首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From a 35-min time series of photographic spectra in the Caii H-line obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory under high spatial, spectral, and temporal resolution, we have derived a large number of H-line profiles at the sites of the bright points in the interior of the supergranulation cells, and at the network elements, on a quiet region at the centre of the solar disc. It is shown that the bright points are associated with 3-min periodicity in their intensity oscillations whereas the network elements exhibit 7-min periodicity. It is surmised that the large difference in periods of the intensity oscillations, the strength of the magnetic fields, and the intensity enhancements at the sites of the bright points and the network elements themselves may probably be taken as evidence to argue that the mechanisms of heating in the two cases are dissimilar, irrespective of the sizes of these structures.  相似文献   

2.
R. Kariyappa 《Solar physics》1996,165(2):211-222
We have analysed a 35-min-long time sequence of spectra in the Caii H line, Nai D1 and D2 lines, and in a large number of strong and weak Fei lines taken over a quiet region at the center of the solar disk. The time series of these spectra have been observed simultaneously in these lines under high spatial, spectral, and temporal resolution at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory. We have derived the line profiles and their central intensity values at the sites of the chromospheric bright points, which are visible in the H line for easy identification. We have done a power spectrum analysis for all the lines, using their central intensity values to determine the period of oscillations. It is shown that the 3 Fei lines, present 23 Å away from the core of the H line representing the pure photospheric lines, Nai D1 and D2 lines, 6 Fei lines at the wings of H line, and Can H line exhibit 5-min, 4.05-min, 3.96-min, and 3.2-min periodicity in their intensity oscillations, respectively. Since all these lines form at different heights in the solar atmosphere from low photosphere to middle chromosphere and show different periodicities in their intensity oscillations, these studies may give an idea about the spatial and temporal relation between the photospheric and chromospheric intensities. Therefore these studies will help to better understand the physical mechanisms of solar oscillations. It is clearly seen that the period of intensity oscillations decreases outward from the low photosphere to the middle chromosphere. Since we have studied a single feature at a time on the Sun (i.e., bright points seen in the H line) in all these spectral lines simultaneously, this may explain about the footpoints of the bright points, the origin of 3-min oscillations, and the relation to other oscillations pertaining to these locations on the Sun. We have concluded that 80% of the bright points are associated with dark elements in the true continuum, and they may seem to have a relationship with the dark intergranular lanes of the photosphere, after carefully examining the brightness (bright threads) extending from the core to the far wings of the H line at the locations of a large number of bright points, using their time sequence of spectra.NRC Resident Research Associate, on leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

3.
We have used a high spatial and temporal resolution of long time sequence of spectra in CaII H-line obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory on a quiet region at the center of the solar disk over a large number of bright points and network elements to search for atmospheric (chromospheric) g-mode oscillations. An important parameter of the H-line profile, intensity at H2v(Ih2V), has been derived from a large number of line profiles. We derived the light curves of all the bright points and network elements. The light curves represent the main pulse with large intensity amplitude and followed by several follower pulses with lower intensity amplitudes. The light curves of these bright points would give an impression that one can as well draw curves towards and away from the highest peak (main pulse) showing an exponential growth and decay of the amplitudes. An exponential decaying function has been fitted for all the light curves of the bright points to determine the damping time of the modes that are more or less the same, and one value of the coefficient of exponent can represent reasonably well the decay for all the cases. The FFT analysis of temporal variation of both the bright points and the network elements indicates around 10-min periodicity. We speculate that this longer period of oscillation may be related to chromospheric g-mode oscillations.  相似文献   

