首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Based on the study of lithology, sedimentology and paleontology at the Permian-Triassic boundary in Liaotian, Northwestern Jiangxi Province, the sequence stratigraphy and depositional environments across the boundary are reconstructed. The top part of the Upper Permian Changxing Formation is composed of very thick-bedded ligh-colored dolomitic limestone formed in high deposition rate on carbonate ramp,which indacates a transgression systems tract (TST). The Lower Triassic Qinglong Formation shows continuous deposition with the underlying Upper Permian. The lower member of Qinglong Formation consists of calcareous shale, shelly limestome and dolomitic limestone with abundant bivalves (Claraia sp.) and trace fossills (Chondrites). The calcareous shale at the bottom of Lower Triassic indicates a calm deep water environment to form the condensed section (CS). The shelly limestome and dolomitic limeston with shell fossils, intraclast, algal ooide show clean but turbulent environment of carbonate ramp, which produce the deposition of highstand systems tract (TST).  相似文献   

2.
The calibration of sedimentary rock absolute dates is one of the difficulties in sedimentological and stratigraphic research. Since strontium(Sr) resides in seawater much longer(≈106 a) than the seawater intermixing time(≈103 a), the Sr isotopic composition of global seawater is uniform at any time and results in a stable system throughout geological history,based on which a global Sr isotope composition dating database has been established for age-calibration of marine strata.The Permian stratigraphic sections in the northern part of the Upper Yangtze block, southern China, record continuous marine sediments with clear stratigraphic boundaries and is suitable for stratigraphic dating of Sr isotopes. Based on sampling and Sr isotopic compositions of Permian carbonate strata in the northern part of the Upper Yangtze, a Permian Sr isotope evolution curve was established. According to the basic principles of Sr isotope stratigraphy, the global Strontium isotope age database can be used to calibrate the Permian stratigraphic dates in the northern Upper Yangtze. The results show that the Sr isotope evolution curves for the marine carbonate rocks in the Permian stratigraphic section of the Upper Yangtze present a decreasing trend from the mid-Qixia stage(P2) to the mid-Wujiaping stage(P3), and then rise from the middle Wujiaping stage to the end of Changxing stage(P3). When the Permian Sr-isotope evolution curve is compared with the global Sr isotope evolution curve in the northern Upper Yangtze, the two are consistent in their long-term evolutionary trend, indicating that Permian global geological events are important controlling factors for the composition and evolution of Sr isotopes. The 87 Sr/86 Sr value decreased gradually in the background of large-scale regressions at the turn of middle to late Permian period, revealing that the Emeishan basalt eruption occurred near the Maokou/Wujiaping boundary(GLB). Srisotope stratigraphy dating was performed on the boundaries of the Qixia Formation/Maokou Formation, Maokou Formation/Wujiaping Formation(GLB), Wujiaping Formation/Changxing Formation(WCB) and the Permian/Triassic(PTB) using the Global Strontium Isotope Age Database. The results are 270.4 Ma, 261.2 Ma, 254.5 Ma and 249.7 Ma,respectively. Based on this, the eruption age of the Emeishan basalts is defined at about 261.2 Ma., which is more coincident with that acquired from other previous dating methods on the eruption age of the Emeishan basalts, and therefore proves that the application of Sr isotopic stratigraphy to dating marine sedimentary units is an effective method.  相似文献   

