首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Excessive scum production is a widespread phenomenon in present activated sludge wastewater treatment. The question how foaming is initiated and stabilized is still unanswered. Hydrophobic wastewater ingredients and surface active material such as synthetic surfactants are discussed among others as major causative agents for scum production. Focusing on biological impacts non‐filamentous bacteria isolated from scum turned out to contribute to flotation by both cell surface hydrophobicity and emulsification activity, depending on the prevailing substrate and milieu conditions. The biological characterization of scum based on microscopic sludge investigation of conspicuous microorganisms resulted in a significant shift of filamentous and non‐filamentous organism populations with Gram‐positive bacteria prevailing in present nutrient removal plants as compared to the situation ten years ago. Their hydrophobic cell surface is supposed to support adherence and stabilization of interfaces and thus promote sludge flotation. In scum six types of filamentous bacteria turned out to be numerous: Microthrix parvicella and nocardioform actinomycetes, both of them being enriched in the scum fraction, moreover Nostocoida limicola and Eikelboom types 0041/0675, 1851, and 0092. Possible interactive mechanisms between non‐filamentous and filamentous scum bacteria and their selection factors are discussed in order to contribute to a better understanding of scum formation and to provide efficient troubleshooting measures.  相似文献   

2.
Scum formation is a widespread problem in activated sludge nutrient removal plants. It often comes along with an excessive development of the filamentous bacterium “Microthrix parvicella” stabilizing the flotation process. As “M. parvicella” was found to depend on long‐chain fatty acids (LCFA) as sole carbon source not only in vitro but also in situ, some options of in‐situ substrate supply are discussed. Wastewater concentrations of fatty acids in the range of 2 to 15 mg L‐1 and homologue concentrations from synthetic surfactant degradation below 10 mg L‐1 rule out these substrates as source for excessive biomass production. They might, however, well be suitable for start‐up of a “M. parvicella” population. Build‐up of excessive biomass might rely on fatty acid supply originating in cell walls of lysed stationary phase bacteria of long residence time sludge fractions such as scum layers. Moreover, biogenic surfactants such as rhamnolipids have been proved to be an excellent carbon source for excessive biomass production in vitro.  相似文献   

3.
Rhizosphere microorganism is an important bio‐component for wastewater treatment in constructed wetlands (CWs). Microbial abundance and enzyme activities in the rhizospheres of nine plant species were investigated in an integrated vertical‐flow CW. The abundance of denitrifiers, as well as urease, acid, and alkaline phosphatase activities were positively correlated to plant root biomass. The abundance of bacteria, fungi, actinomycetes, ammonifiers, denitrifiers, and phosphorus decomposers, related to nutrient removal efficiencies in CWs, greatly varied among rhizospheres of different plant species (p < 0.05). Significant differences in rhizosphere enzyme activity among plant species were also observed (p < 0.05), with the exception of catalase activity. The principal component analysis using the data of microbial abundance and enzyme activity showed that Miscanthus floridulus, Acorus calamus, and Reineckia carnea were candidates to be used in CWs to effectively remove nitrogen and phosphorus from wastewater.  相似文献   

4.
Ian Metcalfe 《Island Arc》2016,25(2):126-136
Limestones exposed north of Raub, Pahang, Malaysia, and sandwiched between the Bentong‐Raub Suture Zone and the westernmost margin of the Sukhothai Arc terrane, yield a late Dienerian (late Induan) conodont fauna. The co‐occurrence of Neospathodus dieneri Sweet (morphotypes 1, 2 and 3) and Neospathodus pakistanensis Sweet represents the Neospathodus dieneri morphotype 3 sub‐zone of the Neospathodus dieneri Zone. The sampled limestones are interpreted as the northwards extension of the Jerus Limestone which crops out near Cheroh and Jerus villages, significantly extending the known outcrop of the Jerus Limestone northwards. The Jerus Limestone is interpreted as hemipelagic and formed in a foredeep or forearc setting on top of the accretionary complex formed by eastwards subduction of the Palaeo‐Tethys during the Lower to Middle Triassic.  相似文献   