4.
We have analyzed a large number of Caii H line profiles at the sites of the bright points in the interior of the network using a 35-min-long time sequence of spectra obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory on a quiet regon of the solar disc and studied the dynamical processes associated with these structures. Our analysis shows that the profiles can be grouped into three classes in terms of their evolutionary behaviour. It is surmized that the differences in their behaviour are directly linked with the inner network photospheric magnetic points to which they have been observed to bear a spatial correspondence. The light curves of these bright points give the impression that the main pulse, which is the upward propagating disturbance carrying energy, throws the medium within the bright point into a resonant mode of oscillation that is seen as the follower pulses. The main pulse as well as the follower pulses have identical periods of intensity oscillations, with a mean value around 190 ± 20 s. We show that the energy transported by these main pulses at the sites of the bright points over the entire visible solar surface can account for a substantial fraction of the radiative loss from the quiet chromosphere, according to current models.  相似文献   

5.
Yurovsky  Y.  Magun  A. 《Solar physics》1998,180(1-2):409-426
The distribution of pauses between subsequent elements of a periodic process is symmetric, while a random process produces an asymmetric exponential distribution. The third moment of the pause distribution, which is sensitive to the asymmetry, can therefore be used to discriminate between perodic and random processes. With such a method we analyze the observations of 19 series of solar type III radio bursts and find with a confidence of 0.99 that, on average, the bursts are randomly distributed in time. Only one series can be considered to be periodic with a confidence 0.5. The bandwidth of the repetition frequency of most bursts corresponds to the quality of oscillations of Q¯ = 1.0±0.6 that does not indicates a resonance. Therefore, the modulation of particle beams and intensity of type III radio emission should be considered mainly as the result of random processes. Thus, these properties observed in the majority of radio type III bursts do not support the existence of any periodic or resonant oscillations in the solar corona during flares, although some periodic processes in active regions cannot entirely be ruled out.  相似文献   

6.
We study the velocity fields in the region of quiet solar filaments using spectral observations at the Sayan Solar Observatory (ISTP, Irkutsk). Once the series of spectral images have been processed, maps of the two-dimensional distribution of the velocity and its variations in the chromosphere (in the Hβ λ = 486.13 nm line) and the photosphere (in the Fe I λ = 486.37 nm line) are constructed. The motions in the filaments have been found to consist of steady and periodic components. Our analysis of the spatial distributions of various oscillation modes shows that the short-period (<10 min) oscillations propagate mainly vertically and are observed at the filament edges, on scales of several arcseconds. The quasi-hour (>40 min) oscillations propagate mostly along the filament at a small angle to its axis. The intensity in the Hβ core in individual fragments of some filaments varies with a period of about one hour. The observed velocity structures in the filaments and the imbalance of steady motions on the opposite sides of the filaments can be explained in terms of the model of a twisted fine-structure magnetic flux tube.  相似文献   

7.
Claim for periodicity in the crater formation rate is reinvestigated using a criterion proposed by Broadbent, and data sets of Rampino and Stothers and of Grieve are shown to satisfy the periodicity criterion (P 30 Myr).On the other hand, currently observed impactors are mainly asteroids, while long and short periodic comets whose fluxes may vary by external disturbances occupy only a small fraction. Using a Monte Carlo simulation, constraints are obtained for the dispersion Q(Myr) from an exact periodicity and for the periodic components (F tp) in the signals for their periodicity to be detected. It is found that for = 5, 6 and 7 Myr, F tp, would have to be 40% or greater, 60% or greater and 80% or greater, respectively. These constraints are used to discuss whether the giant molecular cloud perturbations can give rise to the periodicity in the impact events. The amplitude of the solar Z-motion need to be some 100pc for = 6 Myr, which requires the periodic component (SP and LP comets, if the former originate from the latter) to be 60%, while for = 7 Myr, the periodic component need to be 80%. The GMC perturbation model consistent with the periodicity appears to be the one where the amplitude is 100pc and the periodic component - 60% of the impactors. If SP comets mainly originate from a source such as the hypothetical Kuiper belt, the GMC perturbation would not be consistent with the periodicity.  相似文献   