3.
The isotopic composition and parameters for deuterium excess of brines, which were sampled in the Si-chuan Basin, show obvious regularities of distribution. The brine isotopic composition shows distinct two systems of marine and terrestrial deposits, with the Middle Triassic strata as the boundary. Brine hydrogen isotopic composition of marine deposits is lower while oxygen isotopic composition is higher than that of the SMOW, respectively, indicating that the brines were derived from seawater with different evaporating degrees at different times. From the Sinian strata, up to the Cambrian, Permian Maokou Formation and the Triassic Jialingjiang Formation, the δD values of brines tend to become relatively positive with the strata becoming younger. Brines of terrestrial deposits are considered to have been derived from precipitation and their isotopic composition is close to the globe meteoric water line (GMWL). Brines of transitional deposits between marine and terrestrial ones (the Upper Triassic Xujiahe Formation) have δD and δ18O values falling between the two end members of marine deposit brines and precipitation, indicating that the brines are a mixture of precipitation and vaporing seawater. Water samples from the brine-bearing strata of different ages show various deuterium excesses (d) with an evident decreasing trend as the age of strata gets older and older. Brine-bearing strata of the Triassic Leikoupo-Jialingjiang Formation, the Permian Maokou Formation, the Cambrian and Sinian strata are all carbonate rocks which have experienced intensive water/rock reaction and the deuterium excess essentially changes with time. All brine-bearing-strata surrounding the basin or faults, as well as those brine wells exploited for resources, have been obviously influenced by the precipitation supply. Therefore, the deuterium excesses of their brines have increased to different extents, depending on the amount of involvement of meteoric water. The variation and distribution of d values of the brines from different Triassic strata are related to the embedded depth of the strata. The deuterium excesses of brines become lower with increasing burial depth of the strata.  相似文献   

4.
The demarcation of the Lower–Middle Triassic boundary is a disputed problem in global stratigraphic research. Lower–Middle Triassic strata of different types, from platform to basin facies, are well developed in Southwest China. This is favorable for the study of the Olenekian–Anisian boundary and establishing a stratotype for the Qingyan Stage. Based on research at the Ganheqiao section in Wangmo county and the Qingyan section in Guiyang city, Guizhou province, six conodont zones have been recognized, which can be correlated with those in other regions, in ascending order as follows: 1, Neospathodus cristagalli Interval-Zone; 2, Neospathodus pakistanensis Interval-Zone; 3, Neospathodus waageni Interval-Zone; 4, Neospathodus homeri-N. triangularis Assemblage-Zone; 5, Chiosella timorensis Interval-Zone; and 6, Neogongdolella regalis Range-Zone. An evolutionary series of the Early–Middle Triassic conodont genera Neospathodus-Chiosella-Neogongdolella discovered in the Ganheqiao and Qingyan sections has an intermediate type named Neospathodus qingyanensis that appears between Neospathodus homeri and Chiosella timorensis in the upper part of the Neospathodus homeri-N. triangularis Zone, showing an excellent evolutionary relationship of conodonts near the Lower–Middle Triassic boundary. The Lower–Middle Triassic boundary is located at 1.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Qingyan section, whereas this boundary is located 0.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Ganheqiao section. There exists one nearly 6-m thick vitric tuff bed at the bottom of the Xinyuan Formation in the Ganheqiao section, which is usually regarded as a lithologic symbol of the Lower–Middle Triassic boundary in South China. Based on the analysis of high-precision and high-sensitivity Secondary Ion Mass Spectrum data, the zircon age of this tuff has a weighted mean 206Pb/238U age of 239.0±2.9Ma (2s), which is a directly measured zircon U-Pb age of the Lower–Middle Triassic boundary. The Ganheqiao section in Wangmo county can therefore provide an excellent section through the Lower–Middle Triassic because it is continuous, the evolution of the conodonts is distinctive and the regionally stable distributed vitric tuff near the Lower–Middle Triassic boundary can be regarded as a regional key isochronal layer. This section can be regarded not only as a standard section for the establishment of the Qingyan Stage in China, but also as a reference section for the GSSP of the Lower–Middle Triassic boundary.  相似文献   

5.
Following the greatest known end-Permian mass extinction plants have low diversity. Lycopsids and conifers dominated on land. A new gymnosperm Xinjiangoxylon gen. nov. is proposed based on a woody stem specimen collected from the Upper Permian (latest, Changhsingian) Upper Guodikeng Formation of the Taoshuyuan section, Turpan, Xinjiang Uygur Autonomous Region, Northwest China. The decorticated stem is characterized by a complex pith, endarch primary xylem and a thick secondary xylem cylinder. Numerous petrified woods were found in the Changhsingian at this section. However, there are rare wood fossils in the Early Triassic. The abrupt decrease of fossil woods worldwide relates to the crisis at the end of the Permian. Xinjiangoxylon turpanense gen et. sp. nov. appears to represents one gymnosperm that existed in the latest Permian.  相似文献   

