首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GPS接收机的信号通常很微弱,很容易受到有意或无意的干扰。对于线性调频干扰,在GPS接收机中很难用单一的时域或频域方法消除,因为线性调频干扰不同于一般的宽带或窄带干扰。另外线性调频干扰在变换域有不同于GPS C/A码的显著特征,基于此特点设计了一种在变换域抑制线性调频干扰的GPS接收机。分析了线性调频干扰在变换域的特征,仿真结果验证了这种设计方法的可行性。  相似文献   

2.
In global navigation satellite system (GNSS) receivers, the first signal processing stage is the acquisition, which consists of detecting the received GNSS signals and determining the associated code delay and Doppler frequency by means of correlations with a code and carrier replicas. These codes, as part of the GNSS signal, were chosen to have very good correlation properties without considering the effect of a potential received Doppler frequency. In the literature, it is often admitted that the maximum GPS L1 C/A code cross-correlation is about ?24 dB. We show that this maximum can be as high as ?19.2 dB when considering a Doppler frequency in a typical range of [?5, 5] kHz. We also show the positive impact of the coherent integration time on the cross-correlation and that even a satellite with Doppler outside the frequency search space of a receiver impacts the cross-correlation. In addition, the expression of the correlation is often provided in the continuous time domain, while its implementation is typically made in the discrete domain. It is then legitimate to ask the validity of this approximation. Therefore, the purpose of this research is twofold: First, we discuss typical approximations and evaluate their regions of validity, and second, we provide characteristic values such as maximums and quantiles of the auto- and cross-correlation of the GPS L1 C/A and Galileo E1 OS codes in the presence of Doppler, for frequency ranges up to 50 kHz and for different integration times.  相似文献   

3.
Fast direct GPS P-Code acquisition   总被引:5,自引:0,他引:5  
GPS P-Code has a higher chipping rate, better accuracy, and anti-jamming property than C/A code. Traditionally, GPS P-Code acquisition depends on handover from C/A code. This potentially needs long acquisition time. Moreover, when C/A code is not available, it is no longer possible to acquire GPS P-Code through handover from C/A code. The purpose of this paper is to describe a new overlap average method to facilitate hardware design of fast direct P-Code acquisition. It allows the rapid code phase search to acquire GPS P-Code signals, and also decreases the hardware resource requirement. The small size FFT in the proposed methods is very promising for fast FPGA hardware system design using FFT cores. The simulation results and theoretical analysis are included demonstrating the overall performance of the proposed method.
Jing PangEmail: Phone: +1-916-2784549Fax: +1-916-2787215
  相似文献   

4.
D1导航电文中加入了NH码,且D2导航电文的速率也比GPS信号的快很多,使得BDS的信号结构增加了捕获难度。采用伪码补零的方法可以对BDS信号进行有效捕获,但是该方法积分时间较长导致捕获耗时变长。本文提出了一种基于圆周移位的改进伪码补零算法,将搜索中复杂的载波剥离运算用计算量很小的频谱序列的搬移操作来代替,使算法复杂度大幅下降。试验结果表明,该方法可以有效减少运算量和捕获耗时。  相似文献   

5.
Indoor GNSS signals are typically received with poor signal-to-noise ratio, which impairs the acquisition stage of common global positioning system (GPS) receivers. Extending the coherent integration time increases the acquisition sensitivity, but the data-bit-rate limits the maximum achievable performance. Non-coherent processing also improves the detection performance, but indoor signals require a large amount of accumulations resulting in significant squaring loss. Moreover, both strategies have high computational complexity which fixes demanding requirements for stand alone mass-market terminals operating in real time. A sensitivity–complexity trade-off is therefore mandatory. Assisted-GPS, which is included in 3GPP specifications, reduces the overall acquisition complexity and enhances sensitivity. In this paper we describe a low-complexity-assisted data-wipe-off technique that enables the high-sensitivity acquisition of GPS signals. The method is based on the acquisition of the strongest signal in order to obtain information that eases the acquisition of the weaker ones. The analysis also addresses sources of sensitivity loss, such as Doppler effects and local oscillator inaccuracies. A test campaign with real signals and integration times up to 2 s validates the method, demonstrating the effectiveness of the proposed technique in indoor environments.  相似文献   

6.
为了满足高动态用户及强干扰条件下的应用需求,提出了一种基于卫星信号矢量跟踪的SINS/GPS深组合导航方法,设计了基于FPGA硬件平台的实施方案。利用组合卡尔曼滤波器反馈回路取代了传统接收机中独立、并行的跟踪环路,能够同时完成所有可视卫星信号的跟踪和导航信息处理;通过矢量跟踪算法对所有可视卫星信号进行集中处理,能够增强跟踪通道对信号载噪比变化的适应能力,从而提高接收机在强干扰或信号中断条件下的跟踪性能;根据SINS导航参数和星历信息推测GPS伪码相位和多普勒频移等参数,用以辅助卫星信号的捕获和跟踪,能够大大缩短接收机的搜索捕获时间,并增强接收机在高动态条件下的跟踪性能。基于矢量跟踪的深组合方法不仅在GPS信号短暂中断期间,能够保证系统的导航精度和可靠性,而且在强干扰环境中能够维持较好的伪码相位和载波频率跟踪性能。  相似文献   

