共查询到16条相似文献,搜索用时 78 毫秒
1.
利用2013年10月1日至2014年5月31日黄河源区鄂陵湖流域的土壤温度资料首先划分土壤不同冻融阶段,然后在每个阶段各选取一次降雪过程,分析了降雪对土壤温湿变化的影响。结果表明:在土壤冻结阶段,雪后晴天(有雪覆盖)土壤净输出的热量减少,5 cm和10 cm土壤日最低温度明显升高,20 cm土壤日最低温度升至0℃以上,导致20 cm土壤达到完全冻结的时间延长;在土壤消融阶段,降雪当天土壤净输入的热量减少,5 cm和10 cm土壤日最高温度突降至0℃以下,导致5 cm和10cm土壤达到完全消融的时间增加。在以上两个阶段的降雪过程中,积雪不仅可通过自身的消融增加浅层土壤湿度,还可通过改变浅层土壤温度间接影响浅层土壤湿度,而在土壤完全冻结阶段,积雪对土壤温度虽有影响,但对土壤湿度的直接和间接影响都较小。在整个土壤冻融阶段,与由土壤冻结和消融引起的土壤湿度变化相比,降雪引起的土壤湿度变化较小。 相似文献
2.
利用2017~2018年黄河源地区野外观测站数据,对黄河源区两个积雪期内土壤温湿及冻融特征进行了分析,并与CLM4.5模式模拟的积雪期土壤温、湿度及辐射分量进行了对比,结果表明:CLM4.5能很好地模拟出整个积雪期土壤温度的变化趋势;对不同土壤层在不同冻结阶段土壤含水量的模拟有所差异:在完全冻结阶段,对5cm土壤层含水量模拟偏高,而80cm偏低,对10~40cm土壤层含水量的模拟偏差较小;由于降雪及土壤冻融过程主要发生在积雪期,积雪反照率使得净辐射模拟在降雪时段偏差较无降雪时段略大。 相似文献
3.
土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征。数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环。(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配。冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支。土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主。相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响。土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量。土壤热通量在冻结过程(G 相似文献
4.
5.
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G_0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G_0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G_0变为正值;土壤冻结使波文比增大,G_0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与R_(net)的日变化相反,限制了LE的增长。在冻结过程阶段,受冻融过程的影响,G_0的日变化小于其他阶段。 相似文献
6.
利用陆面过程模式CLM3.5对黄河源区若尔盖站进行了一年的数值模拟试验,通过比较土壤温度、土壤含水量的观测值与模拟值,检验了该模式在黄河源季节性冻土地区的模拟能力。结果表明,模式对土壤温度的模拟,非冻结期较好,深层土壤温度稍偏高;冻结期模拟值偏低,冻结深度偏大。对土壤含水量的模拟,在冻融期出现了较大偏差,含水量骤降(冻结)、骤增(消融)的时间均较观测提前。模式土壤热传导参数化方案中的土壤基质热导率计算偏大是造成土壤温、湿度偏差的主要原因。将Johansen土壤基质热导率方案替换了原模式参数化方案后,模拟结果有一定的改进,土壤温度暖舌、冷舌的模拟深度显著减小,冻结期土壤温度模拟偏低的现象也得到了改进,土壤含水量骤降、骤增的时间与观测更为接近。 相似文献
7.
利用中国科学院西北生态环境资源研究院玛曲土壤温湿观测网2008-2009年、2013-2014年数据验证了3套再分析资料ERA-Interim,CFSR(Climate Forecast System Reanalysis)和JRA-55(Japanese 55-year Reanalysis)在黄河源区的适用性,结合中国气象数据网玛曲气象站1980-2014年观测资料与CLM4.5(Community Land Model 4.5)进一步分析了黄河源区近35年气候变迁、土壤温湿分布和变化,结果表明:CFSR能够较好地描绘黄河源区土壤湿度变化,ERA-Interim对于土壤温度刻画能力更强,JRA-55效果较差;35年来气温、土壤温湿总体呈上升趋势且发生突变;近年来10 cm土壤温湿有暖干化趋势,降水量稍有增加,土壤冷季冻结周期变短,暖季持续时间拉长;CLM4.5模拟精度高,能够较好地刻画源区土壤温湿变化细节,两湖及黄河周边暖季为冷湿中心,冷季为暖干中心。 相似文献
8.
青藏高原积雪对地表能量和水分交换有重要影响。本文通过选取青藏高原东部玛多、玛曲和垭口3个站点多雪年和少雪年的气象资料,对比分析了多雪年和少雪年的地表能量和土壤水热特征。结果表明:在地表辐射平衡方面,多雪年或积雪较多的时期可以反射掉较多的向上短波辐射。玛多站多雪年反射掉的向上短波辐射是少雪年的2.3倍,玛曲站主要积雪期(3-5月)中多雪时期比少雪时期多反射掉10.07 W·m-2的向上短波辐射,垭口站多雪年的年平均向上短波辐射分别比两个少雪年高出37.49 W·m-2和31.92 W·m-2。多雪年或积雪较多的时期还可以减少向上长波辐射的发射。玛多站多雪年与少雪年向上长波辐射的差值在整个研究时段中基本为负,垭口站两个少雪年在当年12月初到次年1月和次年2月末到4月初这两个时段,积雪越深,向上长波辐射值越小。向上短波和向上长波辐射的差异使得多雪年的地表净辐射少于少雪年。不论多雪年还是少雪年,土壤热通量的值都很小,地表能量分配主要以感热通量和潜热通量为主。玛多站少雪年以感热通量为主且感热通量为正,但多雪年感热通量为负;玛曲站的... 相似文献
9.
