constraint on the dimensions of a conductive zone near the surface that was made by one earthquake. Alternatively, if characteristic resistivity structures existed prior to the earthquake, the conductive zone was probably formed by some tens of earthquakes in relatively modern times. In this case, this phenomenon is inferred to be a concentration of fracturing in a narrow zone and is associated with the formation of clay minerals, which enhance rock conductivity.  相似文献   

7.
 A study of the geoelectrical structure of the central part of Piton de la Fournaise volcano (Réunion, Indian Ocean) was made using direct current electrical (DC) and transient electromagnetic soundings (TEM). Piton de la Fournaise is a highly active oceanic basaltic shield and has been active for more than half a million years. Joint interpretation of the DC and TEM data allows us to obtain reliable 1D models of the resistivity distribution. The depth of investigation is of the order of 1.5 km but varies with the resistivity pattern encountered at each sounding. Two-dimensional resistivity cross sections were constructed by interpolation between the soundings of the 1D interpreted models. Conductors with resistivities less than 100 ohm-m are present at depth beneath all of the soundings and are located high in the volcanic edifice at elevations between 2000 and 1200 m. The deepest conductor has a resistivity less than 20 ohm-m for soundings located inside the Enclos and less than 60–100 ohm-m for soundings outside the Enclos. From the resistivity distributions, two zones are distinguished: (a) the central zone of the Enclos; and (b) the outer zone beyond the Enclos. Beneath the highly active summit area, the conductor rises to within a few hundred meters of the surface. This bulge coincides with a 2000-mV self-potential anomaly. Low-resistivity zones are inferred to show the presence of a hydrothermal system where alteration by steam and hot water has lowered the resistivity of the rocks. Farther from the summit, but inside the Enclos, the depth to the conductive layers increases to approximately 1 km and is inferred to be a deepening of the hydrothermally altered zone. Outside of the Enclos, the nature of the deep, conductive layers is not established. The observed resistivities suggest the presence of hydrated minerals, which could be found in landslide breccias, in hydrothermally altered zones, or in thick pyroclastic layers. Such formations often create perched water tables. The known occurrence of large eastward-moving landslides in the evolution of Piton de la Fournaise strongly suggests that large volumes of breccias should exist in the interior of the volcano; however, extensive breccia deposits are not observed at the bottom of the deep valleys that incise the volcano to elevations lower than those determined for the top of the conductors. The presence of the center of Piton de la Fournaise beneath the Plaine des Sables area during earlier volcanic stages (ca. 0.5 to 0.150 Ma) may have resulted in broad hydrothermal alteration of this zone. However, this interpretation cannot account for the low resistivities in peripheral zones. It is not presently possible to discriminate between these general interpretations. In addition, the nature of the deep conductors may be different in each zone. Whatever the geologic nature of these conductive layers, their presence indicates a major change of lithology at depth, unexpected for a shield volcano such as Piton de la Fournaise. Received: 3 November 1999 / Accepted: 15 September 1999  相似文献   

8.
Transient electromagnetic (TEM), self-potential (SP) and geoelectrical mapping measurements were carried out at the Chernorud-Mukhor site in the Priolkhonje area on the western shore of the Lake Baikal. All measurements were made along several profiles across the main strike of the regional Primorsky fault. TEM measurements were carried out in a time range from a few tens of microseconds to several tens of milliseconds. The most important result of the 1D modelling of TEM soundings is the discovery of nearly horizontal boundaries that divide high resistive overlying and well conducting underlying rocks. The resistivity of the former is in the range from 100 Ωm to 1000 Ωm, while the resistivity of the latter varies from less than 1 Ωm to several tens of Ωm. This good conductive zone could also be verified by geoelectrical mapping using Schlumberger array (AB/2=100 m). Due to high conductivity of the underlying rocks only the upper boundary of the conductive layer could be determined by TEM soundings. A regional SP anomaly with amplitude of about −450 mV has also been observed above the low resistivity zone indicating the electron nature of its conductance. Geologically, the conductive zone is represented by a graphite-bearing layer within the region of archean rocks. Since that layer extends over a large area, it may be used as a key in studying structures and tectonics of the Priolkhonje area. A 1D TEM geoelectric section shows a wide, gently sloping syncline as a probable base structure of the Chernorud-Mukhor site. Neotectonic faults divide the syncline into vertically displaced blocks that form a wide complicated graben with a total amplitude of about 250 m.  相似文献   

