首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
四川“81.7”特大暴雨和西南涡的数值模拟   总被引:26,自引:1,他引:26  
本文利用复杂地形条件下嵌套细网格预报模式、由欧洲中心的格点资料,设计了六组不同的模拟试验方案,对1981年7月11—15日四川大暴雨及西南涡过程进行了48小时数值模拟。结果表明,本模式较好地预报了这次大暴雨及西南涡过程。对这次西南涡及暴雨过程的发展,凝结潜热有最重要的影响,青藏高原地形的阻挡作用也有重要影响,地面感热和潜热通量、地面摩擦及边界层内的侧向摩擦对西南涡的发展、上升运动和降水的加强也有一定的贡献。  相似文献   

2.
海南岛一次特大暴雨的数值研究   总被引:1,自引:1,他引:1  
利用卫星资料、NCEP资料以及AREM模式输出资料,对发生在2008年10月中旬海南岛一次大暴雨过程进行了中尺度数值模拟分析。分析结果表明:AREM模式较好地模拟了本次大暴雨过程,当初始资料选取NCEP资料时模拟效果最佳;sθe等值线密集区以及位涡梯度最大区与暴雨中心相对应;暴雨中心700 hPa以下低层对应条件对称不稳定,其上至600 hPa为对流不稳定;条件对称不稳定对其上空的对流不稳定有触发作用;对热源〈Q1〉和水汽汇〈Q2〉分析得出,大值区与降水分布基本一致,凝结潜热的释放对大暴雨过程有反馈作用;位温垂直平流项对Q1起决定性作用,位温局地变化项及水平平流项对Q1的贡献不大。在Q2诸分量中,比湿水平平流项和垂直平流项共同作用于Q2,比湿局地变化项影响较小。  相似文献   

3.
利用常规观测、加密自动站、NCEP 1°×1°每6h再分析资料和多普勒雷达等资料,对2017年6月20日发生在滇中的局地大暴雨进行分析。结果表明:低层700hPa切变线和地面辐合线是产生局地大暴雨的主要天气系统;局地大暴雨发生在低层辐合、中高层辐散的弱对流环境中,低层局地强水汽辐合为本次大暴雨提供了水汽条件;局地大暴雨发生在对流云团边缘TBB梯度最大的位置,暴雨发生前6h地面露点温度上升明显,同时对流有效位能CAPE也出现显著增加。本次强降雨过程先后出现两轮降雨高峰,第1轮强降雨持续时间长,雨强大,主要为强降水超级单体和中气旋造成;第2轮强降雨持续时间较短,雨强较弱,主要为多个对流风暴引发。两轮强降雨多普勒雷达图上为低质心结构,径向速度有逆风区形成,逆风区的出现比暴雨提前约1h,降水强度随着逆风区的消失而减弱。局地大暴雨发生地呈"喇叭口"地形,强降雨点位于山谷且三面环山,进入"喇叭口"山谷内的对流风暴在地面气旋和地形作用下稳定少动,是导致本次局地大暴雨的重要原因。  相似文献   

4.
辜旭赞 《气象科技》2004,32(1):19-24,33
文章研究了在热带海洋面上的水蒸发,发现水蒸发进入大气层将改变地面气压场,且蒸发潜热分为内潜热(水汽内能)和外潜热(水汽压力能),蒸发内潜热立即成为大气热能的一部分,而蒸发外潜热直接对大气层作功,使得大气位能增加;研究了大气中的大尺度凝结降水和积云对流凝结降水对于环境气压场与位势高度场的直接影响。用郭晓岚积云对流参数化方案(已考虑凝结内潜热对大气的加热作用),加入了考虑因大尺度凝结降水和积云对流参数化凝结降水造成地面气压场及高空位势高度场的变化,后者应是凝结外潜热过程作用的结果。在上述研究过程中,必须引入考虑凝结作用的连续性方程,且最终可以改变有积云对流凝结降水发生的数值预报模式动力框架。  相似文献   