7.
GNSS data management and processing with the GPSTk   总被引:2,自引:0,他引:2  
We organize complex problems in simple ways using a GNSS data management strategy based on “GNSS Data Structures” (GDS), coupled with the open source “GPS Toolkit” (GPSTk) suite. The code resulting from using the GDS and their associated “processing paradigm” is remarkably compact and easy to follow, yielding better code maintainability. Furthermore, the data abstraction allows flexible handling of concepts beyond mere data encapsulation, including programmable general solvers. An existing GPSTk class can be modified to achieve the goal. We briefly describe the “GDS paradigm” and show how the different GNSS data processing “objects” may be combined in a flexible way to develop data processing strategies such as Precise Point Positioning (PPP) and network-based PPP that computes satellite clock offsets on-the-fly.  相似文献   

8.
介绍了一种基于平均相关器的GPS信号快速捕获算法,通过VHDL语言描述在FPGA上实现了该算法。平均相关器是一种将输入的5000点GPS样本信号平均化为1024点样本,然后通过FFT方法实现GPS信号快速捕获的基带相关器。这种相关器可以一步搜索到所有可能的码相位偏移,大大提高了捕获速度,比较好地满足了实时处理的要求。  相似文献   

9.
One of the major errors in high-precision GPS positioning is multipath. Multipath effect modeling and reduction have been a challenging issue in high-accuracy GPS positioning applications due to its special properties. Different methods have been employed to mitigate this error including hardware and software approaches. We reduce C/A code multipath error by adopting an efficient software method which uses wavelet transform as a basic data processing trend. The key idea of the proposed method is using stationary wavelet transform (SWT) in GPS signal data processing. Since we have used SWT, there is complete access to high-frequency and low-frequency terms in both time and frequency domains, and we can apply appropriated procedures to mitigate this error. The multipath error mostly is a low-frequency term. In our proposed method, the double difference (DD) residuals are applied to the SWT to identify the multipath disturbance. The extracted multipath is then used to correct DD observations. Our experiments include three data sets to investigate the proposed method and compare it with existing algorithms. We used simulations for two of these data sets. The results indicate the efficiency of the proposed method over existing algorithms.  相似文献   

10.
解算所有GPS卫星钟差时要求选用地面跟踪站能够观测到每颗卫星,而组成该网的跟踪站数量对卫星钟差的解算效率有较大影响。跟踪站数量越多,卫星钟差的解算效率就越低,不利于实时应用。本文利用不规则三角网对全球跟踪站进行建模,提出一种新的全球均匀选站方法,并应用于卫星钟差实时解算。试验结果表明:当跟踪站个数达到25个时,卫星钟差解算精度优于0.3 ns,且随着跟踪站的增加,精度无明显提升。此跟踪站分布可作为卫星钟差实时解算的一种选站分布参考。  相似文献   

11.
A new algorithm for fine acquisition of GPS carrier frequency   总被引:1,自引:1,他引:0  
Design of a GPS signal acquisition algorithm is a trade-off between improvement of the acquisition frequency resolution and reduction in the acquisition time. A new algorithm is proposed to acquire the carrier frequency accurately by correlation of the GPS signal after completion of the coarse acquisition of the signals. The CA code in a period of 1 ms is stripped off first. Then, several local replica carriers are generated and mixed with the CA-code-stripped data. Finally, the mixed data are integrated to detect the carrier frequency accurately. By analyzing the correlated integration result, the algorithm performance is evaluated on the aspects of the computational load, the effects of the carrier-to-noise ratio, and the navigation data transition. Performance of the proposed method is verified by simulations and experiments.  相似文献   

12.
A GPS IF signal computer simulation method is proposed in this article. The carrier Doppler frequency and the total propagation and delay time can be modeled or calculated with the input GPS satellite ephemeris file. The simulated GPS IF signal outputs to a text file for post-processing and analysis. The simulation signal spectrum is compared with the received real GPS IF signal spectrum, and the correctness of the simulation result is verified. Supported by the Research Fund (2008–2009) of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, the National 863 Program of China (No.2008AA12Z308).  相似文献   