5.
Stringent effluent limitations for nitrogen necessitate an accurate interpretation of the design and operation conditions of biological nitrogen removal systems. In this study, the effects of the nature of the organic substrate on biomass adaptation and response to different C/N ratios in terms of denitrification efficiency were investigated. A relatively high chemical oxygen demand (COD)utilized/NOx–Nreduced ratio of 8.1 was obtained when an excess amount of readily biodegradable carbon was supplied, which is suggested as the conversion of substrate surplus into storage polymers. An anoxic yield of 0.64 g cell COD/g COD for a four‐compound substrate mixture (acetate, propionate, ethanol and glucose), 0.63 g cell COD/g COD for a two‐compound substrate mixture (acetate and propionate), and 0.5 g cell COD/g COD for methanol were calculated. Fluorescence in situ hybridization analysis showed that the β‐subclass of proteobacteria was dominant in the seed and in cultures adapted to both the four‐compound and the two‐compound substrate mixture, whereas in the methanol‐adapted culture significant amounts of β‐proteobacteria were detected. The biocommunity composition, the type of organic compound and the COD/NO3–N ratio strongly influence the nitrate reduction and carbon utilization profiles. Methanol has been shown to select for a denitrifying population consisting of Paracoccus and Hyphomicrobium vulgare genera, when used as only external carbon source.  相似文献   

6.
Ex‐situ bioremediation of real‐field crude petroleum sludge was evaluated to elucidate the role of co‐culture (bioaugmentation) and external nutrients supplementation (biostimulation) under anaerobic microenvironment. Maximum removal of total petroleum hydrocarbons (TPH) was observed by integrating biostimulation with bioaugmentation (R5, 44.01%) followed by bioaugmentation alone (R4, 34.47%), co‐substrate supplemented operations [R6, 23.36%; R3, 16.5%; R2, 9.88%] and control (R1, 4.36%). Aromatics fraction showed higher degradation in all the conditions studied. Fate of six selected polycyclic aromatic hydrocarbons (PAHs) was evaluated during bioremediation. Among these, four ring PAHs compounds showed good degradation by integration of biostimulation with bioaugmentation (R5) while bioaugmentation alone (R4) documented good degradation of three ring PAHs. Lower ring PAHs compounds showed good degradation with the application of biostimulation (R6). Fluorescent in situ hybridization (FISH) detected the presence of known PAHs degrading microorganisms viz., Bacillus, Pseudomonas, Acido bacteria, Sulphur reducing bacteria Firmicutes, etc. Application of biostimulation and bioaugmentation strategies alone or in combinations documented noticeable influence on the degradation of petroleum sludge.  相似文献   

7.
人工载体理化性状对附着生物水质修复能力的影响   总被引:1,自引:1,他引:0  
附着生物初级生产力、叶绿素a含量和碱性磷酸酶活性能够指示其对水质的净化能力.本实验选择了5种具有不同表面结构和理化特性的人工载体(载玻片、PVC片、软性载体、组合载体和立体载体),野外原位测定了不同人工载体上附着生物的初级生产力、叶绿素a含量及碱性磷酸酶活性.结果表明:人工载体的理化性状是影响其上附着生物群落稳定、生产力、叶绿素a含量和碱性磷酸酶活性的重要因素.在野外原位条件下,附着生物通常在8~10 d就可以达到最大附着量,此时,其初级生产力、叶绿素a含量和代谢活性等均处于最佳状态.在所选择的5种人工载体中,立体载体和软性载体上附着生物的初级生产力、叶绿素a含量及碱性磷酸酶活性均显著高于其他3种载体,其中立体载体上附着生物净初级生产力最高可达164.21 mgO2/(g.h),且与软性载体相比,立体载体价格相对经济,因此立体载体是一种比较理想的用于水质修复的人工载体.  相似文献   

8.
The Hakusan volcano, central Japan, is located in a region where two subducting plates (the Pacific Plate and the Philippine Sea Plate) overlap near the junction of four plates adjacent to the Japanese Islands (the Pacific Plate, the Philippine Sea Plate, the Eurasia Plate, and the North American Plate). The Hakusan volcano consists of products from four major volcanic episodes: Kagamuro, Ko‐hakusan, and Shin‐Hakusan I and II. To date the eruption events of the Hakusan volcano we applied thermoluminescence and fission track methods. 238U(234U)–230Th disequilibrium and 206Pb/238U methods were applied to date the zircon crystallization ages for estimating the magma residence time before the eruptions. The eruption ages we obtained are ca 250 ka for Kagamuro, ca 100 ka and ca 60 ka for Ko‐Hakusan, ca 50 ka for Shin‐Hakusan I, and <10 ka for Shin‐Hakusan II. They are concordant with previous reports based on K–Ar dating. Some of the pyroclastic rocks, possibly originating from Shin‐Hakusan II activities, are dated to be ca 36 ka or 50 ka, and belong to the Shin‐Hakusan I activity. The zircon crystallization ages show several clusters prior to eruption. The magma residence time was estimated for each volcanic activity by comparing the major crystallization events and eruption ages, and we found a gradual decrease from ca. 500 ky for the Kagamuro activity to ca. 5 ky for the Shin‐Hakusan II activity. This decrease in residence time may be responsible for the decrease in volume of erupted material estimated from the current topography of the region. The scale of volcanic activity, which was deduced from the number of crystallized zircons, is more or less constant throughout the Hakusan volcanic activity. Therefore, the decrease in magma residence time is most likely the result of stress field change.  相似文献   

