首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Determination of Organophosphorus Pesticides in Water by HPLC‐MS‐MS In the EC Water Framework Directive 2000/60/EG and in CEC 76/464/EEC there are 16 organophosphorus pesticides (insecticides and acaricides) listed which belong to so‐called priority substances. The committed quality aims of these substances frequently require maximum concentrations below 0.1 μg/L. In this paper a HPLC‐MS‐method is described. The reported limits of determination of organophosphorus pesticides are lower than the demanded limits. High analytical sensitivity is reached by solid‐phase extraction (SPE) and by injecting large volumes. For some of these substances no sample enrichment is needed and low detection limits are obtained by direct injection of the original water sample.  相似文献   

2.
In the present study an analytical method was tested for the determination of selected pesticides and metabolites using solid‐phase extraction (SPE) and gas chromatography ion‐trap mass spectrometry (GC‐MS). The extraction efficiency of C18, Isolut ENV+, and Lichrolut EN for SPE was compared for trifluralin, fenitrothion, endosulfan, propargite, 2,4‐D, 3‐methyl‐4‐nitrophenol, 2‐(4‐tert‐butylphenoxy)cyclohexanol, endosulfan sulfate, and 2,4‐dichlorophenol. Isolut ENV+ and C18 showed good results as sorbents and acetone as an elution solvent for SPE for the selected pesticides. Recoveries varied between 36% and 176% with a relative standard deviation of 2...18%. Because of coextracts from the SPE materials, recovery values higher than 100% were obtained for fenitrothion, endosulfan sulfate, and 2,4‐D with C18 as well as for endosulfan sulfate and 3‐methyl‐4‐nitrophenol with Isolut ENV+. A standard addition method was used to verify the occurrence of coextracts in the sample after SPE.  相似文献   

3.
In this study, a new solid‐phase extraction procedure has been developed for preconcentration and determination of Co ions in different water samples by flame atomic absorption spectrometry (FAAS). Cobalt was preconcentrated as N,N′‐bis(pyridine‐2‐yl‐methyl)benzene‐1,4‐diamine (Co‐BPMBDA) from sample solutions using a column containing Amberlite XAD‐7 and was determined. In order to achieve the best performance for the method, effects of several parameters such as pH, concentrations of ligand, sample flow rate, eluent, and matrix ions on the method efficiency were investigated. Under optimum conditions, the preconcentration factor was found to be 200 for 1000 mL waters samples. Detection limit based on the 3Sb criterion was calculated as 0.24 µg/L for 100 mL of sample solution and relative standard deviation was found to be 1.8%. The method was applied to determine the trace amounts of cobalt in water samples.  相似文献   

4.
Conflicting sorption coefficients for ortho‐phenylphenol (OPP) have been reported in the literatures, which resulted in the conflicting assessments on OPP mobility in soil. To ascertain the sorption coefficient of OPP, batch experiments were performed based on OECD guideline 106, using three types of soils. Headspace solid‐phase microextraction (HS‐SPME) and GC‐MS were applied to the determination of OPP concentration in the liquid phase. The sorption isotherms obtained for all three soils under equilibrium conditions were described well, assuming linear sorption. The organic carbon normalized distribution coefficients (Koc) ranged from 894 to 1703 L kg?1, which suggested that OPP is moderately mobile in soil. The results also showed that the Koc value of OPP can be predicted precisely from Kow, whereas it was underestimated by one order of magnitude when water solubility is used.  相似文献   