9.
A 3D electrical resistivity imaging survey is presented in this paper. The objective was to investigate an underground wastewater system at the University of Malaya, Malaysia. Apparent resistivity data were collected along ten parallel lines using a Wenner-Schlumberger configuration; electrode cables were oriented in the x-direction with 3 m spacing. Roll-along measurements using a line spacing of 3 m were carried out covering a grid of 20 × 10 electrodes. All data sets were merged into a single data file in order to perform a 3D inversion. Two different 3D least squares algorithms, based on the robust inversion method and the smoothness-constrained technique, were used for the inversion of the apparent resistivity data. Both the horizontal and vertical extents of the anomalous zones found by inversion are displayed. The results indicate the superiority of the robust inversion method over the smoothness-constrained technique at this site. The results are in sufficient accordance with previously known information about the investigation area. The results show that 3D electrical resistivity imaging surveys, in combination with an appropriate 3D inversion method, can be highly useful for engineering and archaeological investigations as well as for environmental applications.  相似文献   

10.
A tensor magnetotelluric test survey was carried out in the region of Santa Catarina, located in the Chalco sub-basin of the Mexico Basin. The objective was to define the stratification at depth with an emphasis on the geometry of the main aquifer of that region which is partially known from DC resistivity soundings and drilling. High-quality magnetotelluric soundings could be recorded in the immediate vicinity of large urban zones because the sub-surface is very conductive. Interpretation shows that the solid bedrock is located at a depth of at least 800 m to the south and 1300 m to the north; it could, however, be much deeper. Using complementary DC resistivity sounding and well-logging data, three main layers have been defined overlying the bedrock. These layers are, from surface to bottom, an unsaturated zone of sand, volcanic ash and clay about 10 m thick, followed by a very conductive (1.5 ohm·m) 200 m thick layer of sand and ash with intercalated clay, saturated with highly mineralized water, and finally a zone with resistivity increasing gradually to 60 ohm·m. The investigated deep aquifer constitutes most of this third layer. It consists of a sequence of sand, gravel, pyroclastites and mainly fractured basalts. MT resistivity soundings and magnetic transfer functions also indicate that a shallow resistive structure is dipping, from the northwest, into the lacustrine deposits of the basin. This geologic feature is likely to be highly permeable fractured basaltic flows, which provide a channel by which water contaminated by the Santa Catarina landfill may leak into the basin.  相似文献   

11.
The Millennium uranium deposit is located within the Athabasca Basin of northern Saskatchewan. The basement rocks, comprised primarily of paleo‐Proterozoic gneisses, are electrically resistive. However, the deposit is associated with highly conductive graphitic metasediments that are intercalated with the gneisses. An unconformity separates the basement rocks from the overlying, horizontally stratified, Proterozoic sandstones of the Athabasca Group (which are also highly resistive). The strike extents of the graphitic metasedimenary packages are extensive and therefore electromagnetic (EM) survey techniques are successful at identifying these zones but do not identify the specific locations where they are enriched in uranium. Through drilling it has been noted that hydrothermal processes associated with mineralization has altered the rocks in the vicinity of the deposits, which should in theory result in a resistivity low. A significant resistivity low has been mapped coincident with the Millennium deposit using ground resistivity survey techniques. However, a comparison of the airborne EM and ground resistivity results reveals that the two data sets have imaged different features. The resistive‐limit (on‐time) windows of the MEGATEM data show conductive features corresponding to lakes located to the west and south of the deposit. The late‐time windows show a feature to the east of the deposit, interpreted as being associated with the east‐dipping graphitic basement conductors (similar to that observed in historical ground EM data collected in this area). The early‐time TEMPEST windows (delay times less than 0.2 ms) show a broad resistivity low located at approximately the same location as where the alteration has been identified through drilling. Modelling the data is not easy but a response that decays prior to 0.3 ms is consistent with 500 Ωm material in the sandstone, a resistivity value close to the lower limit with respect to the hydrothermally altered Athabasca group sediments in this area. The MEGATEM system does not see a conductive zone over the alteration as clearly but the high signal‐to‐noise ratio in the late‐time MEGATEM data means that the conductive material at a greater depth is more coherently imaged.  相似文献   