9.
A solid‐phase extraction (SPE)‐gas chromatography (GC)‐mass spectrometry (MS) analytical method was developed for the simultaneous analysis of natural free estrogens and their conjugates in wastewater samples. Natural free estrogens and their conjugates in wastewater were successfully separated by the oasis hydrophilic‐lipophilic balance solid phase extraction (Oasis HLB SPE) method, and the conjugates were initially enzyme hydrolyzed by β‐glucuronidase or arylsulfatase from Helix pomatia prior to derivatization. N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide (MTBSTFA) plus 1% tert‐butyldimetheylchlorosilane (TBDMCS) was chosen as the derivatization reagent, and the most appropriate conditions of derivatization were determined to be at 95°C for 90 min. The recovery ratios of nine target chemicals were determined by spiking them in 1 L of ultra‐purified water or the influent of a wastewater treatment plant (WWTP). The recovery ratios of six out of nine for the analytes ranged from 73.3–114.9% with relative standard deviations (RSD) from 1.6–19.9%. The established method was successfully applied to environmental wastewater samples which were collected from one municipal wastewater treatment plant (WWTP) in Osaka, Japan, for the determination of natural free estrogens and their conjugates. In the influent sample, E1, E2, E1‐3S, E3‐3S, and E1‐3G were detected at concentrations of 16.6, 9.6, 8.2, 21.9, and 3.2 ng L–1, respectively. However, only E1 was detected at a high concentration of 44 ng L–1 in the effluent sample, suggesting that it is the dominant natural free estrogen in the effluent.  相似文献   

10.
Flocculation and sedimentation of particles are essential to many environmental and industrial processes. Solid–liquid separation in olive‐oil mill wastewater treatment by means of Fenton system is the key to work continuously and maintain a constant outlet flow of clarified water at the end of the oxidation process. Natural sedimentation is not capable to eliminate the sludge formed. The efficiency of flocculation operation using different flocculants as QG‐2001, QG‐2002, DQGALFLOC‐130H, and Nalco‐77171 was investigated. The optimum dosage of each flocculant, 150, 2.5, 66, and 6 mg dm?3, respectively, was determined. The results revealed that the best flocculant was Nalco‐77171, which determined 13.5% v/v final sludge separation and 86.5% v/v final clarified water obtained. Kinetics of sludge removal in the transition zone was adjusted to power law, v/v0 = Ktε, where the exponent, ε, varied in the range 0.141–0.670.  相似文献   

11.
The aim of this research was to assess the impact caused by a long‐term pollution by fluoride and heavy metals in two soils (PS1 and PS2) near an aluminium smelter in Slovakia, on soil microbial biomass C (MBC), basal respiration, metabolic quotient (qCO2) water‐soluble organic C (WSOC) and enzymes activities involved in the C, N and P biogeochemical cycles. An unpolluted soil was used as control (C0). Results obtained for soil fluoride content reflected a gradient of fluoride exposure in topsoils of contaminated sites. Decreases in microbial and enzymatic activities and in MBC to organic C ratio were found in PS2 site, which is closer to the smelter and exhibited the highest fluoride content. PS1‐soil showed an extreme alkaline pH caused by leaching of waste effluents from the smelter dumping site, higher contents of Zn, Cu, Pb and Cd, significantly larger MBC, qCO2 and catalase and urease activities, and much larger basal respiration and dehydrogenase activity than PS2 and C0‐soil. Phosphatase, β‐glucosidase and BAA‐protease were negatively correlated with WSOC, basal respiration and dehydrogenase activity, and showed some degree of inhibition in polluted sites. These results may indicate different responses of microbial communities to ecosystem disturbances, caused by the drastic changes in soil's physicochemical properties as result of the long‐term emissions of fly ash with high levels of contaminants that are still affecting soil microbial and enzymatic activities.  相似文献   

