首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fourier pseudospectral method has been widely accepted for seismic forward modelling because of its high accuracy compared to other numerical techniques. Conventionally, the modelling is performed on Cartesian grids. This means that curved interfaces are represented in a ‘staircase fashion‘causing spurious diffractions. It is the aim of this work to eliminate these non-physical diffractions by using curved grids that generally follow the interfaces. A further advantage of using curved grids is that the local grid density can be adjusted according to the velocity of the individual layers, i.e. the overall grid density is not restricted by the lowest velocity in the subsurface. This means that considerable savings in computer storage can be obtained and thus larger computational models can be handled. One of the major problems in using the curved grid approach has been the generation of a suitable grid that fits all the interfaces. However, as a new approach, we adopt techniques originally developed for computational fluid dynamics (CFD) applications. This allows us to put the curved grid technique into a general framework, enabling the grid to follow all interfaces. In principle, a separate grid is generated for each geological layer, patching the grid lines across the interfaces to obtain a globally continuous grid (the so-called multiblock strategy). The curved grid is taken to constitute a generalised curvilinear coordinate system, where each grid line corresponds to a constant value of one of the curvilinear coordinates. That means that the forward modelling equations have to be written in curvilinear coordinates, resulting in additional terms in the equations. However, the subsurface geometry is much simpler in the curvilinear space. The advantages of the curved grid technique are demonstrated for the 2D acoustic wave equation. This includes a verification of the method against an analytic reference solution for wedge diffraction and a comparison with the pseudospectral method on Cartesian grids. The results demonstrate that high accuracies are obtained with few grid points and without extra computational costs as compared with Cartesian methods.  相似文献   

2.
Prediction of elastic full wavefields is required for reverse time migration, full waveform inversion, borehole seismology, seismic modelling, etc. We propose a novel algorithm to solve the Navier wave equation, which is based on multi‐block methodology for high‐order finite‐difference schemes on curvilinear grids. In the current implementation, the blocks are subhorizontal layers. Smooth anisotropic heterogeneous media in each layer can have strong discontinuities at the interfaces. A curvilinear adaptive hexahedral grid in blocks is generated by mapping the original 3D physical domain onto a parametric cube with horizontal layers and interfaces. These interfaces correspond to the main curvilinear physical contrast interfaces of a subhorizontally layered formation. The top boundary of the parametric cube handles the land surface with smooth topography. Free‐surface and solid–solid transmission boundary conditions at interfaces are approximated with the second‐order accuracy. Smooth media in the layers are approximated up to sixth‐order spatial schemes. All expected properties of the developed algorithm are demonstrated in numerical tests using corresponding parallel message passing interface code.  相似文献   

3.
提出一种新的三维空间不规则网格有限差分方法,模拟具有地形构造的非均匀各向异性介质中弹性波传播过程. 该方法通过具有二阶时间精度和四阶空间精度的不规则交错网格差分算子来近似一阶弹性波动方程,与多重网格不同,无需在精细网格和粗糙网格间进行插值,所有网格点上的计算在同一次空间迭代中完成. 针对具有复杂物性参数和复杂几何特征的地层结构,使用精细不规则网格处理粗糙界面、断层和空间界面等复杂几何构造, 理论分析和数值算例表明,该方法不但节省了大量计算机内存和计算时间,而且具有令人满意的稳定性和精度.  相似文献   

4.
Recently, an effective and powerful approach for simulating seismic wave propagation in elastic media with an irregular free surface was proposed. However, in previous studies, researchers used the periodic condition and/or sponge boundary condition to attenuate artificial reflections at boundaries of a computational domain. As demonstrated in many literatures, either the periodic condition or sponge boundary condition is simple but much less effective than the well‐known perfectly matched layer boundary condition. In view of this, we intend to introduce a perfectly matched layer to simulate seismic wavefields in unbounded models with an irregular free surface. We first incorporate a perfectly matched layer into wave equations formulated in a frequency domain in Cartesian coordinates. We then transform them back into a time domain through inverse Fourier transformation. Afterwards, we use a boundary‐conforming grid and map a rectangular grid onto a curved one, which allows us to transform the equations and free surface boundary conditions from Cartesian coordinates to curvilinear coordinates. As numerical examples show, if free surface boundary conditions are imposed at the top border of a model, then it should also be incorporated into the perfectly matched layer imposed at the top‐left and top‐ right corners of a 2D model where the free surface boundary conditions and perfectly matched layer encounter; otherwise, reflections will occur at the intersections of the free surface and the perfectly matched layer, which is confirmed in this paper. So, by replacing normal second derivatives in wave equations in curvilinear coordinates with free surface boundary conditions, we successfully implement the free surface boundary conditions into the perfectly matched layer at the top‐left and top‐right corners of a 2D model at the surface. A number of numerical examples show that the perfectly matched layer constructed in this study is effective in simulating wave propagation in unbounded media and the algorithm for implementation of the perfectly matched layer and free surface boundary conditions is stable for long‐time wavefield simulation on models with an irregular free surface.  相似文献   