13.
Rod Bryant 《GPS Solutions》2002,6(3):138-148
A key requirement for emergency call location (e.g. E911), for robust operation of location-based m-commerce systems and for telematics systems is that the location technology be able to operate in urban canyons and inside buildings. We start from a definition of the target environments, which includes multi-level parking garages, office buildings and homes, but not underground parking garages or tunnels. Based on experience in these target environments and understanding of typical applications we derive specific requirements for sensitivity and acquisition speed. The primary problems associated with weak signal operation are as follows. (1) In conventional GPS receivers sampling at the correlator output typically occurs at a sampling interval of the order of 1 ms. With weak signals, however, the signal-to-noise ratio of these samples is too low to support lock-in of a phase-locked or frequency-locked loop. (2) With weak signals, the signal-to-noise ratio is too low to support the extraction of the 50BPS navigation message from the signal. Therefore, aiding data is required from an external source. (3) Because the data cannot be extracted, it is not possible for the receiver to synchronize to the incoming bits, words or subframes. Therefore, it is not possible to construct pseudoranges without prior information. (4) The paper describes Sigtec Navigation's subATTO technology. This technology provides sensitivity down to –185 dBW (19 dBHz assuming NF of 1.5 dB and no other implementation loss). This is 5 dB below an attoWatt (10–18 W) and has been shown to provide reliable positioning inside buildings, multi-level parking garages and in urban canyons without any aiding at all. The paper describes the patented signal processing scheme, how ambiguity resolution and time synchronization are achieved, the wireless assistance technique, the acquisition strategy and the use of scanning channels. Results are presented from trials in a multi-level parking garage. The results obtained in most parking garages are similar to these in terms of availability of fixes, signal strengths received and location accuracy achieved. The performance achieved in multi-level parking garages is rarely worse than this. One of the major impediments to practical application of weak signal-processing schemes is the limited dynamic range imposed by the GPS C/A code signal structure. This problem is discussed along with the problems of multipath distortion in the context of telematics operation in urban canyons. A realistic urban accuracy goal of 20 m for 95% of fixes is proposed based on experience with GPS and dead reckoning. Enhancements under development will provide sensitivity of –188 dBW, which will provide continuous availability within a broader range of indoor environments. For practical applications, this will require the use of modern 'search engine' hardware for acceptable acquisition speed. As the paper shows, this sensitivity is near the practical limit of sensitivity with acceptable acquisition times and dynamic capability. Electronic Publication  相似文献   

14.
GPS sidereal filtering: coordinate- and carrier-phase-level strategies   总被引:6,自引:1,他引:6  
Multipath error is considered one of the major errors affecting GPS observations. One can benefit from the repetition of satellite geometry approximately every sidereal day, and apply filtering to help minimize this error. For GPS data at 1 s interval processed using a double-difference strategy, using the day-to-day coordinate or carrier-phase residual autocorrelation determined with a 10-h window leads to the steadiest estimates of the error-repeat lag, although a window as short as 2 h can produce an acceptable value with > 97% of the optimal lag’s correlation. We conclude that although the lag may vary with time, such variation is marginal and there is little advantage in using a satellite-specific or other time-varying lag in double-difference processing. We filter the GPS data either by stacking a number of days of processed coordinate residuals using the optimum “sidereal” lag (23 h 55 m 54 s), and removing these stacked residuals from the day in question (coordinate space), or by a similar method using double-difference carrier-phase residuals (observational space). Either method results in more consistent and homogeneous set of coordinates throughout the dataset compared with unfiltered processing. Coordinate stacking reduces geometry-related repeating errors (mainly multipath) better than carrier-phase residual stacking, although the latter takes less processing time to achieve final filtered coordinates. Thus, the optimal stacking method will depend on whether coordinate precision or computational time is the over-riding criterion.  相似文献   

15.
周跳探测与修复是星载GPS数据预处理的重要内容。首先使用SWARM卫星实测数据对TurboEdit算法的有效性进行了分析,针对算法在观测噪声较大情况下无法有效探测小周跳的问题,提出了一种改进算法。该算法利用载波相位观测值对伪距组合观测值进行平滑,降低了观测噪声对宽巷模糊度的影响,提高了周跳探测能力。实验结果表明,改进算法能够有效提高小周跳的探测能力。   相似文献   