5.
夏季青藏高原低涡形成和发展的数值模拟   总被引:21,自引:3,他引:21  
本文利用一有限区域数值预报模式和综合订正后的1979年6~8月FGGE IIIb级资料,选择该年雨季中三例包含形成和(或)发展阶段的较典型的青藏高原低涡过程,设计了控制性试验和降低高原地形、无地面感热和潜热通量、无凝结潜热、减小温度递减率、增大气柱斜压性、无摩擦影响的十余组试验方案,进行了24 h或48 h数值模拟。最后提出了青藏高原低涡发生发展的概念模式。简单地讲,青藏高原低涡可看作是一种强烈依赖于青藏高原地形,同时又受层结稳定度、地面热通量和凝结潜热控制的局地性低压涡旋。  相似文献   

6.
2007年5月20日粤西茂名与阳江海岸带地区发生一场小时降水量达到115 mm的短时大暴雨。采用NCEP/NCAR FNL 1 °×1 °再分析资料,结合多普勒天气雷达、高空探空、自动站资料和风廓线雷达观测资料,分析此次暴雨过程的天气尺度系统与中尺度系统特征,探讨不同尺度系统对这次暴雨天气过程的作用。分析结果表明:(1)此次暴雨过程是由准线状中尺度对流系统导致的,对流系统的移动速度缓慢是导致出现暴雨的主要原因;(2)在暴雨发生前,整层大气水汽充沛,处于近饱和稳定状态;暴雨发生期间局地大气处于条件不稳定状态;中层弱冷槽过境及“上干下湿”的温湿结构增加了环境大气的不稳定性;(3)北部湾低压(槽)发展导致的强盛低层西南气流为暴雨发生提供了充沛的水汽;高空槽后干冷空气南下形成的深厚干层,有助于对流凝结潜热的释放;高层辐散、低层辐合环流为低层暖湿空气提供了垂直上升动力;(4)中尺度对流系统在地势相对平缓的沿海地区发展和加强,地形的动力抬升和辐合作用不大。对流活动诱发的低层密度流在对流带前缘不断激发出新的对流单体,对对流系统的维持和发展起关键作用;(5)对流单体的风暴传播效应使对流系统具有逆风传播的特征,移速缓慢;层云降水的蒸发冷却有可能改变其低层的温度梯度,使环境大气的不稳定性加强。   相似文献   

7.
北京地区一次局地强降水过程的数值分析   总被引:4,自引:0,他引:4  
应用网格距为3 km的中尺度模式MM5v3及3DVAR同化系统,对2006年6月27日夜间发生在北京地区的一次局地强对流天气过程进行了模拟分析.结果表明,模式能够较好地模拟出本次城区西部的局地强降水过程,反映出降水事件的局地性、突发性和短历时特征.分析还表明,直接造成本次暴雨过程的是两个局地生成的中尺度对流系统,地面中尺度辐合线是降水的主要触发机制之一.北京周边陡峭地形的存在,导致山前偏南、偏东气流在迎风坡强烈爬升,并与北面、西面来的过山气流共同作用在山前形成垂直方向次级环流,是强降水维持的主要物理机制.此外,不断发展的城市下垫面亦会对降水过程产生影响.  相似文献   

8.
CAPE等环境参数在华北罕见秋季大暴雨中的应用   总被引:13,自引:7,他引:13  
陈艳  寿绍文  宿海良 《气象》2005,31(10):56-61
采用中尺度数值模式MM5(V3)对2003年10月10~12日发生在华北地区的一次大暴雨过程进行模拟,利用模拟结果计算分析了对流有效位能(CAPE)、风暴相对螺旋度(SRH)、能量螺旋度指数(EHI),结果表明,以上3个参数对这次大暴雨的发生发展有较好的指示作用:在大暴雨发生前能量得到充分积累,大气处于强不稳定状态,强对流天气爆发后,不稳定能量逐渐释放减弱;大暴雨中心位于低层局地螺旋度大值中心南部等值线密集区。低层局地螺旋度大值中心轴线与切变线和地面倒槽辐合线走向一致,高层局地螺旋度与高空急流相对应;大暴雨过程主要发生在高风暴相对螺旋度结合低对流有效位能的环境中(SRH>200m2·s-2,CAPE<1500J·kg-1)。  相似文献   

