首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the possibility of detecting the circumstellar Na I D1,2 and Ca II H, K absorption lines in the spectra of type IIP supernovae at the photospheric phase. Our modeling shows that the Na I doublet lines will not be seen in the spectra of type IIP supernovae at moderate stellar wind densities, for example, characteristic of SN 1999em, while the rather intense Ca II lines with P Cyg profiles should be detectable. The same model is used to describe the circumstellar Na I and Ca II lines in the spectrum of SN 1998S, a type IIL supernova with a dense wind. We show that the circumstellar line intensities in this supernova are reproduced only if there is an ultraviolet excess that is mainly attributable to the Comptonization of supernova radiation in the shock wave.  相似文献   

2.
The determination of the origin of cosmic rays with observed energies in excess of 1017 eV that exceed the expected energies of cosmic rays accelerated by supernova remnants in the galaxy is a pressing problem in modern astrophysics. Hypernova remnants are one of the possible galactic sources of cosmic rays with energies of up to 1019 eV. Hypernovae constitute a class of extremely powerful supernova explosions, whose supposed progenitors are massive Wolf-Rayet stars. We analyze the special aspects of acceleration of cosmic rays in hypernova remnants that expand in wind bubbles of Wolf-Rayet progenitor stars. We show that these cosmic rays may attain maximum energies of 1018 eV even with a relatively conservative choice of acceleration parameters and account for tens of percent of the total cosmic ray flux observed in the vicinity of the earth in the energy range of 1016–1018 eV if the galactic hypernova explosion rate in the modern epoch reaches ? S ~ 10?4 year?1.  相似文献   

3.
Photometric and spectroscopic observations of the nearby type-IIP supernova 2004dj are presented. The 56Ni mass in the envelope of SN 2004dj was estimated from the light curve to be ≈0.02M. This estimate is confirmed by modeling the Hα luminosity. The Hα emission line exhibits a strong asymmetry characterized by the presence of a blue component in the line with a shift of ?1600 km s?1 at the early nebular phase. A similar asymmetry was found in the Hβ, [O I], and [Ca II] lines. The line asymmetry is interpreted as being the result of asymmetric 56Ni ejecta. The Hα profile and its evolution are reproduced in the model of an asymmetric bipolar 56Ni structure for a spherical hydrogen distribution. The mass of the front 56Ni jet is comparable to that of the central component and twice that of the rear 56Ni jet. We point out that the asymmetric bipolar structure of 56Ni ejecta is also present in SN 1999em, a normal type-IIP supernova.  相似文献   

4.
5.
We have detected new components in stationary emission lines of SS 433; these are the superbroad components that are low-contrast substrates with a width of 2000–2500 km s?1 in He I λ4922 and Hβ and 4000–5000 kms?1 in He II λ4686. Based on 44 spectra taken during four years of observations from 2003 to 2007, we have found that these components in the He II and He I lines are eclipsed by the donor star; their behavior with precessional and orbital phases is regular and similar to the behavior of the optical brightness of SS 433. The same component in Hβ shows neither eclipses nor precessional variability. We conclude that the superbroad components in the helium and hydrogen lines are different in origin. Electron scattering is shown to reproduce well the superbroad component of Hβ at a gas temperature of 20–35 kK and an optical depth for Thomson scattering τ ≈ 0.25?0.35. The superbroad components of the helium lines are probably formed in the wind from the supercritical accretion disk. We have computed a wind model based on the concept of Shakura-Sunyaev supercritical disk accretion. The main patterns of the He II line profiles are well reproduced in this model: not only the appearance of the superbroad component but also the evolution of the central two-component part of the profile of this line during its eclipse by the donor star can be explained.  相似文献   