16.
Impact of Earth radiation pressure on GPS position estimates   总被引:10,自引:8,他引:2  
GPS satellite orbits available from the International GNSS Service (IGS) show a consistent radial bias of up to several cm and a particular pattern in the Satellite Laser Ranging (SLR) residuals, which are suggested to be related to radiation pressure mismodeling. In addition, orbit-related frequencies were identified in geodetic time series such as apparent geocenter motion and station displacements derived from GPS tracking data. A potential solution to these discrepancies is the inclusion of Earth radiation pressure (visible and infrared) modeling in the orbit determination process. This is currently not yet considered by all analysis centers contributing to the IGS final orbits. The acceleration, accounting for Earth radiation and satellite models, is introduced in this paper in the computation of a global GPS network (around 200 IGS sites) adopting the analysis strategies from the Center for Orbit Determination in Europe (CODE). Two solutions covering 9 years (2000–2008) with and without Earth radiation pressure were computed and form the basis for this study. In previous studies, it has been shown that Earth radiation pressure has a non-negligible effect on the GPS orbits, mainly in the radial component. In this paper, the effect on the along-track and cross-track components is studied in more detail. Also in this paper, it is shown that Earth radiation pressure leads to a change in the estimates of GPS ground station positions, which is systematic over large regions of the Earth. This observed “deformation” of the Earth is towards North–South and with large scale patterns that repeat six times per GPS draconitic year (350 days), reaching a magnitude of up to 1 mm. The impact of Earth radiation pressure on the geocenter and length of day estimates was also investigated, but the effect is found to be less significant as compared to the orbits and position estimates.  相似文献   

17.
Estimation and analysis of GPS satellite DCB based on LEO observations   总被引:1,自引:1,他引:0  
The Global Positioning System (GPS) satellite differential code bias (DCB) should be precisely calibrated when obtaining ionospheric slant total electron content (TEC). So far, it is ground-based GPS observations that have been used to estimate GPS satellite DCB. With the increased Low Earth Orbit (LEO) missions in the near future, the real-time satellite DCB estimation is a crucial factor in real-time LEO GPS data applications. One alternative way is estimating GPS DCB based on the LEO observations themselves, instead of using ground observations. We propose an approach to estimate the satellite DCB based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) and Challenging Minisatellite Payload (CHAMP) GPS observations during the years 2002–2012. The results have been validated through comparisons with those issued by Center for Orbit Determination in Europe (CODE). The evaluations indicate that: The approach can estimate satellite DCB in a reasonable way; the DCB estimated based on CHAMP observations is much better than those on COSMIC observations; the accuracy and precision of DCB show a possible dependency on the ionospheric ionization level. This method is significance for the real-time processing of LEO-based GNSS TEC data from the perspective of real-time applications.  相似文献   

18.
Combination of GNSS and SLR observations using satellite co-locations   总被引:6,自引:6,他引:0  
Satellite Laser Ranging (SLR) observations to Global Navigation Satellite System (GNSS) satellites may be used for several purposes. On one hand, the range measurement may be used as an independent validation for satellite orbits derived solely from GNSS microwave observations. On the other hand, both observation types may be analyzed together to generate a combined orbit. The latter procedure implies that one common set of orbit parameters is estimated from GNSS and SLR data. We performed such a combined processing of GNSS and SLR using the data of the year 2008. During this period, two GPS and four GLONASS satellites could be used as satellite co-locations. We focus on the general procedure for this type of combined processing and the impact on the terrestrial reference frame (including scale and geocenter), the GNSS satellite antenna offsets (SAO) and the SLR range biases. We show that the combination using only satellite co-locations as connection between GNSS and SLR is possible and allows the estimation of SLR station coordinates at the level of 1–2 cm. The SLR observations to GNSS satellites provide the scale allowing the estimation of GNSS SAO without relying on the scale of any a priori terrestrial reference frame. We show that the necessity to estimate SLR range biases does not prohibit the estimation of GNSS SAO. A good distribution of SLR observations allows a common estimation of the two parameter types. The estimated corrections for the GNSS SAO are 119 mm and −13 mm on average for the GPS and GLONASS satellites, respectively. The resulting SLR range biases suggest that it might be sufficient to estimate one parameter per station representing a range bias common to all GNSS satellites. The estimated biases are in the range of a few centimeters up to 5 cm. Scale differences of 0.9 ppb are seen between GNSS and SLR.  相似文献   

19.
提出了一种基于GPS的多站实时时间传递算法,该算法将卫星钟差作为未知参数进行实时估计,利用测站间的共视卫星建立起各测站误差方程之间的联系,同时解算站间时间传递结果和卫星钟差。摆脱了对外部事后精密卫星钟差产品的依赖,不受卫星精密钟差产品精度和实时性的限制,只要站间有足够的共视卫星,即可实现时间传递。实验结果表明:该算法时间传递精度可以达到亚纳秒量级,能够应用于高精度实时时间传递。  相似文献   

20.
基于载波相位差分技术的北斗/GPS双模定位系统,提出能够精确定位用户位置的完整相对定位算法。文中详细分析卫星导航的定位监测机理,开发北斗/GPS数据融合的双模式信号采集系统。利用星站在历元间的距离增量为参考值来检测周跳,给出判断周跳的标准。对整周模糊度确定的问题进行研究,给出利用LAMBDA法来快速搜索整周模糊度的算法,编写监测点三维位置的定位监测程序。基于上海司南接收机北斗/GPS相对定位实验得到的数据,验证给出双模导航系统的精确性、可用性和可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号