8.
We study the periodicity of twisting motions in sunspot penumbral filaments, which were recently discovered from space (Hinode) and ground-based (SST) observations. A sunspot was well observed for 97 minutes by Hinode/SOT in the G-band (4305 Å) on 12 November 2006. By the use of the time?–?space gradient applied to intensity space?–?time plots, twisting structures can be identified in the penumbral filaments. Consistent with previous findings, we find that the twisting is oriented from the solar limb to disk center. Some of them show a periodicity. The typical period is about ≈?four minutes, and the twisting velocity is roughly 6 km s?1. However, the penumbral filaments do not always show periodic twisting motions during the time interval of the observations. Such behavior seems to start and stop randomly with various penumbral filaments displaying periodic twisting during different intervals. The maximum number of periodic twists is 20 in our observations. Studying this periodicity can help us to understand the physical nature of the twisting motions. The present results enable us to determine observational constraints on the twisting mechanism.  相似文献   

9.
We examine spectral time series of the transition region line Ov 629Å, observed with the Coronal Diagnostic Spectrometer (CDS) on the SOHO spacecraft in July 1997. Both Fourier and wavelet transforms have been applied independently to the analysis of plume oscillations in order to find the most reliable periods. The wavelet analysis allows us to derive the duration as well as the periods of the oscillations. Our observations indicate the presence of compressional waves with periods of 10–25 min. We have also detected a 11±1 min periodicity in the network regions of the north polar coronal hole. The waves are produced in short bursts with coherence times of about 30 min. We interpret these oscillations as outward propagating slow magneto-acoustic waves, which may contribute significantly to the heating of the lower corona by compressive dissipation and which may also provide enough energy flux for the acceleration of the fast solar wind. The data support the idea that the same driver is responsible for the network and plume oscillations with the network providing the magnetic channel through which the waves propagate upwards from the lower atmosphere to the plumes.  相似文献   

10.
We report on the discovery of a coherent periodicity in the B light curve of the symbiotic star BF Cyg. The signal was detected in some sections of the light curve of the star recorded in the year 2003 as double-hump periodic variations with an amplitude of ≃7 mmag. In the year 2004, the signal was also present in only a subsection of the light curve. In that year, the system was about twice as bright and the amplitude of the oscillations was about half of what it was in 2003. In 2004, the cycle structure was of a single hump, the phase of which coincided with the phase of one of the humps in the 2003 cycle. No periodic signal was detected in a third, short series of observations performed in the year 2007, when the star was 3 mag brighter than in 2003. We interpret the periodicity as the spin period of the white dwarf component of this interacting binary system. We suggest that the signal in 2003 originated in two hotspots on or near the surface of the white dwarf most likely around the two antipodes of an oblique dipole magnetic field of this star. Magnetic field lines funnelled accreted matter from the wind of the cool component to the pole areas, where the falling material created the hotspots. This process is apparently intermittent in its nature. In 2004, the activity near only one pole was enhanced enough to raise the signal above the threshold of our detection ability.  相似文献   

11.
This review is essentially a bibliography. In the first part, work done locally on period-finding methods is discussed. Some of the topics referred to are: periodogram significance testing, identification of non-sinusoidal periodicities, and computational shortcuts useful for calculating periodograms of large data sets. A number of aspects of period-finding in ray astronomy are briefly mentioned: these include various test statistics for the presence of a periodicity, the influence of oversampling on significance levels, estimation of the pulse shape, and the specification of a flux limit in the case of a non-detection. The second part of the review deals with the analysis of stochastic astronomical time series. Topics dealt with are ARMA modelling, Kalman filtering, problems associated with O-C analyses, and continuous time ARMA modelling. Two aspects of bivariate astronomical time series are touched on, namely time domain transfer function modelling and the estimation of the lag between two irregularly observed series.  相似文献   

12.
Families of conditionally periodic solutions have been found by a slightly modified Lyapunov method of determining periodic solutions near the libration points of the restricted three-body problem. When the frequencies of free oscillations are commensurable, the solutions found are transformed into planar or spatial periodic solutions. The results are confirmed by numerically integrating the starting nonlinear differential equations of motion.  相似文献   