6.
The Mobarak Formation is near the town of Kiyasar in the south-east of Sari city, northern Iran. This formation conformably overlies the Geirud Formation (Upper Devonian). The lower part of the Mobarak Formation consisting of shales and thin- to medium-bedded limestone toward the top of these sequences changes into alternations of dark limestone and interbedded gray to black shales. Weathered yellow thick-bedded shales are observed at the top of the section. This formation is covered unconformably by sandstones attributed to the Dorud Formation (Lower Permian). The thickness of the formation in this region is 250 m. Four rock units have been recognized in this section. Foraminiferal biostratigraphy shows that the age of the Mobarak Formation in the Kiaysar region ranges from Lower Tournaisian to Early Middle Visean. The foraminifer Zones FAZ1 and FAZ2 are correlated with the Lower Tournaisian and Upper Tournaisian, whereas Zones FAZ3 and FAZ4 correlate with the Visean. Affinities exist between specimens recorded in the Kiyasar section with species known from other regions in eastern and Central Alborz, but there are important differences in their appearance.  相似文献   

7.
The Hala’alat Mountains are located at the transition between the West Junggar and the Junggar Basin.In this area,rocks are Carboniferous,with younger strata above them that have been identified through well data and high-resolution 3D seismic profiles.Among these strata,seven unconformities are observed and distributed at the bases of:the Permian Jiamuhe Formation,the Permian Fengcheng Formation,the Triassic Baikouquan Formation,the Jurassic Badaowan Formation,the Jurassic Xishanyao Formation,the Cretaceous Tugulu Group and the Paleogene.On the basis of balanced sections,these unconformities are determined to have been formed by erosion of uplifts or rotated fault blocks primarily during the Mesozoic and Cenozoic.In conjunction with the currently understood tectonic background of the surrounding areas,the following conclusions are proposed:the unconformities at the bases of the Permian Jiamuhe and Fengcheng formations are most likely related to the subduction and closure of the Junggar Ocean during the late Carboniferous-early Permian;the unconformities at the bases of the Triassic Baikouquan and Jurassic Badaowan formations are closely related to the late Permian-Triassic Durbut sinistral slip fault;the unconformities at the bases of the middle Jurassic Xishanyao Formation and Cretaceous Tugulu Group may be related to reactivation of the Durbut dextral slip fault in the late Jurassic-early Cretaceous,and the unconformity that gives rise to the widely observed absence of the upper Cretaceous in the northern Junggar Basin may be closely related to large scale uplift.All of these geological phenomena indicate that the West Junggar was not calm in the Mesozoic and Cenozoic and that it experienced at least four periods of tectonic movement.  相似文献   

8.
This paper reports a Lower Triassic carbon isotope profile from the North Pingdingshan Section in Chaohu, Anhui Province, China, which was stituated in a deep part of the Lower Yangtze carbonate rapm. The δ(^13C) excursion shows two periods from the Permian-Triassic boundary to the lower Spathian substage, corresponding to the ecosystem undergoing evolution and recovery after the end-Permian mass extinction and related events.The first period starts at the δ(^13C) depletion caused by the mass extinction and evolves with a gradual δ(^13C) increase resulting from the development of some disaster taxa during the Induan. The strong Smithian δ(^13C) depletion in the second period might be formed by the collapse of the disaster ecosystem and the biotic recovery occurred with the explosive increase of bioproductivity in the Spathian. Thus the δ(^13C) excursion in the Lower Triassic expresses patterns of biotic evolution and recovery during the eratic ecosystem that followed the great end-Permian mass extinction.  相似文献   

9.
The Longtan Formation was originally thought to belong to the Late Permian, but this study reveals that the lower part of this formation belongs to the Middle Permian. The study proposes the corresponding chro-nostratigraphic boundary and new schemes for the correlation of geological sections. Based on these schemes a new understanding on the accumulation regularity of Permian coal measures in South China is reached.  相似文献   