5.
A solid‐phase extraction (SPE)‐gas chromatography (GC)‐mass spectrometry (MS) analytical method was developed for the simultaneous analysis of natural free estrogens and their conjugates in wastewater samples. Natural free estrogens and their conjugates in wastewater were successfully separated by the oasis hydrophilic‐lipophilic balance solid phase extraction (Oasis HLB SPE) method, and the conjugates were initially enzyme hydrolyzed by β‐glucuronidase or arylsulfatase from Helix pomatia prior to derivatization. N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide (MTBSTFA) plus 1% tert‐butyldimetheylchlorosilane (TBDMCS) was chosen as the derivatization reagent, and the most appropriate conditions of derivatization were determined to be at 95°C for 90 min. The recovery ratios of nine target chemicals were determined by spiking them in 1 L of ultra‐purified water or the influent of a wastewater treatment plant (WWTP). The recovery ratios of six out of nine for the analytes ranged from 73.3–114.9% with relative standard deviations (RSD) from 1.6–19.9%. The established method was successfully applied to environmental wastewater samples which were collected from one municipal wastewater treatment plant (WWTP) in Osaka, Japan, for the determination of natural free estrogens and their conjugates. In the influent sample, E1, E2, E1‐3S, E3‐3S, and E1‐3G were detected at concentrations of 16.6, 9.6, 8.2, 21.9, and 3.2 ng L–1, respectively. However, only E1 was detected at a high concentration of 44 ng L–1 in the effluent sample, suggesting that it is the dominant natural free estrogen in the effluent.  相似文献   

6.
Occurrence of Industrial Chemicals (HPS, BPS, and SPS) in Surface Water The paper gives the results of water examinations for different phenylsulfonamides. Random samples taken every month between May 1999 and August 2000 from surface water out of the river Rhine (kilometer 838), the river Ruhr (Mülheim Styrum) and the river Emscher (Oberhausen center) were tested for the corrosion inhibiting agent 6‐[methyl(phenylsulfonyl)amino]‐hexanoic acid (HPS) as well as its metabolites 4‐[methyl‐(phenylsulfonyl)amino]‐butanoic acid (BPS) and sarkosin‐N‐(phenylsulfonyl) (SPS). Furthermore, the sewage plant effluents of two municipal wastewater treatment plants from the rural area were also included in the monitoring program. The analytical method includes solid‐phase extraction (SPE), a derivatization step as well as gas chromatography mass spectrometry (GC‐MS). SPS is regularly found in all investigated surface waters, but only occasionally in the effluents of the two rural sewage plants. The median values for SPS amount to 0.09 μg/L in the river Rhine, 0.60 μg/L in the river Ruhr, and 0.70 μg/L in the river Emscher. BPS can only be found in the river Ruhr (median value: 0.08 μg/L) and in the river Emscher (median value: 0.41 μg/L). HPS was regularly found in a surface water for the first time. This substance can be detected in the Emscher through the whole measurement period. The median value for HPS amounts to 1.78 μg/L. Aditionally, the validation characteristics of an alternative analytical method including solid‐phase microextraction (SPME) is worked out. The fully automated process includes an on‐fiber methylation step and the GC‐MS. The repeatability standard deviation of the process amounts to RSD < 12%. Detection limits between 0.07 and 0.70 μg/L are achieved.  相似文献   

7.
A method is described for the detection and identification of dissolved organic compounds (DOCs) in various water samples. Acid treated active silica gel sorbent (pH 3) was packed into a micro‐column and used as a solid‐phase extraction medium for adsorption of DOCs. Silica particles‐adsorbed‐organic species were then divided into equal portions followed by suspension into various organic solvents of different polarities such as methanol, acetone, ethyl acetate, and toluene. Suspended silica‐adsorbed‐organic species were shaken for 1 h at room temperature and the organic extracts were subjected to GC–MS analysis under temperature programming conditions for qualitative detection and identification of these species. Blank solvents and silica samples were also subjected to the same extraction procedures and GC–MS analysis for comparison. The mass spectrum of each eluted chromatographic peak was library searched or manually interpreted to identify the compound.  相似文献   