6.
We present spectroscopy and multicolor photometry for the optical transient PSN J09093496+3307204 in the galaxy NGC2770, which has afterwards been transferred into the supernova phase and got the name SN2015bh. Medium-resolution spectral observations were carried out between February 2015 to May 2016 using the focal reducer SCORPIO at the 6-m Russian telescope BTA. They were followed by by photometric observations at the BTA and six other telescopes with 0.5–1m apertures. Both at the phase of the SN impostor (2015a) and at the supernova phase (2015b), besides Balmer emissions, the strong Fe II emissions are seen in the spectrum; so, these spectra resemble those of Williams Fe II type classical novae. Taking into account circumstellar, interstellar and galactic absorption, AV = 1.m 14 ±0.m 15), we determined maximum absolute magnitudes of the object to be MV =–15.m 0 ±0.m 3 at the 2015a phase and of MV =–18.m 14 ±0.m 30 at the 2015b phase. The light curve at the 2015b phase is similar to those of SN IIL. The supernova progenitor is a luminous blue variable (LBV) star with the powerful Hα emission. We consider several hypotheses of supernovae explosions following optical transients related with LBV. The hypothesis of core collapse of an evolved massive star interrupting the process of its merging with massive companion in a binary system (a failed luminous red nova) was chosen as the preferable one for this event.  相似文献   

7.
The neutral hydrogen emission at 21 cm has been investigated with the RATAN-600 radio telescope in the vicinity of the supernova remnant HB9. A clumpyHI shell with radial motions surrounding the remnant has been detected. Its measured parameters contradict the connection with a shock wave from a supernova explosion. The shell formation under the action of a wind from a star that exploded as a supernova at the end of its evolution seems more realistic. The characteristics of the star obtained from the observed shell parameters are the following: a wind power of 0.5 × 1038 erg s?1, a mass-loss rate of 3.7 × 10?5 M yr?1, and an age of 3 × 106 yr. Given the measurement errors, the mass of the star is estimated to be >8M .  相似文献   

8.
The evolution of the spectrum of SN1987a is traced from 1987 February 26 to March 31. Based on the low-resolution spectroscopic data we identify the lines of H, He I, Na I, Fe II, Sc II, Ca II which are known to be present in Type II Supernovae, and also present evidence for the existence of lines of Mg I, CaI, O I, and N I. We discuss the evolution of the Hα profile, and draw attention to its complex structure around March 30. Close to the rest wavelength of Ha a double-peaked structure appeared in the profile with a peak-to-peak separation of ∼ 1400 km s−1, suggestive of an expanding shell or disc of gas. Using the available broadband photometric information, we also trace the evolution of the photosphere of SN1987a assuming that it radiates like a supergiant.  相似文献   

9.
We present an analysis of archival X-ray observations of the Type IIL supernova SN 1979C. We find that its X-ray luminosity is remarkably constant at (6.5 ± 0.1) × 1038 erg s?1 over a period of 12 years between 1995 and 2007. The high and steady luminosity is considered as possible evidence for a stellar-mass (~5–10 M) black hole accreting material from either a supernova fallback disk or from a binary companion, or possibly from emission from a central pulsar wind nebula. We find that the bright and steady X-ray light curve is not consistent with either a model for a supernova powered by magnetic braking of a rapidly rotating magnetar, or a model where the blast wave is expanding into a dense circumstellar wind.  相似文献   

10.
We study disparity between Hα and Hβ in early spectra of the type IIP supernova SN 2008in. The point is that these lines cannot be described simultaneously in a spherically-symmetric model with the smooth density distribution. It is shown that an assumption of a clumpy structure of external layers of the envelope resolves the problem. We obtain estimates of the velocity at the inner border of the inhomogeneous zone (≈6100 km s?1), the filing factor of inhomogeneities (≤0.5), and the mass of the inhomogeneous layers (~0.03 M ). The amplitude of flux fluctuations in the early spectrum of HαF/F ~ 10?2) imposes a constraint on the size of inhomogeneities (≤200 km s?1). A detection of fluctuations in the early Hα of type IIP supernovae might become an observational test of the inhomogeneous structure of their envelopes. We propose also the indirect test of the clumpy structure of external layers: the study of properties of the initial radiation outburst due to the shock breakout. The inhomogeneous structure of external layers of type IIP supernovae could be an outcome of density perturbations and density inversion in outer convective layers of presupernova red supergiant.  相似文献   