12.
Dimethyl Sulfoxide Reduction Method for the Characterization of Biomass Activity in Sludge of an Aerated Lagoon The microbial biomass activity was studied in sludge from a wastewater lagoon (Hatzbachtal) which consisted of 4 aerated ponds and one polishing pond. The lagoon was characterized by low BOD5 loading and high dilution because of water from the surroundings. Sludge samples were taken from 4 sampling sites of each aerated pond and from one site of the polishing pond. The biomass activity in the sludge samples was analysed with the help of dimethyl sulfoxide reductase (DRA) and dehydrogenase (DHA) activity. In addition, Corg-content was also determined. The effect of different reaction parameters on the DRA was studied in relation to incubation period, temperature and atmosphere as well as sludge weight and pH value. The results presented here show that a linear increase in the DRA occured for the sludge weight ranging from 0.1 to 0.5 g, incubation period from 0.5 to 11 h and incubation temperature from 20 to 50 °C. The pH spectrum from acidic to neutral did not effect the DMS formation in sludge. Although the values for DRA were always higher in anaerobic incubation of sludge than in aerobic incubation, the courses of the DRA in both conditions were parallel. Comparing the biomass activity in sludge from different sampling sites of the aerated ponds, the average Corg-content was found to be reflected by the DRA and DHA. Further, the variation in the DRA could represent also the influence of oxygen concentration. Therefore, a reduction in biomass activities indicated a decline in the availability of oxygen.  相似文献   

13.
Concentrations of in‐situ‐produced cosmogenic nuclides 10Be and 26Al in quartz were measured by accelerator mass spectrometry for bedrock basalts and sandstones located in northwest Tibet. The effective exposure ages range between 23 and 134 ka (10Be) and erosion rates between 4·0 and 24 mm ka?1. The erosion rates are significantly higher than those in similarly arid Antarctica and Australia, ranging between 0·1 and 1 mm ka?1, suggesting that precipitation is not the major control of erosion of landforms. Comparison of erosion rates in arid regions with contrasting tectonic activities suggests that tectonic activity plays a more important role in controlling long‐term erosion rates. The obtained erosion rates are, however, significantly lower than the denudation rate of 3000–6000 mm ka?1 beginning at c. 5‐3 Ma in the nearby Godwin Austen (K2) determined by apatite fission‐track thermochronology. It appears that the difference in erosion rates within different time intervals is indicative of increased tectonic activity at c. 5–3 Ma in northwest Tibet. We explain the low erosion rates determined in this study as reflecting reduced tectonic activity in the last million years. A model of localized thinning of the mantle beneath northwest Tibet may account for the sudden increased tectonic activity at c. 5–3 Ma and the later decrease. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The Khalkhab–Neshveh (KN) pluton is a part of Urumieh–Dokhtar Magmatic Arc and was intruded into a covering of basalt and andesite of Eocene to early Miocene age. It is a medium to high‐K, metaluminous and I‐type pluton ranging in composition from quartz monzogabbro, through quartz monzodiorite, granodiorite, and granite. The KN rocks show subtle differentiation trends strongly controlled by clinopyroxene, plagioclase, hornblende, apatite, and titanite, where most major elements (except K2O) are negatively correlated with SiO2; and Al2O3, Na2O, Sr, Eu, and Y define curvilinear trends. Considering three processes of magmatic differentiation including mixing and/or mingling between basaltic and dacitic magmas, gravitational fractional crystallization and in situ crystallization revealed that the latter is the most likely process for the evolution of KN magma. This is supported by the occurrence of all rock types at the same level, the lack of mafic enclaves in the granitoid rocks, the curvilinear trends of Na2O, Sr, and Eu, and the constant ratios of (87Sr/86Sr)i from quartz monzodiorite to granite (0.70475 and 0.70471, respectively). In situ crystallization took place via accumulation of plagioclase and clinopyroxene phenocrysts and concentration of these phases in the quartz monzogabbro and quartz monzodiorite at the margins of the intrusion at T ≥ 1050°C, and by filter pressing and fractionation of hornblende, plagioclase, and later biotite in the granitoids at T = ~880°C.  相似文献   