8.
Increasing research has suggested that biosolids generated from municipal wastewater treatment can be a major sink for many pharmaceuticals and personal care products (PPCPs) and their land application potentially introduces these contaminants into the terrestrial and aquatic environments. In this study, methods were developed for the analysis of 14 PPCPs in biosolids and soils using pressurized liquid extraction, solid phase extraction and liquid chromatography‐tandem mass spectrometry. Recoveries were over 50% for all analytes except diphenhydramine (?30%) in soils. Soil properties or type of biosolids showed minor effects on method recoveries. Estimated method limits of quantification (LOQ) range from 0.1–15 ng g–1 for soil and 0.3–27 ng g–1 for biosolids. A field study utilizing the methods revealed that other than carbamazepine‐10,11‐epoxide, all targeted compounds were detected in biosolids. Diphenhydramine, fluoxetine, triclosan and triclocarban were detected up to the μg g–1 range with the highest concentration of 23 μg g–1 for triclocarban. Seven of the PCCPs found in biosolids were also detected in agricultural soils amended with these biosolids and several (carbamazepine, diphenhydramine, and triclocarban) appeared to be persistent in soils. Triclocarban was also found most abundant in soils with the highest average concentration of 0.2 μg g–1 while the rest of compounds were in the lower ng g–1 range. Generally, the concentrations found on the fields were 2–3 degrees of magnitude lower than in the biosolids, which is likely to be due to dilution, degradation and leaching processes.  相似文献   

9.
Bioremediation is intensively studied today as a treatment method for soil contaminated with chlorinated pesticides, chemicals counted among persistent organic pollutants. In the presented work, results of desorption kinetics study using consecutive Tenax TA solid phase extraction (SPE) were tested as predictors of 3‐wk anaerobic soil bioremediation effectiveness for chlorinated pesticides γ‐HCH, DDT, and methoxychlor. Field‐contaminated samples were used in these experiments, and conditions of bioremediation tests were based on previous research. Amounts of pesticides removed during bioremediation (43–98% of initial concentrations) were in most cases much larger (average ratio 1.37) than rapidly desorbing fractions estimated in SPE using two‐compartment model of desorption kinetics. The scatter of results was also considerable (standard deviation 0.45). However, there was a statistically significant correlation between amounts removed and rapidly desorbing fractions (R2 = 0.64), indicating a relationship between degradability and desorbability. Nonetheless, determination of rapidly desorbing fractions was considered rather a poor indicator of soil bioremediation efficiency for chlorinated pesticides. The total amounts of pesticides desorbed by Tenax in 72 h performed better in this respect (R2 = 0.73, fraction removed/desorbed = 1.10 ± 0.20, average ± standard deviation). Disappearance of DDT during bioremediation was accompanied by DDD formation but this was considerably lower than results expected from stoichiometry.  相似文献   

10.
A multi-residual method based on stir bar sorptive extraction coupled with thermal desorption-gas chromatography-mass spectrometry (SBSE-TD-GC-MS) has been developed to measure 49 organic pollutants (organochlorine pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and nonylphenol) in seawater. Using 100 ml of water, the method exhibited good linearity, with recoveries between 86% and 118% and relative standard deviation between 2% and 24% for almost all compounds. The method was applied to determine target contaminants in Catalonian seawater, including coastal areas, ports and desalination plant feed water. Overall individual compound levels oscillated between 0.16 and 597 ng l−1; PAHs and nonylpenol were the compounds found at the highest concentrations. The method provided LODs between 0.011 and 2.5 ng l−1, lower than the Environmental Quality Standards (EQS) fixed by Directive 2008/105/EC. In compliance with the directive, this method can be used as a tool to survey target compounds and is aimed at protecting coastal ecosystems from chemical pollution.  相似文献   

11.
A new separation and preconcentration technique based on coprecipitation of Cu(II) and Ni(II) ions by the aid of Mo(VI)/di‐tert‐butyl{methylenebis[5‐(chlorobenzyl)‐4H‐1,2,4‐triazol‐3,4‐diyl]}biscarbamate (BUMECTAC) precipitate has been established. The Mo(VI)/BUMECTAC precipitate was dissolved by concentrated HNO3 and the solution was completed to 5.0 mL with distilled/deionized water. The levels of the analyte ions were determined by flame atomic absorption spectrometer. The effects of experimental conditions like HNO3 concentration, amount of BUMECTAC and Mo(VI), sample volume, etc. and also the influences of some foreign ions were investigated in detail on the quantitative recoveries of analyte ions. The preconcentration factors were found to be 40 for Cu(II) and 100 for Ni(II) ions. The detection limits for Cu(II) and Ni(II) ions based on 3σ (N:10) were 0.43 and 0.70 µg L?1, respectively. The relative standard deviations were found to be lower than 4.0% for both analyte ions. The accuracy of the method was checked by spiked/recovery tests and the analysis of two certified reference materials (Environment Canada TM‐25.3 and CRM‐SA‐C Sandy Soil C). The procedure was successfully applied to sea water and stream water as liquid samples and baby food as solid sample in order to determine the levels of Cu(II) and Ni(II) ions.  相似文献   