10.
The Triassic?Jurassic (Tr?J) boundary marks a major extinction event, which (~200 Ma) resulted in global extinctions of fauna and flora both in the marine and terrestrial realms. There prevail great challenges in determining the exact location of the terrestrial Tr?J boundary, because of endemism of taxa and the scarcity of fossils in terrestrial settings leading to difficulties in linking marine and terrestrial sedimentary successions. Investigation based on palynology and bivalves has been carried out over a 1113 m thick section, which is subdivided into 132 beds, along the Haojiagou valley on the southern margin of the Junggar Basin of the northern Xinjiang, northwestern China. The terrestrial Lower Jurassic is conformably resting on the Upper Triassic strata. The Upper Triassic covers the Huangshanjie Formation overlaid by the Haojiagou Formation, while the Lower Jurassic comprises the Badaowan Formation followed by the Sangonghe Formation. Fifty six pollen and spore taxa and one algal taxon were identified from the sediments. Based on the key-species and abundance of spores and pollen, three zones were erected: the Late Triassic (Rhaetian) Aratrisporites?Alisporites Assemblage, the Early Jurassic (Hettangian) Perinopollenites?Pinuspollenites Assemblage, and the Sinemurian Perinopollenites?Cycadopites Assemblage. The Tr?J boundary is placed between bed 44 and 45 coincident with the boundary between the Haojiagou and Badaowan formations. Beds with Ferganoconcha (?), Unio?Ferganoconcha and Waagenoperna?Yananoconcha bivalve assemblages are recognized. The Ferganoconcha (?) bed is limited to the upper Haojiagou Formation, Unio?Ferganoconcha and Waagenoperna?Yananoconcha assemblages are present in the middle and upper members of the Badaowan Formation. The sedimentary succession is interpreted as terrestrial with two mainly lake deposit intervals within Haojiagou and Badaowan formations, yielding fresh water algae and bivalves. However, the presence of brackish water algae Tasmanites and the marine?littoral facies bivalve Waagenoperna from the Badaowan Formation indicate that the Junggar Basin was influenced by sea water caused by transgressions from the northern Tethys, during the Sinemurian.  相似文献   

11.
Stable carbon isotope composition (δ13C) of carbonate sediments and the molecular (biomarker) characteristics of a continuous Permian–Triassic (PT) layer in southern China were studied to obtain geochemical signals of global change at the Permian–Triassic boundary (PTB). Carbonate carbon isotope values shifted toward positive before the end of the Permian period and then shifted negative above the PTB into the Triassic period. Molecular carbon isotope values of biomarkers followed the same trend at and below the PTB and remained negative in the Triassic layer. These biomarkers were acyclic isoprenoids, ranging from C15 to C40, steranes (C27 dominates) and terpenoids that were all significantly more abundant in samples from the Permian layer than those from the Triassic layer. The Triassic layer was distinguished by the dominance of higher molecular weight (waxy) n-alkanes. Stable carbon isotope values of individual components, including n-alkanes and acyclic isoprenoids such as phytane, isop-C25, and squalane, are depleted in δ13C by up to 8–10‰ in the Triassic samples as compared to the Permian. Measured molecular and isotopic variations of organic matter in the PT layers support the generally accepted view of Permian oceanic stagnation followed by a massive upwelling of toxic deep waters at the PTB. A series of large-scale (global) outgassing events may be associated with the carbon isotope shift we measured. This is also consistent with the lithological evidence we observed of white thin-clay layers in this region. Our findings, in context with a generally accepted stagnant Permian ocean, followed by massive upwelling of toxic deep waters might be the major causes of the largest global mass extinction event that occurred at the Permian–Triassic boundary.  相似文献   