13.
The measured properties of stellar oscillations can provide powerful constraints on the internal structure and composition of stars. To begin this process, oscillation frequencies must be extracted from the observational data, typically time series of the star's brightness or radial velocity. In this paper, a probabilistic model is introduced for inferring the frequencies and amplitudes of stellar oscillation modes from data, assuming that there is some periodic character to the oscillations, but that they may not be exactly sinusoidal. Effectively, we fit damped oscillations to the time series, and hence the mode lifetime is also recovered. While this approach is computationally demanding for large time series (>1500 points), it should at least allow improved analysis of observations of solar-like oscillations in subgiant and red giant stars, as well as sparse observations of semiregular stars, where the number of points in the time series is often low. The method is demonstrated on simulated data and then applied to radial velocity measurements of the red giant star  ξ Hydrae  , yielding a mode lifetime between 0.41 and 2.65 d with 95 per cent posterior probability. The large frequency separation between modes is ambiguous, however we argue that the most plausible value is 6.3 μHz, based on the radial velocity data and the star's position in the Hertzsprung–Russell diagram.  相似文献   

14.
A large set of coronal mass ejections (CMEs, 3463) has been selected to study their periodic oscillations in speed in the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO) field of view. These events, reported in the SOHO/LASCO catalog in the period of time 1996?–?2004, were selected based on having at least 11 height–time measurements. This selection criterion allows us to construct at least ten-point speed–distance profiles and evaluate kinematic properties of CMEs with a reasonable accuracy. To identify quasi-periodic oscillations in the speed of the CMEs a sinusoidal function was fitted to speed–distance profiles and the speed–time profiles. Of the considered events 22 % revealed periodic velocity fluctuations. These speed oscillations have on average amplitude equal to \(87~\mbox{km}\,\mbox{s}^{-1}\) and period \(7.8 R _{\odot}/241~\mbox{min}\) (in distance/time). The study shows that speed oscillations are a common phenomenon associated with CME propagation implying that all the CMEs have a similar magnetic flux-rope structure. The nature of oscillations can be explained in terms of magnetohydrodynamic (MHD) waves excited during the eruption process. More accurate detection of these modes could, in the future, enable us to characterize magnetic structures in space (space seismology).  相似文献   

15.
We report on observations of the solar luminosity variations in the Fexii line (195 Å) over the period 1996–1999, which corresponds to the minimum and rising phase of the current 23rd solar cycle. The relatively or rather high temporal cadence and spatial resolution of the Extreme-ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory (SOHO) allowed a nearly continuous measurement of intensity of different structures on the Sun. We find that a significant contribution to the longitudinal asymmetry, and thus to the 27-day variability of the solar EUV radiation, is produced by the numerous intermediate brightness elements that are globally distributed over large areas (up to about of the whole surface of the Sun). When activity is low, this component even becomes dominant over the contribution from localized active regions and bright points. This suggests that weak magnetic field areas outside active regions constitute an important factor through which solar activity modulates the solar EUV luminosity.  相似文献   

16.
We present an analysis of short time-scale intensity variations in the coronal green line as obtained with high time resolution observations. The observed data can be divided into two groups. The first one shows periodic intensity variations with a period of 5 min. the second one does not show any significant intensity variations. We studied the relation between regions of coronal intensity oscillations and the shape of white-light coronal structures. We found that the coronal green-line oscillations occur mainly in regions where open white-light coronal structures are located.  相似文献   

17.
The Sun Watcher using Active Pixel system detector and Image Processing (SWAP) onboard the PRoject for OnBoard Autonomy-2 (PROBA2) spacecraft provides images of the solar corona in EUV channel centered at 174 Å. These data, together with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 Å and AIA 171 Å channels. We observe that bright points are seen in EUV channels corresponding to a magnetic flux of the order of 1018 Mx. We find that there exists a good correlation between total emission from the bright point in several UV–EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings, and we have attempted to find the oscillation periods in bright points and their connection to magnetic-flux changes. The observed periods are generally long (10?–?25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection.  相似文献   