12.
New methods for obtaining and quantifying spatially distributed subsurface moisture are a high research priority in process hydrology. We use simple linear regression analyses to compare terrain electrical conductivity measurements (EC) derived from multiple electromagnetic induction (EMI) frequencies to a distributed grid of water‐table depth and soil‐moisture measurements in a highly instrumented 50 by 50 m hillslope in Putnam County, New York. Two null hypotheses were tested: H0(1), there is no relationship between water table depth and EC; H0(2), there is no relationship between soil moisture levels and EC. We reject both these hypotheses. Regression analysis indicates that EC measurements from the low frequency EM31 meter with a vertical dipole orientation could explain over 80% of the variation in water‐table depth across the test hillslope. Despite zeroing and sensitivity problems encountered with the high frequency EM38, EC measurements could explain over 70% of the gravimetrically determined soil‐moisture variance. The use of simple moisture retrieval algorithms, which combined EC measurements from the EM31 and EM38 meters in both their vertical and horizontal orientations, helped increase the r2 coefficients slightly. This first hillslope hydrological analysis of EMI technology in this way suggests that it may be a promising method for the collection of a large number of distributed soilwater and groundwater depth measurements with a reasonable degree of accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Natural estrogens from humans increasingly attract attention because of their strong endocrine disrupting potency. The discharge of sewage water is considered as the most important source of these endocrine disrupting chemicals (EDCs) in the environment. Therefore, a GC‐MS method was developed for the simultaneous analysis of six natural free estrogens and their sulfate conjugates in municipal wastewater, in which natural free estrogens and sulfate conjugates were successfully separated from an Oasis HLB solid phase extraction (SPE) cartridge with two different eluents, and the sulfate conjugates were then transformed to their corresponding free estrogens by acid solvolysis. Before the analysis with GC‐MS, samples were derivatized by N,O‐bis (trimethylsilyl) trifluoroacetamide (BSTFA) plus 1% trimethylchlorosilane (TMCS) at 80°C for 40 min. Satisfactory recoveries ranging from 64 to 112.3% were obtained by spiking ultra‐purified water, raw, and treated municipal wastewater with the six estrogens at 50, 100, and 50 ng/L, respectively. The method was successfully applied to wastewater samples from one WWTP, which suggested that E1 was the dominant natural estrogens in effluent and E3‐3S was one of the conjugates possibly occurring in the effluent.  相似文献   

14.
In this study, an investigation was carried out into the occurrence of sulfamethoxazole (SMX) and trimethoprim (TMP) in the effluent of the university hospital (HUSM) of the UFSM. The degradation of these antimicrobials by the electrocoagulation (EC) process was also examined, in both the aqueous solution and hospital effluent, and a study was conducted in order to identify the subproducts formed. The experiments were optimized through factorial planning and, also, checked by response surface methodology. The best conditions for EC (achieving 58.0% of chemical oxygen demand (COD) reduction) were obtained by using 13 mA cm?2, 500 mg L?1 of NaCl, and 30 mm of interelectrode distance. The quantification of SMX (27.8 µg L?1) and TMP (6.65 µg L?1) in the hospital effluent, and the identification of the degradation products were carried out through liquid chromatography‐mass spectrometry quadrupole linear and ion trapping with electrospray ionization (LC‐ESI‐MS/MS_QTrap). Removals of 88.0% (degradation only) and 33.0% (adsorption only) were achieved for aqueous solutions of SMX and TMP, respectively, under optimized conditions. In hospital effluent samples, fortified with additions of SMX and TMP, corresponding removals of 16.0% (degradation) and 28.0% (adsorption) were achieved. This suggests that the EC process is efficient in degrading SMX in aqueous solution, although the same was not the case with TMP. The degradation products of SMX were identified (m/z 256.0 and 288.5); however, only the latter is mentioned in the literature. Toxicological aspects were not considered in this study.  相似文献   