12.
Marine and non-marine facies of the Permian–Triassic boundary stratigraphic set (PTBST) are well developed in South China. Palynological assemblages enable subdivision and correlation of the Permian–Triassic boundary (PTB) rocks. Three palynological assemblages are recognized across the PTBST in two terrestrial PTB sections in western Guizhou and eastern Yunnan, South China. Assemblage 1 (Xuanwei Formation) is a Late Permian palynological assemblage dominated by ferns and pteridosperms, with minor gymnosperms. Most taxa are typical long-ranging Paleozoic forms, but the appearance of Lueckisporites confirms a Late Permian age for this assemblage. Assemblage 2 (PTBST) is marked by an abrupt decrease in palynomorph abundance and diversity, and thriving fungal/algal(?) spores. Assemblage 2 is still dominated by ferns and pteridosperms, with a few gymnosperms, but is characterized by a mixed palynoflora containing both Late Permian and Early Triassic elements. Most taxa are typical Late Permian ones also found in Assemblage 1, however, some taxa of Early Triassic aspect, e.g. Lundbladispora and Taeniaesporites, appeared for the first time. In Assemblage 3 (top Xuanwei Formation and Kayitou Formation), the proportion of gymnosperm pollen increases rapidly, exceeding that of ferns and pteridosperms, but the abundance of palynomorphs is still low. Typical Early Triassic taxa (such as Lundbladispora, Aratrisporites and Taeniaesporites) are present in greater abundance and confirms an Early Triassic age for this assemblage.  相似文献   

13.
New conodont samples have been systematically collected at high stratigraphic resolution from the upper part of the Longtan Formation through to the lower part of the Yelang Formation at the Zhongzhai section, southwestern Guizhou Province, South China, in an effort to verify the first local occurrence of Hindeodus parvus in relation to the Permian–Triassic boundary at this section. The resampled conodont fauna from the Permian–Triassic boundary interval comprises five identified species and two undetermined species in Hindeodus and Clarkina. Most importantly, the first local occurrence of Hindeodus parvus is found for the first time from the bottom of Bed 28a, 18 cm lower than the previously reported first local occurrence of this species at this section. Considering the previously accepted PTB at the Zhongzhai section, well calibrated by conodont biostratigraphy, geochronology and carbon isotope chemostratigraphy, this lower (earlier) occurrence of H. parvus suggests that this critical species could occur below the Permian–Triassic boundary. As such, this paper provides evidence that (1) the first local occurrences of H. parvus are diachronous in different sections with respect to the PTB defined by the First Appearance Datum (FAD) of this species at its GSSP section in Meishan, China and that (2) the lower stratigraphic range of H. parvus should now be extended to latest Permian.  相似文献   

14.
Measured lithostratigraphic sections of the classic Permian–Triassic non-marine transitional sequences covering the upper Quanzijie, Wutonggou, Guodikeng and lower Jiucaiyuan Formations at Dalongkou and Lucaogou, Xinjiang Province, China are presented. These measured sections form the framework and reference sections for a range of multi-disciplinary studies of the P–T transition in this large ancient lake basin, including palynostratigraphy, vertebrate biostratigraphy, chemostratigraphy and magnetostratigraphy. The 121 m thick Wutonggou Formation at Dalongkou includes 12 sandstone units ranging in thickness from 0.5 to 10.5 m that represent cyclical coarse terrigenous input to the lake basin during the Late Permian. The rhythmically-bedded, mudstone-dominated Guodikeng Formation is 197 m and 209 m thick on the north and south limbs of the Dalongkou anticline, respectively, and 129 m thick at Lucaogou. Based on limited palynological data, the Permian–Triassic boundary was previously placed approximately 50 m below the top of this formation at Dalongkou. This boundary does not coincide with any mappable lithologic unit, such as the basal sandstones of the overlying Jiucaiyuan Formation, assigned to the Early Triassic. The presence of multiple organic δ13C-isotope excursions, mutant pollen, and multiple algal and conchostracan blooms in this formation, together with Late Permian palynomorphs, suggests that the Guodikeng Formation records multiple climatic perturbation signals representing environmental stress during the late Permian mass extinction interval. The overlap between the vertebrates Dicynodon and Lystrosaurus in the upper part of this formation, and the occurrence of late Permian spores and the latest Permian to earliest Triassic megaspore Otynisporites eotriassicus is consistent with a latest Permian age for at least part of the Guodikeng Formation. Palynostratigrahic placement of the Permian–Triassic boundary in the Junggar Basin remains problematic because key miospore taxa, such as Aratrisporites spp. are not present. Palynomorphs from the Guodikeng are assigned to two assemblages; the youngest, from the upper 100 m of the formation (and the overlying Jiucaiyuan Formation), contains both typical Permian elements and distinctive taxa that elsewhere are known from the Early Triassic of Canada, Greenland, Norway, and Russia. The latter include spores assigned to Pechorosporites disertus, Lundbladispora foveota, Naumovaspora striata, Decussatisporites mulstrigatus and Leptolepidites jonkerii. While the presence of Devonian and Carboniferous spores and Early Permian pollen demonstrate reworking is occurring in the Guodikeng assemblages, the sometimes common occurrence of Scutasporites sp. cf. Scutasporites unicus, and other pollen, suggests that the Late Permian elements are in place, and that the upper assemblage derives from a genuine transitional flora of Early Triassic aspect. In the Junggar Basin, biostratigraphic data and magnetostratigraphic data indicate that the Permian–Triassic boundary (GSSP Level) is in the middle to upper Guodikeng Formation and perhaps as high as the formational contact with the overlying Jiucaiyuan Formation.  相似文献   