12.
Geoelectrical and induced polarization data from measurements along three profiles and from one 3D survey are acquired and processed in the central Skellefte District, northern Sweden. The data were collected during two field campaigns in 2009 and 2010 in order to delineate the structures related to volcanogenic massive sulphide deposits and to model lithological contacts down to a maximum depth of 1.5 km. The 2009 data were inverted previously, and their joint interpretation with potential field data indicated several anomalous zones. The 2010 data not only provide additional information from greater depths compared with the 2009 data but also cover a larger surface area. Several high‐chargeability low‐resistivity zones, interpreted as possible massive sulphide mineralization and associated hydrothermal alteration, are revealed. The 3D survey data provide a detailed high‐resolution image of the top ~450 m of the upper crust around the Maurliden East, North, and Central deposits. Several anomalies are interpreted as new potential prospects in the Maurliden area, which are mainly concentrated in the central conductive zone. In addition, the contact relationship between the major geological units, e.g., the contact between the Skellefte Group and the Jörn Intrusive Complex, is better understood with the help of 2010 deep‐resistivity/chargeability data. The bottommost part of the Vargfors basin is imaged using the 2010 geoelectrical and induced polarization data down to ~1‐km depth.  相似文献   

13.
A particular methodology adapted to crystalline formations with a thin weathered zone was developed for a village hydrological project, in Benin. A combination of electrical profiles, Schlumberger and square arrays, was able to locate the most fractured zones in the basement. We present some results obtained from theoretical models as well as from field data. The suggested methodology uses both measurements of resistivity and anisotropy. Strong anisotropy and low resistivity indicate the most productive hydrogeological areas.  相似文献   

14.
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo–electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.  相似文献   

15.
《Geofísica Internacional》2014,53(3):241-257
We used the VLF technique to infer fault or major fracture zones that might serve as path for contaminant waste fluids in the Matatlan dumpsite, in Guadalajara, western Mexico. To interpret the data we used the Fraser, and Karous-Hjelt filters.Profiles were interpreted with 2D direct modeling based on Karous-Hjelt modified filter (K-H). The Fraser and Karous-Hjelt conjugated filter were applied to the entire data. The results of both techniques show similarities in the directions and positions of anomalous features, which are assumed fault or fracture zones. We observed one fault zone at the centre of the site, with a NEE-SWW strike. Other important inferred structures have NW-SE directions at the western part of the site.The cooperative use of both techniques, based on K-H filter and the Fraser filter give results as an N-S inferred structure in the westernmost part of the zone, as well as NW-SE linear anomalies, mainly in the western half of the site. The N-S structure has the same direction as that of Rio Grande de Santiago Canyon. The NW-SE features coincide with the directions of the Tepic-Zacoalco rift. Others NE-SW lineaments are located towards the centre of the area. These facts coincide strongly with the predominance of fracture groups show in the fracture analysis. The inferred structures could serve as conduits for the leachates to migrate towards the Coyula canyon as well as towards the Rio Grande de Santiago Canyon.Statistic analysis of fracture orientations showed N-S (A), N75-80E (B), N60-65W (C), and N25-30W (D) main directions, and N45-55E (E), and 90E (F) secondary directions. Group A coincides with the direction of the Rio Grande de Santiago Canyon, whereas pattern F have the same direction as Coyula Canyon.  相似文献   

16.
Seismic measurements of the internal properties of fault zones   总被引:1,自引:0,他引:1  
The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites.  相似文献   