15.
Today already numerous micromycetes are a recognized part of the biocenosis of growth in receiving waters strongly polluted by organically rich waste waters and of growth on biofilter media surfaces. The principal representatives are some Deuteromycetes, Mucorales and Saccharomycetaceae, whereas the so-called true aquatic fungi (Oomycetes) with the exception of Leptomitus lacteus are practically absent. The growth of micromycetes in activated sludge remains still an unanswered question. Generally, the filaments in the activated sludge are ascribed to filamentous bacteria and as long as fungi were isolated from activated sludge their presence has been reported only in the form of spores. The nitrogen deficiency with regard to carbon present in the waste water is considered as one of the factors enhancing the development of fungi in the activated sludge. In a series of 13 tests carried out on laboratory-scale batch models using synthetic waste water, where the carbon source was glucose and the nitrogen source was (a) sodium nitrate, (b) ammonium sulphate, and (c) peptone, the fungal growth was studied in different models with the BOD:N ratio varying from 20 to 1000. The models were seeded with thickened activated sludge from the municipal sewage works. The sludge did not contain any microscopically detectable forms of fungoid growth. It was found that the fungi in activated-sludge medium grow well and both in the forms of single cells, occuring independently and in chains, as well as in the form of long branched filaments. In some instances, the micromycetes formed up to 80 to 100 per cent of the biocenosis of the activated-sludge flocs, but the dependency of their development on the increasing BOD:N ratios in the waste water has not been ascertained. Fifteen species of micromycetes were isolated and identified, and in addition several representatives of Saccharomycetaceae, which were not identified.  相似文献   

16.
Abstract Stress measurement is performed to estimate the states of in situ rock stress at the Torigata open‐pit limestone mine in Japan using the compact conical‐ended borehole overcoring (CCBO) technique. A set of back and forward analyses are then carried out to evaluate the states of regional and local in situ rock stresses and the mine‐induced rock slope stability using a 3‐D finite element model. The maximum horizontal local in situ rock stress measured by the CCBO technique acts in the northeast–southwest direction. The horizontal regional tectonic stresses obtained by the back analysis are in good agreement with those of the horizontal local in situ rock stress measured by the CCBO technique. However, the horizontal regional tectonic stress is more compressive than the horizontal local in situ rock stress. This is because the horizontal regional stress due to gravity is not considered in the back‐analyzed horizontal regional tectonic stress, but it is included in the local in situ rock stress measured by the CCBO technique. The local stress obtained by the forward analysis, especially its horizontal components, is in good agreement with the horizontal local in situ rock stress measured by the CCBO technique, and the magnitude of the vertical normal stress increases more rapidly than those of the horizontal normal stresses with depth. As a result, the ratio of the horizontal normal stress to the vertical normal stress is largest at the nearest excavation level and decreases with depth. This means that the stress field within the mine‐induced rock slope is affected by the horizontal components of the local in situ rock stress.  相似文献   

17.
Quantitative detection of fluid distribution using time-lapse seismic   总被引:1,自引:0,他引:1  
Although previous seismic monitoring studies have revealed several relationships between seismic responses and changes in reservoir rock properties, the quantitative evaluation of time‐lapse seismic data remains a challenge. In most cases of time‐lapse seismic analysis, fluid and/or pressure changes are detected qualitatively by changes in amplitude strength, traveltime and/or Poisson's ratio. We present the steps for time‐lapse seismic analysis, considering the pressure effect and the saturation scale of fluids. We then demonstrate a deterministic workflow for computing the fluid saturation in a reservoir in order to evaluate time‐lapse seismic data. In this approach, we derive the physical properties of the water‐saturated sandstone reservoir, based on the following inputs: VP, VS, ρ and the shale volume from seismic analysis, the average properties of sand grains, and formation‐water properties. Next, by comparing the in‐situ fluid‐saturated properties with the 100% formation‐water‐saturated reservoir properties, we determine the bulk modulus and density of the in‐situ fluid. Solving three simultaneous equations (relating the saturations of water, oil and gas in terms of the bulk modulus, density and the total saturation), we compute the saturation of each fluid. We use a real time‐lapse seismic data set from an oilfield in the North Sea for a case study.  相似文献   