11.
The ultraviolet spectra of the star RU Lup obtained with the Hubble Space Telescope are analyzed. Emission lines are identified. The presence of absorption components with a nearly zero residual intensity in the Mg II resonance doublet lines is indicative of mass outflow with a velocity V ?300 km s?1. These lines also exhibit a broad (?1400 km s?1 at the base) component originating in the star itself. The profiles of the (optically thin) Si II] and Si III]1892 Å lines for the first time unequivocally prove that these lines originate in an accretion shock wave rather than in the chromosphere, with the gas infall velocity being V 0?400 km s?1. The intensity ratio of the C IV 1550 Å and Si IV 1400 Å resonance doublet components was found to be close to unity, suggesting a high accreted-gas density, logN 0>12.5. Molecular H2 Lyman lines formed in the stellar wind were detected. The H I Lα luminosity of RU Lup was found from their intensities to exceed 10% of L bol. Radiation pressure in the Lα line on atomic hydrogen may play a significant role in the initial acceleration of stellar-wind matter, but the effect of Lα emission on the dynamics of molecular gas is negligible.  相似文献   

12.
The axial rotation of a star plays an important role in its evolution, the physical conditions in its atmosphere and the appearance of its spectrum.We analyzed the CCD spectra of two stars for which their projected rotational velocity differs remarkably when derived from Ca II λ3933 Å and Mg II λ4481 Å lines. We estimated the projected rotational velocity of HD182255 to be 15.5 kms?1, although in various spectra of this star the line widths correspond to values as high as 28.5 km s?1. We found the HeI λ4471.498 Å line to be shifted to longer wavelengths by 0.046 Å, thus indicating a presence of the 3He I isotope in the atmosphere of this star with the 3He : 4He ratio from 0.2 to 0.6.We also found an absorption feature at the position of the forbidden line He I λ4470.02Å. We found the lines ofMg II and CII originating from higher excited levels to be missing in the spectra of HD 182255. For HD 214923 we determined the projected rotational velocity v sin i = 165km s?1 from the profiles of the metallic lines and Ca II λ3933Å, whereas for helium lines v sin i ≈ 130km s?1 is more appropriate. Radial velocity analysis results in three long periods of ≈ 105, 34, and 15 days, and a short period of ≈ 22 hours, close to the pulsational one mentioned earlier in the literature.  相似文献   

13.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

14.
15.
Using the high-resolution spectra obtained at the 6-meter telescope of the SAO RAS over 2002–2013, we studied the spectral features of the lines of interstellar medium. The radial velocities of the Na I 5890 Å, Na I 5896 Å, Ca II 3934 Å and Ca II 3968 Å absorption lines were analyzed. Seven diffuse interstellar bands 4964, 5780, 5797, 6196, 6203, 6379 Å were identified in the optical spectrum of IRAS01005+7910. Radial velocities Vr and equivalent widths Wλ of these DIBs were measured, for which the values of the interstellar reddening EB?V and column density of neutral hydrogen log [N(H)] were calculated.  相似文献   

16.
Using LTE calculations of the structure of T Tauri stellar atmospheres heated by radiation from an accretion shock (Dodin and Lamzin 2012), we have calculated the spectrum of the hot spot emerging on the stellar surface by taking into account non-LTE effects for He I, He II, Ca I, and Ca II. Assuming the pre-shock gas density N 0 and velocity V 0 to be the same at all points of the accretion stream cross section, we have calculated the spectrum of the star+circular spot system at various N 0, V 0, and parameters characterizing the star and the spot. Using nine stars as an example, we show that the theoretical optical spectra reproduce well the observed veiling of photospheric absorption lines as well as the profiles and intensities of the so-called narrow components of He II and Ca I emission lines with an appropriate choice of parameters. The accreted gas density in all of the investigated stars except DK Tau has been found to be N 0 > 1012 cm?3. We have managed to choose the parameters for eight stars at a calcium abundance in the accreted gas ξ Ca equal to the solar one, but we have been able to achieve agreement between the calculations and observations for TW Hya only by assuming ξ Ca to be approximately a factor of 3 lower than the solar one. The estimated parameters do not depend on interstellar extinction, because they have been determined from the spectra normalized to the continuum level. The calculated intensity of Ca II lines has turned out to be lower than the observed one, but this contradiction can be eliminated by assuming that, in addition to the accreted gas with a high density N 0, a more rarefied gas also falls onto the star. The theoretical equivalent widths and relative intensities of the subordinate He I lines disagree significantly with the observations. This is apparently because non-LTE effects should be taken into account when calculating the structure of the upper layers of the hot spot, the accuracy of the cross sections for collisional processes from upper levels is insufficient, and the spot inhomogeneity should probably be taken into account.  相似文献   

