首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ remediation technologies have the potential to alter subsurface properties such as natural organic matter (NOM) content or character, which could affect the organic carbon‐water partitioning behavior of chlorinated organic solvents, including dense nonaqueous phase liquids (DNAPLs). Laboratory experiments were completed to determine the nature and extent of changes in the partitioning behavior of trichloroethene (TCE) caused by in situ chemical oxidation or in situ surfactant flushing. Sandy porous media were obtained from the subsurface at a site in Orlando, Florida. Experiments were run using soil slurries in zero‐headspace reactors (ZHRs) following a factorial design to study the effects of porous media properties (sand vs. loamy sand with different total organic carbon [TOC] contents), TCE concentration (DNAPL presence or absence), and remediation agent type (potassium permanganate vs. activated sodium persulfate, Dowfax 8390 vs. Tween 80). Results revealed that the fraction of organic carbon (foc) of porous media after treatment by oxidants or surfactants was higher or lower relative to that in the untreated media controls. Isotherm experiments were run using the treated and control media to measure the distribution coefficient (Kd) of TCE. Organic carbon‐water partitioning coefficient values (Koc) calculated from the experimental data revealed that Koc values for TCE in the porous media were altered via treatment using oxidants and surfactants. This alteration can affect the validity of estimates of contaminant mass remaining after remediation. Thus, potential changes in partitioning behavior should be considered to help avoid decision errors when judging the effectiveness of an in situ remediation technology.  相似文献   

2.
The potential effect of two common gasoline additives, ethanol and methyl tertiary-butyl ether (MTBE), on enhancing the solubility of the aromatic solutes benzene, toluene, ethylbenzene, and o-, m-, and p-xylene, was examined using a computer model, ARSOL. Aqueous solute systems containing cosolvents ethanol and MTBE at 0, 0.1, 1, and 4.3 percent were modeled for both ethanol and MTBE systems. Five- and 10-percent ethanol systems were also modeled. Little solubility enhancement was predicted by modeling at cosolvent levels less than 1 percent. At cosolvent levels greater than 1 percent, predicted solute solubility increased curvilinearly with an increase in percent cosolvent; a 10 percent cosolvent system increased aromatic hydrocarbon solubility by approximately 100 percent. According to the model predictions, MTBE enhanced solute solubility more than ethanol, with enhancement by MTBE being approximately 10 percent greater than enhancement by ethanol at 4.3 percent cosolvent. Other concerns regarding gasoline additives are the observed reduction in partitioning of solutes to soils and sediments and the contamination of water supplies due to the high water solubility of the additives.  相似文献   

3.
Ambient air polycyclic aromatic hydrocarbon (PAH) samples were collected at a suburban (n = 63) and at an urban site (n = 14) in Izmir, Turkey. Average gas‐phase total PAH (∑14PAH) concentrations were 23.5 ng m?3 for suburban and 109.7 ng m?3 for urban sites while average particle‐phase total PAH concentrations were 12.3 and 34.5 ng m?3 for suburban and urban sites, respectively. Higher ambient PAH concentrations were measured in the gas‐phase and ∑14PAH concentrations were dominated by lower molecular weight PAHs. Multiple linear regression analysis indicated that the meteorological parameters were effective on ambient PAH concentrations. Emission sources of particle‐phase PAHs were investigated using a diagnostic plot of fluorene (FLN)/(fluorine + pyrene; PY) versus indeno[1,2,3‐cd]PY/(indeno[1,2,3‐cd]PY + benzo[g,h,i]perylene) and several diagnostic ratios. These approaches have indicated that traffic emissions (petroleum combustion) were the dominant PAH sources at both sites for summer and winter seasons. Experimental gas–particle partition coefficients (KP) were compared to the predictions of octanol–air (KOA) and soot–air (KSA) partition coefficient models. The correlations between experimental and modeled KP values were significant (r2 = 0.79 and 0.94 for suburban and urban sites, respectively, p < 0.01). Octanol‐based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. However, overall there was a relatively good agreement between the measured KP and soot‐based model predictions.  相似文献   