18.
Land/water ecotones, the transitional boundary zone between terrestrial and aquatic ecosystems, can effectively trap and assimilate nutrients from external sources. The changes of nutrient cycling will cause a response in enzyme activity. In this paper, the enzyme kinetics of land/water ecotones in a shallow eutrophic wetland in China, dominated by a reed (Phragmites australis) community, are studied. The results indicate that land/water ecotones exhibit a strong filtration function and nutrient factor is an important feature affecting the distribution of enzymes in the transect of the littoral zone. The obvious spatial differences of enzyme activities and nutrients are present in the transect of the reed beds. The land area is the hot zone, where significant changes in enzyme activity occur. T‐test results show that the landward spot, 1 m away from the water‐land interface, is quite different from other spots, and the 1 m spot is the hot spot where great biochemical change happens. The principal component analysis of the environmental variables shows that nutrient factors have an important affect on enzyme distribution in the transect of the littoral zone. The nutrient factor explains about 54% of the observed variance. In particular, TOC (total organic carbon) correlates with the other five factors (TN; total nitrogen, TP; total phosphorus, phosphatase, β‐glucosidase, and urease) with correlative coefficients of 0.932, 0.595, 0.488, 0.433, and –0.468, respectively. The results indicate that TOC is a very important factor in Baiyangdian wetlands.  相似文献   

19.
By enhancing the stock of piscivorous fish in a whole-lake experiment in Gräfenhain (Germany) since 1981 to such an extent that almost all planktivorous fish were exterminated, we examined the concept of “over-biomanipulation”. This hypothesis predicts that (a) extremely strong piscivory will allow uncontrolled development of large invertebrate predators and (b) these invertebrates can exert the same strong predation pressure on large herbivorous zooplankton as planktivorous fish. The hypothesis is tested the first time by a cross-comparison of the long-term response of the plankton community structure in the experimental lake (Piscivore L.) with (1) the intermediate response in the same lake and with (2) that of the long-term state in a nearby reference lake (Planktivore L.) densely inhabited by planktivorous fish (Leucaspius delineatus, a small cyprinid). The intermediate (1989–1992) response in Piscivore L. revealed a strong increase of the abundance of the invertebrate predator Chaoborus flavicans. Large daphnids were able to coexist with C. flavicans so that edible phytoplankton were suppressed and water transparency increased.As part (a) of the hypothesis predicts, the long-term response in Piscivore L. was characterized by the immigration of the larger predator Chaoborus obscuripes which displaced the smaller C. flavicans completely. The results support also part (b) of the hypothesis of “over-biomanipulation”: C. obscuripes-dominated Piscivore L. showed not much difference in biomasses of daphnids and total and edible phytoplankton as well as Secchi depth compared with fish-dominated Planktivore Lake. On the other hand, C. obscuripes-dominated Piscivore L. was characterized by distinctly lower biomass of daphnids, mean body volume of all crustaceans and Secchi depth as well as by higher biomass of edible phytoplankton compared with C. flavicans-dominated Piscivore Lake. We conclude that long-lasting success of biomanipulation cannot be achieved by extremely high piscivory leading to the almost complete extermination of planktivorous fish.  相似文献   

20.
A pot experiment was conducted to investigate microbial characteristics and the biodegradation process of bensulfuron‐methyl (BSM) in a rhizosphere soils planted with different riparian plants. The results showed that microbial population decreased with BSM addition in the rhizosphere, especially for bacteria and fungi. The activities of the dehydrogenase (DHase) were stimulated firstly, due to BSM addition, but then were inhibited, and recovered to the initial level, while the activities of the phosphatase and urease showed obviously decreasing trend throughout the whole experiment. Rhizosphere soil substrate‐induced respiration (SIR) was depressed by BSM, especially at the initial 14 days of incubation. Compared to Zizania aquatica and Phragmites australis, Acorus calamus showed a significantly (p < 0.05) higher DHase activity and larger SIR in the rhizosphere soils treated with BSM, which means that A. calamus can effectively alleviate inhibitory effect of the sulfonylurea herbicide addition on microbial activity. There were significant (p < 0.05) differences in microbial degradation dynamics of BSM in the rhizosphere soils among three kinds of riparian plants. A. calamus displayed a significantly (p < 0.05) higher degradation efficiency of BSM in the rhizosphere soils, followed by Z. aquatica and P. australis. The residual BSM concentration in A. calamus rhizosphere soil was 23.1 and 32.2% lower than that in Z. aquatica and P. australis rhizosphere soils, respectively, indicating a greater improvement effect on biodegradation of BSM in A. calamus rhizosphere soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号