15.
For the establishment of the EC Water Framework Directive in Germany the physico‐chemical reference conditions of surface waters in Germany had to be determined. The results of the statistical analysis of 3500 data sets of 31 surface water catchment types show that water body types can be aggregated to bogs and bog riverside meadows, saliniferous type, carbonatic‐dolomitic type, sandy‐clayey type, silicatic type, and metallogenic type. The data base allows an assessment of the plausibility of the surface water quality classification and quality targets of the LAWA (Länderarbeitsgemeinschaft Wasser). The investigated reference status of the natural surface waters for the considered elements in the suspended particulate matter, except in metallogenic landscapes, corresponds to the water quality class I of the LAWA. The reference conditions of cadmium and mercury in the total water phase are significantly higher than the quality targets of the LAWA. The evaluated reference data of the other physico‐chemical parameters in the total water phase show, that assessable physico‐chemical parameters refer to a quality class of I, mainly and quality class II, locally. Mainly, the data reached the quality targets of the LAWA. In spite of the hard evaluation criteria to separate reference sites a special enrichment of nitrate and cadmium was found in many German surface water reference catchment types.  相似文献   

16.
Quaternary sedimentation in the Moshaweng dry valley of southeastern Botswana is evaluated on the basis of geomorphological evolution and sedimentological analyses. Stratigraphic evidence reveals an upper surface (1095 m) containing abundant sil‐calcrete, an intermediate surface (1085 m) in which sil‐calcrete underlies nodular calcrete and lower (1075 m) surface in which sil‐calcrete and nodular calcrete are interbedded. This subdivision is reflected in the geochemical composition of the sediments which show an overall trend of decreasing SiO2 content (and increasing CaCO3 content) with depth from the highest to the lowest surface levels. The calcretes and sil‐calcretes represent modifications of pre‐existing detrital Kalahari Group sand and basal Kalahari pebbles which thinned over a Karoo bedrock high. Modification took place during wet periods when abundant Ca++‐rich groundwater flowed along the structurally aligned valley system. With the onset of drier conditions, water table fluctuations led to the precipitation of nodular calcretes in the phreatic layer to a depth of about 20 m. A major geochemical change resulted in the preferential silicification of the nodular calcrete deposits. Conditions for silica mobilization may be related to drying‐induced salinity and in situ geochemical differentiation brought about by pebble dissociation towards the top of the sediment pile. As calcretization and valley formation progressed to lower levels, silica release took place on a diminishing scale. Thermoluminescence dating infers a mid‐Pleistocene age for sil‐calcrete formation suggesting that valley evolution and original calcrete precipitation are much older. Late stage dissolution of CaCO3 from pre‐existing surface calcretes or sil‐calcretes led to the formation of pedogenic case‐hardened deposits during a time of reduced flow through the Moshaweng system possibly during the upper or late Pleistocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, a new sorbent is synthesized using surface imprinting technique. Cu(II)‐imprinted multiwalled carbon nanotube sorbent (Cu(II)‐IMWCNT) is used as the solid phase in the solid‐phase extraction method. After the preconcentration procedure, Cu(II) ions are determined by high‐resolution continuum source atomic absorption spectrometry. A total of 0.1 mol L?1 ethylenediaminetetraacetic acid (EDTA) is used to remove Cu(II) ions from the sorbent surface. The optimum experimental conditions for effective preconcentration of Cu(II), parameters such as pH, eluent type and concentration, flow rate, sample volume, sorbent capacity, and selectivity are investigated. The synthesized solid phase is characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The maximum adsorption capacities of Cu(II)‐IMWCNT and non‐imprinted solid phases are 270.3 and 14.3 mg g?1 at pH 5, respectively. Under optimum experimental conditions for Cu(II) ions, the limit of detection is 0.07 μg L?1 and preconcentration factor is 40. In addition, it is determined to be reusable without significant decrease in recovery values up to 100 adsorption–desorption cycles. Cu(II)‐IMWCNT have a high stability. To check the accuracy of the developed method, certified reference materials, and water samples are analyzed with satisfactory analytical results.  相似文献   