5.
We recently proposed an efficient hybrid scheme to absorb boundary reflections for acoustic wave modelling that could attain nearly perfect absorptions. This scheme uses weighted averaging of wavefields in a transition area, between the inner area and the model boundaries. In this paper we report on the extension of this scheme to 2D elastic wave modelling with displacement‐stress formulations on staggered grids using explicit finite‐difference, pseudo‐implicit finite‐difference and pseudo‐spectral methods. Numerical modelling results of elastic wave equations with hybrid absorbing boundary conditions show great improvement for modelling stability and significant absorption for boundary reflections, compared with the conventional Higdon absorbing boundary conditions, demonstrating the effectiveness of this scheme for elastic wave modelling. The modelling results also show that the hybrid scheme works well in 2D rotated staggered‐grid modelling for isotropic medium, 2D staggered‐grid modelling for vertically transversely isotropic medium and 2D rotated staggered‐grid modelling for tilted transversely isotropic medium.  相似文献   

6.
Elastic least-squares reverse time migration has been applied to multi-component seismic data to obtain high-quality images. However, the final images may suffer from artefacts caused by P- and S-wave crosstalk and severe spurious diffractions caused by complex topographic surface conditions. To suppress these crosstalk artefacts and spurious diffractions, we have developed a topographic separated-wavefield elastic least-squares reverse time migration algorithm. In this method, we apply P- and S-wave separated elastic velocity–stress wave equations in the curvilinear coordinates to derive demigration equations and gradient formulas with respect to P- and S-velocity. For the implementation of topographic separated-wavefield elastic least-squares reverse time migration, the wavefields, gradient directions and step lengths are all calculated in the curvilinear coordinates. Numerical experiments conducted with the two-component data synthetized by a three-topographic-layer with anomalies model and the Canadian Foothills model are considered to verify our method. The results reveal that compared with the conventional method, our method promises imaging results with higher resolution and has a faster residual convergence speed. Finally, we carry out numerical examples on noisy data, imperfect migration velocity and inaccurate surface elevation to analyse its sensitivity to noise, migration velocity and surface elevation error. The results prove that our method is less sensitive to noise compared with the conventional elastic least-squares reverse time migration and needs good migration velocities as other least-squares reverse time migration methods. In addition, when implementing the proposed method, an accurate surface elevation should be obtained by global positioning system to yield high-quality images.  相似文献   

7.
In this paper, the formulations of the primitive equations for shallow water flow in various horizontal co-ordinate systems and the associated finite difference grid options used in shallow water flow modelling are reviewed. It is observed that horizontal co-ordinate transformations do not affect the chosen co-ordinate system and representation in the vertical, and are the same for the three- and two-dimensional cases. A systematic derivation of the equations in tensor notation is presented, resulting in a unified formulation for the shallow water equations that covers all orthogonal horizontal grid types of practical interest. This includes spherical curvilinear orthogonal co-ordinate systems on the globe. Computational efficiency can be achieved in a single computer code. Furthermore, a single numerical algorithmic code implementation satisfies. All co-ordinate system specific metrics are determined as part of a computer-aided model grid design, which supports all four orthogonal grid types. Existing intuitive grid design and visual interpretation is conserved by appropriate conformal mappings, which conserve spherical orthogonality in planar representation. A spherical curvilinear co-ordinate solution of wind driven steady channel flow applying a strongly distorted grid is shown to give good agreement with a regular spherical co-ordinate model approach and the solution based on a β-plane approximation. Especially designed spherical curvilinear boundary fitted model grids are shown for typhoon surge propagation in the South China Sea and for ocean-driven flows through Malacca Straits. By using spherical curvilinear grids the number of grid points in these single model grid applications is reduced by a factor of 50–100 in comparison with regular spherical grids that have the same horizontal resolution in the area of interest. The spherical curvilinear approach combines the advantages of the various grid approaches, while the overall computational effort remains acceptable for very large model domains.  相似文献   