4.
Aliphatic hydrocarbons and PAHs in the whole soft tissues of Bathymodiolus azoricus from three Mid-Atlantic Ridge hydrothermal vents (Menez-Gwen, Lucky Strike and Rainbow), and Mytilus galloprovincialis from three contaminated coastal sites in South Portugal were analysed, and its effects on the digestive gland microsomes mixed-function oxygenase system (MFO) were assessed.Aliphatic hydrocarbons levels were present in the same magnitude in both coastal and hydrothermal environments, while the UCM (unresolved complex mixture) for coastal mussels were higher than in vent mussels. In general, significantly higher PAHs concentrations were found in coastal mussels, compared to B. azoricus where low molecular weight PAHs (2–3 rings) represented the majority of PAHs contrarily to what was observed in M. galloprovincialis. The MFO components were present in both mussel species, and were detected in vent mussels for the first time. However this system seems to have different roles in species from these contrasting environments. In coastal mussels MFO responded to hydrocarbon contamination while response in hydrothermal organisms appeared to be related mainly to endogenous factors.  相似文献   

5.
《Marine pollution bulletin》2009,58(6-12):767-774
The occurrence and phase distribution of polycyclic aromatic hydrocarbons (PAHs) in waters at the eight riverine outlets of the Pearl River Delta (China) were examined based on a monthly sampling program from March 2005 to February 2006. The total concentrations of PAHs in the aqueous phase and suspended particulate matter (SPM) combined ranged from 55.5 to 522 ng/L, at the mid level of the global values in rivers and estuaries. No clear temporal and spatial trends of PAH concentrations were found. However, the concentrations of PAHs associated with SPM coincided with the monthly precipitation of Guangzhou, indicating the importance of atmospheric deposition. The PAHs found in the region were likely derived from a combined pyrolytic and petrogenic origin, as suggested by the molecular indices of PAHs. Normalized partition coefficient (Koc) between water and SPM was correlated with octanol–water partition coefficient (Kow) to understand the environmental behavior of PAHs.  相似文献   

6.
Competitive sorption of estriol (E3) and 17α‐ethinylestradiol (EE2) was studied on activated charcoal. Better sorption of E3 (88.9%) and EE2 (69.5%) was observed with single‐solute sorption system than with bi‐solute sorption system. Single‐solute sorption kinetics of E3 and EE2 were evaluated with two (Langmuir and Freundlich) and three (dual mode and Song) parameter models. Freundlich model (R2, 0.9915 (E3); 0.9875 (EE2)) showed good prediction compared to other models for single‐solute sorption. Adsorption capacity documented reduced efficacy (86.4% (E3); 65.9% (EE2)) due to induced competitive behavior between the estrogens in aqueous phase. Bi‐solute adsorption kinetics of E3 and EE2 were described by IAST with two and three parameter models. Among these models, IAST‐Freundlich model (R2, 0.9765 (E3); 0.9985 (EE2)) was best in predicting bi‐solute sorption of E3 and EE2 by activated charcoal. All these models showed favorable representation of both single‐ and bi‐solute sorption behaviors.  相似文献   

7.
The fate and transport of highly hydrophobic chemicals are affected by the partitioning between water and dissolved organic carbon. Large variation in the partition coefficient (KDOCw) is often found, due to the selection of model organic matter or potential experimental artifacts. To investigate the roles of the type of organic matter on the partitioning of highly hydrophobic compounds, the partition coefficients of eight selected polycyclic aromatic hydrocarbons (PAHs), with 3–6 aromatic rings, were determined using a passive dosing/extraction method between water and model dissolved organic matter (humic acid, fulvic acid, sodium dodecyl sulfate micelle (SDS), and 2‐hydroxypropyl‐β‐cyclodextrin). Although the KDOCw values for 3–4 ring PAHs in this study were close to those reported in the literature, experimental KDOCw values between Aldrich humic acid (AHA) and water were higher than values reported in the literature for 5–6 ring PAHs. The KDOCw values were highest for AHA, followed by SDS and Suwannee river fulvic acid (SFA). The slopes of the linear regression between log KDOCw and log Kow were 1.23 (± 0.13), 0.82 (± 0.09), and 0.59 (± 0.13) for AHA, SDS, and SFA, respectively. The differences in the KDOCw values between AHA and the other organic matter (SDS, SFA, and CD) increased with increasing hydrophobicity of the PAHs, showing that the sorption of highly hydrophobic chemicals to the humic acid fraction may be important in the presence of mixed organic matter.  相似文献   