9.
2005年"5.31"湖南大暴雨中尺度模拟和发生机制   总被引:10,自引:7,他引:3  
利用NCEP 1°×1°的6 h再分析资料和MM5模式15 km水平分辨率模拟的逐时资料,对2005年初夏湖南大暴雨的中尺度系统及其触发、维持机制进行了诊断分析研究。结果表明:高低空急流最佳配置,动力耦合关系建立为暴雨发生提供了有利的环境条件;中尺度系统在渝南、黔西生成后移入湖南停滞发展,加强了湖南上空动力不稳定条件,促进对流发展;偏南暖湿气流整层突然增强对暴雨的对流系统爆发性发展起十分重要的作用,它在中高层凝结释放潜热加热高层大气,对上升气流起到正反馈作用;高层大气强“抽吸”效应和前期降水产生地表潜热和感热的强迫作用亦是对流爆发性发展的重要因子。湖南复杂地形在暴雨启动机制中起重要作用。但敏感性试验表明,地形抬升不是这次暴雨唯一必需的触发条件,削平南方山地不仅能增强水汽输送,低层偏南气流增强还能加强地面中尺度系统的辐合作用,辐合抬升是触发机制之一。降雨过程发生发展主要受天气系统控制,地形效应可明显改变降雨落区和强度,迎(背)风坡度的增加(减小)通常使降雨加强,反之使降雨减弱。  相似文献   

10.
渤海西岸偏东风对天津局地大暴雨的影响分析   总被引:2,自引:2,他引:0  
尉英华  陈宏  何群英  林晓萌  张辉 《气象》2019,45(1):61-72
利用加密自动气象站、多普勒天气雷达和风廓线雷达等高时空分辨率资料,分析2017年7月6日天津一次局地大暴雨过程的中尺度对流系统发展演变特征,讨论渤海西岸边界层偏东风的垂直结构、温湿特性及其对局地大暴雨的作用。结果表明:局地大暴雨由两个暖区中尺度对流系统和一个低涡切变线系统造成,偏东风作用下的暖区第二个中尺度对流系统主导了局地大暴雨的形成。大暴雨中心两侧的温湿特征均呈“东高西低”分布,偏东气流具有暖湿特性,为暖区对流暴雨的发生发展提供了有利的环境条件。由于海陆地形差异,偏东气流自渤海向内陆推进过程中呈现明显的风速扰动特征,不仅导致水汽辐合,同时有利于上升运动发展。其中,0.6 km以下偏东风的中尺度扰动对局地大暴雨的触发和维持起重要作用,风速辐合强迫产生的上升气流是γ中尺度对流单体的重要触发机制,而强降水冷池出流与不断增强的暖湿偏东人流相互作用形成地面中尺度辐合线,使对流系统得以稳定维持,40 dBz以上强降水回波持续近3 h,平均6 min降水量达6.8 mm。此外,局地大暴雨的雨强变化与东风急流波动关系密切,急流的建立、发展、减弱和消失分别对应降水的陡增、峰值、减弱和陡降四个阶段。  相似文献   