8.
弹性波数值模拟的非规则网格差分法   总被引:9,自引:3,他引:6       下载免费PDF全文
张剑锋 《地球物理学报》1998,41(Z1):357-366
基于应力、速度混合变量弹性波方程及任意四边形网格差分算子,给出了交错计算应力及速度的非规则网格弹性波应力一速度差分法该方法融合了有限元法能适应复杂形状边界及差分法无需计算刚度阵的特点,具有较高的计算精度,所需计算机存储空间较少,计算效率也很高.基于积分平衡方程引入了任意形状自由表面的边界条件,且通过局部滤波改善了自由表面边界条件的稳定性,使得该方法可应用于考虑地表形状影响的地震波数值模拟  相似文献   

9.
New formulations of boundary conditions at an arbitrary two-dimensional (2D) free-surface topography are derived. The top of a curved grid represents the free-surface topography while the grid's interior represents the physical medium. The velocity–stress version of the viscoelastic wave equations is assumed to be valid in this grid. However, the rectangular grid version attained by grid transformation is used to model wave propagation in this work in order to achieve the numerical discretization. We show the detailed solution of the particle velocities at the free surface resulting from discretizing the boundary conditions by second-order finite-differences (FDs). The resulting system of equations is spatially unconditionally stable. The FD order is gradually increased with depth up to eighth order inside the medium. Staggered grids are used in both space and time, and the second-order leap-frog and Crank–Nicholson methods are used for time-stepping. We simulate point sources at the surface of a homogeneous medium with a plane free surface containing a hill and a trench. Applying parameters representing exploration surveys, we present examples with a randomly realized surface topography generated by a 1D von Kármán function of order 1. Viscoelastic simulations are presented using this surface with a homogeneous medium and with a layered, randomized medium realization, all generating significant scattering.  相似文献   

10.
VTI介质起伏地表地震波场模拟   总被引:13,自引:9,他引:4       下载免费PDF全文
起伏地表下地震波场模拟有助于解释主动源和被动源地震探测中穿过山脉和盆地的测线所获得的资料.然而传统的有限差分法处理起伏的自由边界比较困难,为了克服这一困难,我们将笛卡尔坐标系的各向异性介质弹性波方程和自由边界条件变换到曲线坐标系中,采用一种稳定的、显式的二阶精度有限差分方法离散(曲线坐标系)VTI介质中的弹性波方程;对...  相似文献   

11.
Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non‐causal ringing artefacts in the pseudo‐spectral solution of first‐order elastic wave equations. However, the straightforward use of a staggered‐grid pseudo‐spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered‐grid finite‐difference method, we propose a modified pseudo‐spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered‐grid pseudo‐spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered‐grid‐based pseudo‐spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered‐grid‐based pseudo‐spectral method can successfully simulate complex wavefields in such anisotropic formations.  相似文献   

12.
兰海强  张智  徐涛  白志明 《地球物理学报》2012,55(10):3355-3369
笛卡尔坐标系中的经典程函方程在静校正、叠前偏移、走时反演、地震定位、层析成像等很多地球物理工作中都有应用,然而用其计算起伏地表的地震波走时却比较困难.本文通过把曲线坐标系中的矩形网格映射到笛卡尔坐标系的贴体网格,推导出曲线坐标中的程函方程,而后,用Lax-Friedrichs快速扫描算法求解曲线坐标系的程函方程.研究表明本文方法能有效处理地表起伏的情况,得到准确稳定的计算结果.由于地表起伏,导致与之拟合的贴体网格在空间上的展布呈各向异性,且这种各向异性的强弱对坐标变换法求解地震初至波的走时具有重要影响.本文研究表明,随着贴体网格的各向异性增强,用坐标变换法求解地表起伏区域的走时计算误差增大,且计算效率降低,这在实际应用具有指导意义.  相似文献   