15.
Measured lithostratigraphic sections of the classic Permian–Triassic non-marine transitional sequences covering the upper Quanzijie, Wutonggou, Guodikeng and lower Jiucaiyuan Formations at Dalongkou and Lucaogou, Xinjiang Province, China are presented. These measured sections form the framework and reference sections for a range of multi-disciplinary studies of the P–T transition in this large ancient lake basin, including palynostratigraphy, vertebrate biostratigraphy, chemostratigraphy and magnetostratigraphy. The 121 m thick Wutonggou Formation at Dalongkou includes 12 sandstone units ranging in thickness from 0.5 to 10.5 m that represent cyclical coarse terrigenous input to the lake basin during the Late Permian. The rhythmically-bedded, mudstone-dominated Guodikeng Formation is 197 m and 209 m thick on the north and south limbs of the Dalongkou anticline, respectively, and 129 m thick at Lucaogou. Based on limited palynological data, the Permian–Triassic boundary was previously placed approximately 50 m below the top of this formation at Dalongkou. This boundary does not coincide with any mappable lithologic unit, such as the basal sandstones of the overlying Jiucaiyuan Formation, assigned to the Early Triassic. The presence of multiple organic δ13C-isotope excursions, mutant pollen, and multiple algal and conchostracan blooms in this formation, together with Late Permian palynomorphs, suggests that the Guodikeng Formation records multiple climatic perturbation signals representing environmental stress during the late Permian mass extinction interval. The overlap between the vertebrates Dicynodon and Lystrosaurus in the upper part of this formation, and the occurrence of late Permian spores and the latest Permian to earliest Triassic megaspore Otynisporites eotriassicus is consistent with a latest Permian age for at least part of the Guodikeng Formation. Palynostratigrahic placement of the Permian–Triassic boundary in the Junggar Basin remains problematic because key miospore taxa, such as Aratrisporites spp. are not present. Palynomorphs from the Guodikeng are assigned to two assemblages; the youngest, from the upper 100 m of the formation (and the overlying Jiucaiyuan Formation), contains both typical Permian elements and distinctive taxa that elsewhere are known from the Early Triassic of Canada, Greenland, Norway, and Russia. The latter include spores assigned to Pechorosporites disertus, Lundbladispora foveota, Naumovaspora striata, Decussatisporites mulstrigatus and Leptolepidites jonkerii. While the presence of Devonian and Carboniferous spores and Early Permian pollen demonstrate reworking is occurring in the Guodikeng assemblages, the sometimes common occurrence of Scutasporites sp. cf. Scutasporites unicus, and other pollen, suggests that the Late Permian elements are in place, and that the upper assemblage derives from a genuine transitional flora of Early Triassic aspect. In the Junggar Basin, biostratigraphic data and magnetostratigraphic data indicate that the Permian–Triassic boundary (GSSP Level) is in the middle to upper Guodikeng Formation and perhaps as high as the formational contact with the overlying Jiucaiyuan Formation.  相似文献   