11.
在2000年12号台风(Prapiroon)影响期间,其外围对淮河流域东北部造成了一次罕见的特大暴雨,暴雨中心响水24 h降水量达到800 mm.文中所用的模式是俄克拉荷马大学风暴分析和预测中心研制的一个三维非静力可压缩数值区域预报模式ARPS(V5.2).采用了3层单向嵌套网格,Domain1中心取为(27.5°N,117.5°E),格距45 km,格点数为75×75;Domain2中心取为(31.5°N,119.5°E),格距15 km,格点数为140×140;Domain3中心取为(33.5°N,119.5°E),格距5 km,格点数为180×180;垂直方向分为35层,垂直格距为625 m.所利用的资料为:2000年8月29-31日每日4个时次(00、06、12、18时) 1°×1°的NCEP/ NCAR再分析资料及713雷达资料、GMS-5红外云图、探空报、地面加密资料.物理过程选用简单冰相方案,Kain和Fritsch 积云参数化方案.对逐时的卫星云图、713雷达图像进行数值反演,结合探空资料反演出暴雨中深对流系统的水汽三维分布情况,通过三维同化系统ADAS处理,同化初始场和侧边界条件,再用ARPS模式进行数值积分,从8月29日08时开始到31日08 时结束,积分48 h.并结合雷达资料、红外云图、探空报、地面加密资料等对数值模拟结果进行了对比分析.结果表明:ARPS较好地模拟了在台风移动的左前方、在高空槽与副高之间出现的中尺度强暴雨区,模拟降水区及暴雨中心位置与实况较为一致.利用模拟大气中的水物质模拟了雷达回波,与实际雷达回波进行了对比分析,揭示了该过程中β中尺度对流系统的演变特征,4条对流带的交汇点在响水附近.并将模式模拟的T-lgp图与实际T-lgp图进行了对比分析,揭示了该次暴雨过程的不稳定性.持续的高空风垂直切变为对流系统的发展提供动能,造成对流系统斜压发展,有利于降水集中在某一固定的地点.由于模拟结果与实况较为接近,因此可以利用模拟结果作为对该暴雨过程作进一步研究的基础.  相似文献   

12.
NCEP-NCAR reanalysis data were used to analyze the characteristics and evolution mechanism of convective and symmetric instability before and during a heavy rainfall event that occurred in Beijing on 21 July 2012.Approximately twelve hours before the rainstorm,the atmosphere was mainly dominated by convective instability in the lower level of 900-800 hPa.The strong southwesterly low-level jet conveyed the moist and warm airflow continuously to the area of torrential rain,maintaining and enhancing the unstable energy.When the precipitation occurred,unstable energy was released and the convective instability weakened.Meanwhile,due to the baroclinicity enhancement in the atmosphere,the symmetric instability strengthened,maintaining and promoting the subsequent torrential rain.Deriving the convective instability tendency equation demonstrated that the barotropic component of potential divergence and the advection term played a major role in enhancing the convective instability before the rainstorm.Analysis of the tendency equation of moist potential vorticity showed that the coupled term of vertical vorticity and the baroclinic component of potential divergence was the primary factor influencing the development of symmetric instability during the precipitation.Comparing the effects of these factors on convective instability and symmetric instability showed some correlation.  相似文献   

13.
本文是“北京7·21 特大暴雨成因分析”的第二部分,从上升运动、风垂直切变以及地形影响等方面进一步探讨暴雨成因。所用资料包括常规、加密自动气象站、多普勒雷达观测以及NCEP 1°×1°再分析资料。分析表明:1)高空急流辐散与低层低涡切变线、地形辐合线、地形强迫抬升等共同作用构成的强烈上升运动触发和增强了暖区强降水;低涡东移、锋面系统进一步增强了上升运动,触发形成锋面降水过程。2)较强的风垂直切变是“7·21”特大暴雨区别一般暴雨的另一个环境场特征。3)对流层中层西南引导气流加强、地面辐合线呈西南—东北向、云团移向前方存在上升运动中心、水汽通量辐合中心以及位势不稳定中心。这些因素造成对流云团在辐合线附近一个个生成,并向前方辐合和位势不稳定中心移动而形成“列车效应”,造成特大暴雨灾害天气。4)地形对“7·21”暴雨存在迎风坡、喇叭口地形、地形中尺度辐合线等多种增幅作用,使得北京西南部山区成为对流云团的触发和加强区域。  相似文献   

14.
利用常规、加密自动气象站以及NCEP1°×1°再分析资料,对北京“7.21”特大暴雨过程天气特征和环境条件进行了初步分析。结果表明:1) 降水过程由锋前暖区和锋面降水组成。暖区降水持续时间长,小时雨量大,具有典型的“列车效应”,是造成特大暴雨的主要降水过程。2) 中高层低涡东移、副热带高压北抬、中低层低涡暖式切变线影响是暴雨主要形势特征,暴雨发生在低层低涡右前部暖式切变和高空强辐散气流下方。3) 暴雨过程开始前对流层中低层存在双层湿暖盖。位势不稳定层结的建立机制主要与低层增湿和中层变干的湿度差动平流有关,而低层增湿和中层变干过程与中低层风向转变相关联。4) 暴雨发生前0 — 6 h对流层整层不断增湿,且对流层中高层比低层增湿效应更加明显。与普通暴雨增湿过程和水汽主要集中在对流层中下层不同,深厚的湿度层次,较低的凝结高度和自由对流高度是其显著特征。  相似文献   

15.