17.
The results of Zayü-Qingshuihe MT sounding profile carried out in eastern Tibetan Plateau are presented in this paper. Using 2-D RRI method, the resistivity distribution with depth is obtained along the profile. It is featured by the resistivity zones in the horizontal direction and layers in the vertical direction. The Bangong-Nujiang suture zone and Jinshajiang suture zone are both important electrical conductivity-separating zones in the plateau, and the former is a zone with relatively low resistivity while the latter is an electrical conductivity gradient zone. The highly electrical conductive bodies in the mid and lower crust of northern Qiangtang and Bayan Har Terrain might be caused by regional melting due to shear heating during the process of subduction in tectonic evolution.  相似文献   

18.
The Belvedere Spinello salt mine is located in the Catanzaro Province of Calabria in Southern Italy. An extensive mining program has caused the development of Underground cavities filled with brine and the migration of this brine has been of great environmental concern to the mine owners. This paper presents the results of a multidimensional interpretation of a two-phase resistivity and magnetotelluric (MT) survey that was performed in an attempt to determine the complex conductivity structure of the mine area and to gain information on brine development and migration pathways. Key resistivity soundings were interpreted using a 2.5D algorithm based on the Polozhii decomposition method. The MT data were interpreted using a 2D finite-element code. A conductivity model was developed, integrating available geological and drill-hole information. The interpretation of the MT data, collected five years after the acquisition of the resistivity data, shows a conductive feature of depth that is not resolved in the resistivity interpretation. This feature has been interpreted as a thick brine zone that has developed as a result of mining during the interval between the resistivity and the MT measurements.  相似文献   

19.
Presently, electrical resistivity methods are applied in a wide variety of geological and environmental site investigations. Geologically, the coastal tidal flat sediments formed shallow channel-like features at the northern part of Germany. Three geoelectrical methods are applied to image the near surface sediments including a shallow conductive zone within the tidal deposits at the North Sea coast. These methods, direct current (DC) resistivity, frequency domain electromagnetic (FDEM) and spectral induced polarization (SIP), are evaluated to show which one can provide the required spatial resolution under study area conditions. This evaluation also includes a synthetic modeling to assess the DC resistivity imaging technique.The results constitute an encouraging example using these geophysical methods in characterizing the coastal aquifers. The inversion results show that the subsurface resistivity distribution of tidal sediments can change rapidly within a short distance. A thin high conductive layer is observed above the peat and clay layers reflecting a perched saltwater. The 2D IP section shows that the perched saltwater is restricted to patched forms above an impermeable layer of clay. According to the IP images the boundaries of the clay layer are recognized with a good resolution due to the high membrane polarization of the clays. The EM and DC profiles show a shallow channel-like feature within tidal deposits. In this paper, the best FDEM field parameters and the role of EM in lithologic studies are emphasized. Two main limitations can be observed from DC synthetic modeling: (a) A smearing in the lower boundary of the perched saltwater; (b) an amplification of the lateral effect of the highly conductive layer. These limitations decrease the resolution of DC imaging for accurate defining our targets. Because the IP response depends on microgeometry, fluid chemistry and saturation, the 2D IP results demonstrate the suitability of this method to characterize the tidal deposits in the coastal area with a good resolution. In this study, the success of SIP method supports further investigations into studying the hydraulic parameters of tidal deposits in this area. The obtained results during this investigation provide an overview of the coastal aquifer and they can serve as a basis for refining the conceptual model of morphological elements and sedimentary sequences of the coastal tidal flat.  相似文献   

20.
A 5-m radius magma-filled conduit will solidify in much less than one year if heat losses to the conduit wall are not offset by some form of forced or free convection of magma from some source body through the conduit. If the forced convection of magma from a source through the conduit is either too weak or is prevented by closure of the conduit at the end nearest the surface, only free convective circulations between the source chamber and conduit are available to balance the wall heat loss. Using an integral approach, the efficiency of free convection is investigated for conduits emplaced in both conductive and hydrothermally convective host rock environments. The results of the model strongly suggest that free circulations within conduits of large aspect ratio provide an efficient mechanism for offsetting heat losses to the conduit wall. The model provides a possible explanation for the occurrence of periodic eruptions from a conduit when the periodicity greatly exceeds the time scale for the cooling of a quiescent conduit by heat loss through the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号