17.
Two models of the origin of the spectrum of type I supernovae are analysed: (I) the photosphere of the ‘central remnant’ and the expanding shell are separated by a density cavity; (II) the ‘photosphere’ (the layer which produces the continuous spectrum) is the inner part of the expanding shell. The arguments are given in favour of model I. Opacity of the shell close to light maximum for λ>4000 Å is mostly due to Thomson scattering; soon after light maximum (and it may be already at light maximum) the shell becomes completely transparent in this region of the spectrum. The problem of the origin of the very large width and of the relatively high central residual intensities of the absorption lines in the spectra of type I supernovae are analysed. A very noticeable dispersion in the velocities of the radial gas motions in the shell is the principal cause of the large equivalent width of the absorption lines in the spectra of these supernovae. The role played by the inhomogeneities in the shell is also discussed. The depth of the strong absorption lines produced by a very inhomogeneous shell may be equal to the filling factor of the medium. From the analysis of the spectra of supernova 1972e a lower limit for the mass of the shell is obtained (M>1031 g). Then from the fact of absence of a detectable H-absorption line and a simultaneous presence of strong Siii absorption lines (6347, 6371 Å) in the spectrum of supernova 1972e it follows that the ratio Si/H is at least two or three orders greater than that for the ‘normal’ stars.  相似文献   

18.
From June 19 to August 27, using the 2.16m telescope in the Beijing Astronomical Observatory, we obtained some low resolution spectra of SN1993J. The forbidden emission lines [O I], [Ca II] were very strong and dominated the spectra. However, the H and He lines were very weak. Many fine structures appeared in the H and [O I] lines. We found that the supernova had entered the nebular phase and strong instability and chemical mixing had occurred in the ejecta.  相似文献   

19.
We report the Balmer broad absorption lines (BALs) in the quasar SDSS J2220 + 0109 discovered from the SDSS data, and present a detailed analysis of the peculiar absorption line spectrum, including the He I* multiplet at λλ3189, 3889 arising from the metastable 23s-state helium and the Balmer Hα and Hβ lines from the excited hydrogen H I of n = 2 level, which are rarely seen in quasar spectra, as well as many absorption lines arising from the excited Fe II* of the levels 7 955 cm−1, 13 474 cm−1 and 13 673 cm−1 in the wavelength range 3100∼3300 Å. Ca II H, K absorption line doublets also clearly appear in the SDSS spectrum. All absorption lines show a similar blueshifted velocity structure of Δv ≈ − 1500 ∼ 0 km·s−1 relative to the quasar's systematic redshift determined from the emission lines. Detailed analysis suggests that the Balmer absorption lines should arise from the partially ionized region with a column density of NHI ≈ 1021 cm−2 for an electron density of ne ∼ 106 cm−3; and that the hydrogen n = 2 level may be populated via collisional excitation with Lyα pumping.  相似文献   

20.
Based on 21 spectra with resolutions from 12 000 to 42 000 taken in 1997–2016 for the yellow supergiant α Aqr (which is believed to be nonvariable in the Cepheid instability strip), we have determined its effective temperature Teff and radial velocities from metal and hydrogen absorption lines. Blue and red components that account for 20–25% of the total number of lines used have been detected in the profiles of these lines. The effective temperature and radial velocities estimated from metal lines and their components do not show any noticeable variations, while the radial velocities determined from hydrogen lines show variations that are largest for the Hα line, with an amplitude of more than 10 km s?1. These variations resemble periodic (~100 days) and sporadic ones. The presence of variable red components in the hydrogen line cores confirms that there is a circumstellar envelope around the supergiant. The radial velocities of these components exhibit a behavior similar to that of the hydrogen lines but with larger amplitudes (it is twice that for the R component of the Hα line). Such an unusual variability as well as the presence of blue components in metal lines and the star’s position at the red edge of the Cepheid instability strip can be explained by a possible residual pulsational activity in the upper atmospheric layers of the star, which “swings” the envelope with a larger amplitude when passing into a less dense medium. The multicomponent structure of the Na I D doublet lines and their variations over long time intervals may be indicative of a chromospheric activity and a change in the stellar wind intensity. These processes can affect the sporadic variations of the radial velocities in the upper atmospheric layers of the star and its envelope. We raise the question about a revision of the classification of α Aqr as a yellow nonvariable supergiant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号