利用自动站雨量、NCEP/NCAR 1°×1°间隔6 h再分析数据、卫星TBB等资料, 对2014年7月13-17日贵州铜仁持续性暴雨天气过程的维持机制进行了分析。结果表明:稳定贝加尔湖阻高东侧低涡槽后的西北气流携带冷空气南下与副热带高压外围西南暖湿气流在贵州北部交汇, 使得该区上空大气出现持续的不稳定。同时, 高层反气旋环流与低层低涡切变之间, 形成低层上升、高层下沉的垂直环流结构, 进一步加强了对流不稳定系统的发展; 随着干冷空气的不断入侵, 触发了对流不稳定能量的几次快速释放, 并通过西南暖湿气流的持续输送及辐合而再次重建, 从而导致持续性暴雨的形成。低层低涡系统及地面辐合线稳定维持, 及低层水汽的不断输送并形成辐合, 为持续性暴雨的发生发展提供了有利的动力和水汽条件。在这样的大气环流形势下, 利于不同区域生成的强对流云团反复影响铜仁, 形成持续性暴雨。加上地形阻挡、抬升和喇叭口地形收缩作用, 进一步增强了局地极端强降水形成。

  相似文献   

16.
北京“7.21”暴雨的不稳定性及其触发机制分析   总被引:10,自引:3,他引:7  
本文利用WRF模拟的高分辨率资料对2012年7月21日北京特大暴雨过程的对流不稳定和条件对称不稳定性及其触发和维持机制进行了诊断分析。分析结果表明:(1)在临近暴雨发生时刻及暴雨初期, 大气低层主要以对流不稳定为主, 随后对流触发, 不稳定性减弱, 而低空急流和湿斜压性的增强, 使得条件性对称不稳定加强, 维持和加强了暴雨的不稳定性。(2)分析表明, 在暴雨过程中主要由于较强的水平风的垂直切变造成湿位涡的斜压分量异常, 从而导致条件性对称不稳定的产生。(3)本文分别对暴雨发生过程中的对流不稳定与条件对称不稳定的触发机制进行了分析, 主要结论如下:暴雨初期对流性降水阶段, 切变线上有利的垂直上升环境与地形的强迫抬升相互配合, 触发了对流性降水。另外, 北京上空的干冷空气入侵, 也增强了大气的对流不稳定性, 更易触发对流;对称不稳定导致的降水阶段, 主要是由于北京上空冷暖空气的长期对峙, 冷空气逐渐深入到暖湿空气下方, 使得暖湿气团沿冷气团爬升, 从而触发对称不稳定, 造成持续性降水。此次暴雨过程中0900~1300 UTC时刻暴雨增幅的重要原因是0900 UTC北京风向突变, 转为偏东风, 且风速骤增, 北京西北侧的喇叭口状的地形的强迫抬升作用, 与上空750 hPa移来的切变线上的垂直运动相互叠加, 形成中尺度涡旋, 产生了强烈的上升运动, 触发不稳定, 产生大暴雨。  相似文献   

17.
长江流域一次暴雨过程中的不稳定条件分析   总被引:12,自引:3,他引:12  
周玉淑  邓国  黄仪虹 《气象学报》2003,61(3):323-333
文中分析了 1998年 7月 2 0~ 2 3日发生于长江流域的持续性降水和暴雨过程 ,在分析大尺度降水和中小尺度暴雨相对应的环流场和天气实况的基础上 ,主要分析相应大气层结的对流不稳定和条件性对称不稳定条件 ,并对切变线上涡层不稳定做了重点介绍和分析 ,计算了条件性对称不稳定判据和涡层不稳定判据。结果表明 :降水期间大气低层有对流不稳定和对称不稳定能量的积聚 ,在这两类不稳定条件都基本满足的情况下 ,涡层不稳定的维持对此次降水过程中暴雨的发生提供了有利的不稳定环境场 ,具体的计算分析还表明环境场的配置制约着切变线上低涡扰动的发展 ,是造成降水的重要原因之一。  相似文献   