16.
The Permian–Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea‐level rose across the Permian–Triassic boundary, but an irregular top‐Permian erosion surface across a 10 km north–south transect of the Great Bank of Guizhou contains evidence of sea‐level fluctuation. The surface represents the ‘event horizon’ of mass extinction, below the biostratigraphic Permian–Triassic boundary defined by first appearance datum of conodont Hindeodus parvus. An Upper Permian foraminiferal grainstone beneath this surface contains geopetal sediments, etched grains, and pendent and meniscus cements interpreted here as vadose. However, these latter diagenetic processes occurred before the event horizon and were followed by erosion of the final Permian surface. This erosion cuts previous fabrics but lacks evidence of weathering or bioerosion. A few centimetres below is an earlier grainstone that was also eroded but lacks proof of sub‐aerial processes. Samples therefore reveal one, or possibly two, small‐scale relative sea‐level changes before the Triassic transgression in this area, and these may relate to local tectonics. The final Permian surface is subject to at least four interpretations: (i) sub‐aerial physical erosion and dissolution by carbon dioxide‐enriched fresh water or carbon dioxide‐enriched mixed water, prior to Triassic transgression; (ii) sub‐aerial physical erosion overprinted by dissolution related to carbon dioxide‐enriched sea water in the Early Triassic transgression; (iii) submarine dissolution affected by acidified sea water due to rapid increase in volcanically‐derived carbon dioxide and oxidized methane released from marine clathrates; (iv) submarine dissolution due to acid anoxic waters rising across the continental shelf, unrelated to atmospheric carbon dioxide or oxidized methane. Field and petrographic evidence suggests that (i) is the simplest option; and it is possible that (ii) and (iii) occurred, but none are proved. Option (iv) is unlikely given the evidence and modelling of supersaturation of upwelled waters with respect to bicarbonate.  相似文献   

17.
High-resolution δ13CCARB analysis of the Permian–Triassic boundary (PTB) interval at the Laolongdong section, Beibei, near the city of Chongqing, south China, encompasses the latest Permian and earliest Triassic major facies changes in the South China Block (SCB). Microbialites form a distinctive unit in the lowermost 190 cm above the top of the Changhsing Formation (latest Permian) at Laolongdong, comparable to a range of earliest Triassic sites in low latitudes in the Tethyan area. The data show that declining values of δ13CCARB, well-known globally, began at the base of the microbialite. High positive values (+3 to 4 ppt) of δ13CCARB in the Late Permian are interpreted to indicate storage of 12C in the deep waters of a stratified ocean, that was released during ocean overturn in the earliest Triassic, contributing to the distinctive fall in isotope values; this interpretation has been stated by other authors and is followed here. The δ13CCARB curve shows fluctuations within the microbialite unit, which are not reflected in the microbialite structure. Comparisons between microbialite branches and adjacent micritic sediment show little difference in δ13CCARB, demonstrating that the microbialite grew in equilibrium with surrounding seawater. The Early Triassic microbialites are interpreted to be a response to upwelling of bicarbonate-rich poorly oxygenated water in low latitudes of Tethys Ocean, consistent with current ocean models for the PTB interval. However, the decline of δ13CCARB may be due to a combination of processes, including productivity collapse resulting from mass extinction, return of deep water to ocean surface, oxidation of methane released from methane hydrate destabilisation, and atmospheric deterioration. Nevertheless, build-up of bicarbonate-rich anoxic deep waters may be expected as a result of the partial isolation of Tethys, due to continental geography; release of bicarbonate-rich deep water, by ocean upwelling, in the earliest Triassic may have been an inevitable consequence of this combination of circumstances.  相似文献   