18.
The periodicity of climatic processes along the Russian Arctic Ocean coast has been studied by analyzing the tree-ring chronologies for the regions close to the northern timberline. The wavelet analysis of annual series of conifer tree rings for the period 1458–1975 has revealed climatic oscillations with periods of 20–25 years. The amplitudes and periods of climatic oscillations in the region of Russian Arctic Ocean proved to exhibit appreciable changes. Especially strong climatic variations in comparison with the recent ones were found to occur during the Maunder minimum epoch when the period of oscillations increased from 22–23 years to 24–29 years, and oscillations with periods of 15 years appeared. After the Maunder minimum, the periods of oscillations and their amplitudes again decreased, and the 15–16-year maximum disappeared. Analysis of solar activity based on of radiocarbon (14C) concentration in annual tree rings has revealed a similar pattern in changes of periodicity before, during, and after the Maunder minimum. This suggests that quasi-bidecadal climatic oscillations and variations in solar activity can be connected with each other. A possible solar forcing of periodic climatic processes and its nonlinear influence on the atmosphere-ocean-continental system are discussed. The intense quasi-bidecadal climatic oscillations can be, in all probability, interpreted as resulting from amplification of a weak solar signal in the atmosphere-ocean system that has its own noises whose frequencies are close to the 22–23-year solar cycles.  相似文献   

19.

Recent dedicated Hinode polar region campaigns revealed the presence of concentrated kilogauss patches of the magnetic field in the polar regions of the Sun, which are also shown to be correlated with facular bright points at the photospheric level. In this work, we demonstrate that this spatial intermittency of the magnetic field persists even up to the chromospheric heights. The small-scale bright elements visible in the bright network lanes of the solar network structure as seen in the Ca ii H images are termed network bright points. We use special Hinode campaigns devoted to the observation of polar regions of the Sun to study the polar network bright points during the phase of the last extended solar minimum. We use Ca ii H images of chromosphere observed by the Solar Optical Telescope. For magnetic field information, level-2 data of the spectro-polarimeter is used. We observe a considerable association between the polar network bright points and magnetic field concentrations. The intensity of such bright points is found to be correlated well with the photospheric magnetic field strength underneath with a linear relation existing between them.

  相似文献   

20.
Observations made by the differential method in the H line have revealed longperiod (on a timescale of 40 to 80 min) line-of-sight velocity oscillations which increase in amplitude with distance from the centre to the solar limb and, as we believe, give rise to prominence oscillations. As a test, we present some results of simultaneous observations at the photospheric level where such periods are absent.Oscillatory processes in the solar chromosphere have been studied by many authors. Previous efforts in this vein led to the detection of shortperiod oscillations in both the mass velocities and radiation intensity (Deubner, 1981). The oscillation periods obtained do not, normally, exceed 10–20 min (Dubov, 1978). More recently, Merkulenko and Mishina (1985), using filter observations in the H line, found intensity fluctuations with periods not exceeding 78 min. However, the observing technique they used does not exclude the possibility that those fluctuations were due to the influence of the Earth's atmosphere. It is also interesting to note that in spectra obtained by Merkulenko and Mishina (1985), the amplitude of the 3 min oscillations is anomalously small and the 5 min period is altogether absent, while the majority of other papers treating the brightness oscillations in the chromosphere, do not report such periods in the first place. So far, we are not aware of any other evidence concerning the longperiod velocity oscillations in the chromosphere on a timescale of 40–80 min.Longperiod oscillations in prominences (filaments) in the range from 40 to 80 min, as found by Bashkirtsev et al. (1983) and Bashkirtsev and Mashnich (1984, 1985), indicate that such oscillations can exist in both the chromosphere and the corona (Hollweg et al., 1982).In this note we report on experimental evidence for the existence of longperiod oscillations of mass velocity in the solar chromosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号