13.
分层坐标变换法起伏自由地表弹性波叠前逆时偏移   总被引:1,自引:1,他引:0       下载免费PDF全文
传统有限差分方法在处理起伏地表时存在一些困难,而坐标变换法可将起伏地表映射为水平地表以克服此缺点.但同时,地下构造被变换得更加复杂,导致了波传播和成像的不准确.本文提出了一种分层的坐标变换方法,并应用到了弹性波逆时偏移中,此方法既可以克服起伏地表的影响,又可以不破坏地下构造.波场正向延拓、逆时延拓和分离是在辅助坐标系下完成的,而成像是在笛卡尔坐标系下完成的.通过对简单起伏模型和中原起伏模型的试算证明了本文提出方法的准确性.同时,对两种极端起伏地层高程不准确的情况进行测试可以看出:分层坐标变换逆时偏移方法的成像效果远好于传统坐标变换方法.  相似文献   

14.
Numerical simulation in coupled elastic and poroelastic media is important in oil and gas exploration. However, the interface between elastic and poroelastic media is a challenge to handle. In order to deal with the coupled model, the first-order velocity–stress wave equations are used to unify the elastic and poroelastic wave equations. In addition, an arbitrary high-order discontinuous Galerkin method is used to simulate the wave propagation in coupled elastic–poroelastic media, which achieves same order accuracy in time and space domain simultaneously. The interfaces between the two media are explicitly tackled by the Godunov numerical flux. The proposed forms of numerical flux can be used efficiently and conveniently to simulate the wave propagation at the interfaces of the coupled model and handle the absorbing boundary conditions properly. Numerical results on coupled elastic–poroelastic media with straight and curved interfaces are compared with those from a software that is based on finite element method and the interfaces are handled by boundary conditions, demonstrating the feasibility of the proposed scheme in dealing with coupled elastic–poroelastic media. In addition, the proposed method is used to simulate a more complex coupled model. The numerical results show that the proposed method is feasible to simulate the wave propagation in such a media and is easy to implement.  相似文献   

15.
We developed a reverse‐time migration scheme that can image regions with rugged topography without requiring any approximations by adopting an irregular, unstructured‐grid modelling scheme. This grid, which can accurately describe surface topography and interfaces between high‐velocity‐contrast regions, is generated by Delaunay triangulation combined with the centroidal Voronoi tessellation method. The grid sizes vary according to the migration velocities, resulting in significant reduction of the number of discretized nodes compared with the number of nodes in the conventional regular‐grid scheme, particularly in the case wherein high near‐surface velocities exist. Moreover, the time sampling rate can be reduced substantially. The grid method, together with the irregular perfectly matched layer absorbing boundary condition, enables the proposed scheme to image regions of interest using curved artificial boundaries with fewer discretized nodes. We tested the proposed scheme using the 2D SEG Foothill synthetic dataset.  相似文献   

16.
We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-flat) free surface which is beneficial for interpreting exploration data acquired in mountainous regions. Fractures are introduced through the Coates-Schoenberg approach into the FD scheme which leads to local anisotropic properties of the media where fractures are embedded. To implement surface topography, we take advantage of the boundary-conforming grid and map a rectangular grid onto a curved one. We use a stable and explicit second-order accurate finite difference scheme to discretize the elastic wave equations (in a curvilinear coordinate system) in a 2D heterogeneous transversely isotropic medium with a horizontal axis of symmetry (HTI). Efficiency tests performed by different numerical experiments clearly illustrate the influence of an irregular free surface on seismic wave propagation in fractured media which may be significant to mountain seismic exploration. The tests also illustrate that the scattered waves induced by the tips of the fracture are re-scattered by the features of the free surface topography. The scattered waves provoked by the topography are re-scattered by the fractures, especially Rayleigh wave scattering whose amplitudes are much larger than others and making it very difficult to identify effective information from the fractures.  相似文献   