18.
混合集合预报法在华南暴雨短期预报中的试验   总被引:2,自引:1,他引:2       下载免费PDF全文
-WRF多模式集合3组试验,对比分析混合集合预报法与传统方法的降水预报效果。结果表明:ARPS模式集合改善了广东省南部局地强降水预报,该方法在中雨、大雨、暴雨量级改进效果显著。WRF模式集合对广东省北部强降水预报优于ARPS模式集合,但空报、漏报率较大,该方法有一定局限性。ARPS-WRF多模式集合在降水落区和量级预报上均优于传统方法。混合集合预报法利用低分辨率 (36 km) 集合预报和高分辨率 (12 km) 控制预报实现了高分辨率 (12 km) 集合预报,改善了降水预报效果,该方法可为业务高分辨率集合预报提供参考。  相似文献   

19.
曾勇  杨莲梅 《暴雨灾害》2020,38(1):41-51, 182

利用常规观测、风云卫星、多普勒天气雷达、CMORPH卫星降水量融合资料和NCEP/NCAR(0.25°×0.25°)再分析资料,对2016年6月16-17日新疆西部一次罕见暴雨过程进行中尺度分析。结果表明:(1)该暴雨过程具有累计雨量大、暴雨强度强、局地日雨量破极值、短时强降水范围广等特点。暴雨区位于200 hPa高空西南急流出口区左侧、500 hPa偏南气流及700 hPa切变线附近。较强的CAPEK指数对该暴雨有很好的指示意义。(2)该暴雨过程发生在低层辐合、高层辐散、低层较湿的有利背景下。强正涡度、强辐合和强上升运动不断将水汽和能量向上输送,为暴雨的产生提供有利的环境条件。(3)中亚地区中尺度雨团在发展演变过程中,逐渐形成西南-东北向带状多中心雨带,中心依次到达伊犁北部沿山地区,和原有的中尺度雨团共同作用,造成暴雨天气过程。中尺度对流云团不断产生于中亚地区,在东移过程中不断发展加强依次到达暴雨区,致使暴雨区不断产生短时强降水。(4)暴雨过程两个时段的中尺度对流系统存在明显差异,第一时段主要为孤立中尺度对流系统,造成伊宁博尔博松站成为暴雨中心并出现最强短时强降水的直接系统是风场特征明显的中γ尺度对流单体并在暴雨区维持少动。第二时段为CR达50 dBz、DVIL达4 g·m-3,长度达70 km、宽度达10km且呈准南北态的线状中尺度对流系统,其在向东移动过程中造成多站依次出现短时强降水天气。

  相似文献   

20.
用SA雷达产品对京西三次局地暴雨落区形成的精细分析   总被引:6,自引:3,他引:3  
段丽  卞素芬  俞小鼎  崔永义 《气象》2009,35(3):21-28
利用新一代Doppler雷达各种探测产品,对2006年6月底至7月上旬北京西郊香山、石景山、门头沟一带落区相同的三次局地暴雨和大暴雨过程,进行精细分析和研究.重点分析雷达探测产品对落区在同一地点形成的短时临近影响系统和指示意义.研究表明,发生在北京西郊山前、落区相同的三次局地暴雨和大暴雨,其雷达回波发展和演变形式各不相同.但三次过程强降雨前,近地面平原东南风和边界层偏西风的垂直风廓线结构在地形作用下对暴雨落区形成的影响是一致的:近乎与山脉垂直的平原近地面东南风长时间(6小时左右)维持,增加山前局地近地面温湿条件,并在北京西郊山脉阻挡下,形成山前近地面局地辐合和强迫抬升.山顶附近边界层的偏西风为近地面空气强迫抬升后在边界层的后卷辐散提供了有利条件.研究还显示,落区附近单体风暴、逆风区辐合带、中气旋等中小尺度回波系统的活动和发展,是暴雨落区形成的重要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号