10.
11.
12.
Soil enthalpy(H) contains the combined effects of both soil moisture(w) and soil temperature(T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated using the multi-linear regression method.Results indicate that T generally makes positive contributions to H, while w exhibits different(positive or negative) impacts due to soil ice effects. For example, w negatively contributes to H if soil contains more ice; however, after soil ice melts,w exerts positive contributions. In particular, due to lower w interannual variabilities in the deep soil layer(i.e., the fifth layer), H is more sensitive to T than to w. Moreover, to compare the potential capabilities of H, w and T in precipitation(P) prediction, the Huanghe–Huaihe Basin(HHB) and Southeast China(SEC), with similar sensitivities of H to w and T,are selected. Analyses show that, despite similar spatial distributions of H–P and T –P correlation coefficients, the former values are always higher than the latter ones. Furthermore, H provides the most effective signals for P prediction over HHB and SEC, i.e., a significant leading correlation between May H and early summer(June) P. In summary, H, which integrates the effects of T and w as an independent variable, has greater capabilities in monitoring land surface heating and improving seasonal P prediction relative to individual land surface factors(e.g., T and w). 相似文献
13.
基于修正的Penman-Monteith(P-M)模型,利用1980~2020年黄河源区的气象台站观测数据和陆-气间水热交换观测试验数据,计算出该区域的陆面参考蒸散量,分析了黄河源区蒸散量的时空演变特征,探讨了影响黄河源区蒸散量变化的原因。结果表明:(1)修正的P-M模型能较准确地估算黄河源区的参考蒸散量,与实际观测的相关系数在0.85以上。(2)黄河源区的蒸散量总体呈上升趋势,但在20世纪80年代中期和90年代中期均呈显著减少趋势;近年来,中部和西部地区的蒸散量呈减少趋势,而东部地区的蒸散量呈增加趋势。(3)黄河源区年蒸散量呈自东向西减小的分布特征,东、中、西部地区分别为473.5~516.0mm、437.6~473.5mm和386.3~437.6mm;四季蒸散量差异明显,夏季最大,春季和秋季次之,冬季最小。(4)黄河源区蒸散量随温度、风速和日照时数的增加而增大,随相对湿度和降水量的增大而减小。 相似文献
14.
陆面过程模式对土壤含水量初值的敏感性研究 总被引:24,自引:6,他引:24
利用IAP94陆面过程模式,采用淮河流域能量与水份循环试验(HUBEX)期间两种下垫面(森林和旱田)、不同季节(5月、8月和11月)的观测资料,研究了模式对土壤含水量初值的敏感性.结果表明:对于森林和旱田下垫面,当土壤含水量减少时,地表净辐射均略有减少,同时潜热通量减少而感热通量增加.另外,模式对土壤含水量初值的敏感性有较明显的季节差异,相对而言在晚春和夏季较强,而在秋季明显减弱.这说明春夏季节的土壤含水量初值在淮河流域区域气候的模拟和预测中尤其值得关注. 相似文献
15.
利用黄河源区玛曲观测站2016年涡动相关系统和微气象梯度塔观测资料,分析了高寒草地 大气间水热交换通量的特征。结果表明:夜间地表各通量值很小,净辐射和感热通量为负值,潜热通量的值较小但始终为正。日出后随着太阳辐射和地表加热作用各通量迅速增大,在14时左右达到峰值。暖季(6—8月)夜间感热通量占净辐射的比例(H/Rn)高于感潜通量占净辐射的比例(LE/Rn),日出后LE/Rn开始升高而H/Rn减小,日间LE/Rn大于H/Rn。冷季(12月—次年2月)H/Rn始终大于LE/Rn,感热通量在冷季的能量分配中占据主导地位。暖季LE/Rn、H/Rn均随土壤温度升高而升高。冷季H/Rn与5 cm深度土壤温度表现出了更为明显的二次关系,随着温度升高先降低后升高,当温度小于-7 ℃时H/Rn降低,大于-6 ℃时H/Rn增大。暖季H/Rn随着土壤湿度增大先降低后升高,LE/Rn先升高后降低。在0—1.5 kPa,暖季饱和水汽压差与LE/Rn、H/Rn均呈线性关系,并随着饱和水汽压差增大,LE/Rn增大而H/Rn减小;1.5 kPa之后,LE/Rn、H/Rn变化特征均保持其原有趋势。 相似文献
16.
利用黄土高原半干旱区"定西陆面过程综合观测试验站"2004年11月至2005年10月的各种陆面物理量综合资料,比较系统地研究了黄土高原半干旱区土壤温度、降水量、地表反照率、地表辐射分量和能量平衡分量的年变化和日变化特征及其影响机制。结果显示,黄土高原陆面过程特征与其他地区有很大不同。土壤温度变化向下传播速度约为2.5~3.5 h/10cm;地表反照率随土壤湿度的增大而减小,两者的相关系数达到了0.5338;而地表反照率随降雪量增大而增大,与降雪量的相关系数为0.6645;长波辐射年最大值出现的时间比总辐射迟1个月左右,年平均日变化中地表和大气对太阳辐射加热大约需要1个小时的响应时间;潜热通量夏季是冬季的5倍多,感热通量有了两个比较明显的峰值,潜热通量、感热通量和土壤热通量的日峰值比净辐射滞后30 min~1 h。 相似文献