17.
The complex‐valued first‐arrival traveltime can be used to describe the properties of both velocity and attenuation as seismic waves propagate in attenuative elastic media. The real part of the complex‐valued traveltime corresponds to phase arrival and the imaginary part is associated with the amplitude decay due to energy absorption. The eikonal equation for attenuative vertical transversely isotropic media discretized with rectangular grids has been proven effective and precise to calculate the complex‐valued traveltime, but less accurate and efficient for irregular models. By using the perturbation method, the complex‐valued eikonal equation can be decomposed into two real‐valued equations, namely the zeroth‐ and first‐order traveltime governing equations. Here, we first present the topography‐dependent zeroth‐ and first‐order governing equations for attenuative VTI media, which are obtained by using the coordinate transformation from the Cartesian coordinates to the curvilinear coordinates. Then, we apply the Lax–Friedrichs sweeping method for solving the topography‐dependent traveltime governing equations in order to approximate the viscosity solutions, namely the real and imaginary parts of the complex‐valued traveltime. Several numerical tests demonstrate that the proposed scheme is efficient and accurate in calculating the complex‐valued P‐wave first‐arrival traveltime in attenuative VTI media with an irregular surface.  相似文献   

18.
New alternative formulations of exact boundary conditions for arbitrary three-dimensional (3D) free-surface topographies on seismic media have been derived. They are shown to be equivalent to previously published formulations, thereby verifying the validity of each set of formulations. The top of a curved grid represents the free-surface topography while the interior of the grid represents the physical medium. We assume the velocity–stress version of the viscoelastic wave equations to be valid in this grid before transforming the equations to a rectangular grid. In order to perform the numerical discretization we apply the latter version of the equations for seismic wave propagation simulation in the medium. The numerical discretization of the free-surface topography boundary conditions by second-order finite differences (FDs) is shown, as well as the spatially unconditional stability of the resulting system of equations. The FD order is increased by two for each point away from the free surface up to eight, which is the order used in the interior. We use staggered grids in both space and time and the second-order leap-frog and Crank– Nicholson methods for wavefield time propagation. An application using parameters typical of teleseismic earthquakes and explosions is presented using a 200 × 100 km2 area of real topography from southwestern Norway over a homogeneous medium. A dipping plane wave simulates a teleseismic P-wave incident on the surface topography. Results show conversion from P- to Rg- (short period fundamental mode Rayleigh) waves in the steepest and/or roughest topography, as well as attenuated waves in valleys and fjords. The codes are parallelized for simulation on fast supercomputers and PC-clusters to model high frequencies and/or large areas.  相似文献   

19.
This paper introduces a novel method of modelling acoustic and elastic wave propagation in inhomogeneous media with sharp variations of physical properties based on the recently developed grid‐characteristic method which considers different types of waves generated in inhomogeneous linear‐elastic media (e.g., longitudinal, transverse, Stoneley, Rayleigh, scattered PP‐, SS‐waves, and converted PS‐ and SP‐waves). In the framework of this method, the problem of solving acoustic or elastic wave equations is reduced to the interpolation of the solutions, determined at earlier time, thus avoiding a direct solution of the large systems of linear equations required by the FD or FE methods. We apply the grid‐characteristic method to compare wave phenomena computed using the acoustic and elastic wave equations in geological medium containing a hydrocarbon reservoir or a fracture zone. The results of this study demonstrate that the developed algorithm can be used as an effective technique for modelling wave phenomena in the models containing hydrocarbon reservoir and/or the fracture zones, which are important targets of seismic exploration.  相似文献   

20.
准确模拟TTI介质中弹性波的传播是研究地震各向异性、AVO反演的基础. 在二维加权近似解析离散化(WNAD)算法的基础上, 本文发展的并行WNAD算法是一种研究三维横向各向同性(TI)介质中弹性波传播的、快速高效的数值模拟方法. 我们首先介绍三维WNAD方法的构造过程, 然后与经典的差分格式--交错网格(SG)算法进行了比较. 理论分析和数值算例表明, WNAD算法比交错网格算法更适合在高性能计算机上进行大规模弹性波场模拟. 同时, 本文利用并行的WNAD方法研究了弹性波在TTI介质中的传播规律, 观测了TI介质中弹性波传播的重要特征:横波分离、体波耦合和速度各向异性等. 在TTI介质分界面处, 弹性波产生更加复杂的折射、反射和波型转化, 使得波场非常复杂, 研究和辨别不同类型的波能够加深我们对由裂隙诱导的各向异性介质的认识.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号