18.
吐哈盆地北缘二叠系与三叠系界线   总被引:5,自引:1,他引:4  
刘兆生 《地层学杂志》2000,24(4):310-314
对吐哈盆地北缘锅底坑组中部和上部孢粉组合研究后发现 ,中部组合见有晚二叠世的重要分子 L uecki-sporites及二叠纪的重要分子 H amiapollenites,以具肋双囊粉含量明显较高为特征 ;上部组合出现了具有一定含量的早三叠世的典型分子 L undbladispora,三叠纪的常见分子 Chasmatosporites,以及以 Taeniaesporites的含量较高为特征。两个组合既具有明显的不同 ,但共有分子又在 2 0种以上 ,占各自组合孢粉种总数的一半以上 ,这说明二者又具有连续过渡的性质。因此 ,桃东沟剖面二叠系 -三叠系生物地层界线应划在锅底坑组上部 ,位于锅底坑组与韭菜园组岩石地层界线以下约 40 .49m处 (即第 12层与第 11层之间 )  相似文献   

19.
Palaeosols across the Permian‐Triassic boundary in Antarctica provide evidence of a marked change in ecosystems at this greatest of all extinctions in the history of life on Earth. The boundary can now be recognised from evidence of carbon isotopic (δ13C) stratigraphy, reptiles of the earliest Triassic Lystrosaurus zone, and Late Permian glossopterid fructifications and pollen. The boundary is a profound change in palaeosols, with very different suites of pedotypes in Permian compared with Triassic sequences. Permian palaeosols include coals, rooted lithic sandstones and rooted tuffaceous silt‐stones. Triassic palaeosols in contrast are largely rooted, green‐red‐mottled claystones. These palaeosols represent a shift from Late Permian cold temperate broadleaf deciduous swamp woodlands to Early Triassic cool temperate conifer forests. Indications of more intense weathering during the earliest Triassic confirm a significantly warmer palaeoclimate in the earliest Triassic than in the latest Permian. Palaeoclimate remained humid with low evapotranspiration in both Permian and Triassic, but Triassic ecosystems were more oligotrophic, humus‐poor and more oxidised than Permian ones. Yet both Permian and Triassic palaeosols were unpodzolised, unlike soils today under such climates and vegetation. Palaeosols in Antarctica confirm several peculiarities of the earliest Triassic: (i) a global coal gap; (ii) a high‐latitude greenhouse; and (iii) a Gondwanan tuff gap. Palaeosols support evidence from fossil plants and reptiles and from carbon isotopic studies for a shift toward oligotrophic, low‐productivity ecosystems, dominated by opportunistic and stress‐tolerant organisms in the earliest Triassic. Life was difficult on land as well as in the sea following the terminal Permian mass extinction.  相似文献   

20.
Several studies of the marine sedimentary record have documented the evolution of global climate during the Permo-Triassic mass extinction. By contrast, the continental records have been less exploited due to the scarcity of continuous sections from the latest Permian into the Early Triassic. The South African Karoo Basin exposes one of the most continuous geological successions of this time interval, thus offering the possibility to reconstruct climate variations in southern Laurasia from the Middle Permian to Middle Triassic interval. Both air temperature and humidity variations were estimated using stable oxygen (δ18Op) and carbon (δ13Cc) isotope compositions of vertebrate apatite. Significant fluctuations in both δ18Op and δ13Cc values mimic those of marine records and suggest that stable isotope compositions recorded in vertebrate apatite reflect global climate evolution. In terms of air temperature, oxygen isotopes show an abrupt increase of about + 8 °C toward the end of the Wuchiapingian. This occurred during a slight cooling trend from the Capitanian to the Permo-Triassic boundary (PTB). At the end of the Permian, an intense and fast warming of + 16 °C occurred and kept increasing during the Olenekian. These thermal fluctuations may be related to the Emeishan (South China) and Siberian volcanic paroxysms that took place at the end of the Capitanian and at the end of the Permian, respectively. Vertebrate apatite δ13Cc partly reflects the important fluctuations of the atmospheric δ13C values, the differences with marine curves being likely due to the evolution of local humidity. Both the oxygen and carbon isotope compositions indicate that the PTB was followed by a warm and arid phase that lasted 6 Ma before temperatures decreased, during the Late Anisian, toward that of the end-Permian. Environmental fluctuations occurring around the PTB that affected both continental and marine realms with similar magnitude likely originated from volcanism and methane release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号