18.
A separation procedure was developed for analysis of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in urban air, while simultaneously eliminating the interfering compounds. This was carried out by optimization of a column chromatograph with regard to the eluent type (n‐hexane and n‐pentane), volume of eluent, type of sorbent material (silica gel and florisil) and activation level of the sorbent material. The determination of the level of PCBs and PAHs was carried out using gas chromatography (GC) equipped with a mass selective detector (MSD), while determination of the OCPs was carried out by GC equipped with an electron capture detector (μ‐ECD). The use of a silica gel column (10 g, 5% deactivated with H2O) with 70 mL of n‐hexane gave satisfactory separation of PCBs from PAHs and OCPs. After collecting the PCBs with 70 mL of n‐hexane, 3·20 mL of n‐hexane:ethyl acetate, (1:1, v:v) was adequate for elution of the PAHs and OCPs from the column. The primary aim of this study was to develop a multimethod for analyses of PCBs, PAHs, and OCPs in urban air as well as reducing solvent and sorbent consumption and analysis time during the clean‐up procedure compared to the US EPA standard methods (EPA methods TO‐13A for PAHs and TO‐4A for both PCBs and OCPs).  相似文献   

19.
This study aims to examine the efficiency of Opuntia ficus‐indica for removing organochlorine pesticides from surface waters. Adsorption properties such as size, dose, and time of O. ficus‐indica for aldrin, dieldrin, and dichlorodiphenyltrichloroethane (DDT) were studied through stirring and column methods. Because of their high affinity and swelling characteristics, dried O. ficus‐indica was studied in stirring while fresh unpeeled O. ficus‐indica was applied in both stirring and column experiments and proved to be well‐suited to column application. Before removing pesticides, the column was flashed with distilled water eliminate the turbidity and smell from fresh unpeeled cactus. The removal of pesticides increased with an increasing adsorbent dose and decreased with adsorbent particle sizes. The optimum adsorbent dose is 10 g for dried and 15 g for fresh unpeeled O. ficus‐indica. The experimental results show that O. ficus‐indica possesses strong adsorption ability for aldrin, dieldrin, and DDT, and the adsorption isotherm data obeyed the Freundlich model. The results of our small‐scale experiments suggest a strong potential to develop local small‐scale water treatment units that can be used at the level of individual households or local communities, using a widely available adsorbent.  相似文献   

20.
An optimized analysis method based on headspace liquid phase microextraction (HS‐LPME) and gas chromatography coupled with mass spectrometry was proposed for the determination of trihalomethanes (THMs) in drinking water. The response surface method (RSM) was used to optimize the extraction of THMs for analysis by HS‐LPME. The temperature, extraction time and NaCl concentration were found to be important extraction parameters. The coefficient of determination (R2) for the model was 94.97%. A high probability value (P < 0.0001) for the regression indicated that the model had a high level of significance. The optimum conditions were seen to be: temperature 42.0°C, NaCl concentration 0.30 g/mL, and extraction time 28 min. The response variable was the summation of the THMs chromatography peak areas and the reproducibility of this was investigated in five replicate experiments under the optimized conditions. The relative standard deviations (RSD%) of the THMs ranged from 8.0–11.6%. The limits of detection (LODs), based on a signal‐to‐noise ratio (S/N) of three ranged from 0.42–0.78 μg/L, and were lower than the maximum limits for THMs in drinking water established by the WHO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号