8.
First order removal rates for 15 polyaromatic hydrocarbons (PAHs) in soil, sediments and mangrove leaves were compared in relation to the parameters used in fate transport analyses (i.e., octanol–water partition coefficient, organic carbon–water partition coefficient, solubility, diffusivity in water, HOMO–LUMO gap, molecular size, molecular aspect ratio). The quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) showed that the rate of disappearance of PAHs is correlated with their diffusivities in water as well as molecular volumes in different media. Strong correlations for the rate of disappearance of PAHs in sediments could not be obtained in relation to most of the parameters evaluated. The analyses showed that the QSAR and QSPR correlations developed for removal rates of PAHs in soils would not be adequate for sediments and plant tissues.  相似文献   

9.
The partitioning and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in water, suspended particulate matter (SPM), and fish samples from the Dongjiang River (DR), Pearl River (PR), and the Pearl River Estuary (PRE) were examined. Although PAHs are much lower in PRE than in DR or PR, PAHs in some fish species are significantly higher in PRE than in DR or PR. Aqueous or particulate PAHs respectively show significant correlations with dissolved organic carbon, particulate organic matter, and chlorophyll a, suggesting that biological pumping effect regulates their distribution. The in situ partitioning coefficients (log Koc) for PAHs are one order magnitude higher than the empirical log Koc–log Kow correlation. The bioconcentration factor (BCF) is slightly higher for the marine fish than for the freshwater fish. The above phenomena indicate that BCF may vary due to the diversity of fish species, feeding habits, and metabolism of PAHs in fish.  相似文献   

10.
张雨  晏再生  吴慧芳  江和龙  郝征 《湖泊科学》2018,30(4):1012-1018
沉水植物是浅水湖泊生态系统的关键种群,对水环境质量及水生生态系统结构有重要影响.以东太湖大水港和湖湾区2个典型的具有不同污染程度的沉水植物苦草(Vallisneria natans)生长区域为研究对象,考察苦草对多环芳烃(PAHs)的修复效果.结果表明,经过34 d植物修复试验,重度污染的东太湖大水港沉积物中PAHs的去除率为62%,沉积物中PAHs降解速率为0.024 d-1;而中度污染的东太湖湖湾区沉积物的PAHs去除率为42%,其降解速率为0.015 d~(-1).种植苦草的沉积物中PAHs的降解速率是未种植苦草的降解速率的2~3倍.苦草对沉积物中高分子量PAHs的修复效果尤为显著.因此,苦草可以有效地用于PAHs污染沉积物的修复,尤其是在重污染和高分子量PAHs污染沉积物中,苦草的修复作用更加明显.  相似文献   

11.
The occurrence and phase distribution of polycyclic aromatic hydrocarbons (PAHs) in waters at the eight riverine outlets of the Pearl River Delta (China) were examined based on a monthly sampling program from March 2005 to February 2006. The total concentrations of PAHs in the aqueous phase and suspended particulate matter (SPM) combined ranged from 55.5 to 522 ng/L, at the mid level of the global values in rivers and estuaries. No clear temporal and spatial trends of PAH concentrations were found. However, the concentrations of PAHs associated with SPM coincided with the monthly precipitation of Guangzhou, indicating the importance of atmospheric deposition. The PAHs found in the region were likely derived from a combined pyrolytic and petrogenic origin, as suggested by the molecular indices of PAHs. Normalized partition coefficient (K(oc)) between water and SPM was correlated with octanol-water partition coefficient (K(ow)) to understand the environmental behavior of PAHs.  相似文献   

12.
Urban expansion and the scarcity of water supplies in arid and semiarid regions have increased the importance of urban runoff to localized water resources. However, urban catchment responses to precipitation are poorly understood in semiarid regions where intense rainfall often results in large runoff events during the short summer monsoon season. To evaluate how urban runoff quantity and quality respond to rainfall magnitude and timing, we collected stream stage data and runoff samples throughout the 2007 and 2008 summer monsoons from four ephemeral drainages in Tucson, Arizona. Antecedent rainfall explained 20% to 30% of discharge (mm) and runoff ratio in the least impervious (22%) catchment but was not statistically related to hydrologic responses at more impervious sites. Regression models indicated that rainfall depth, imperviousness and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality did not vary with imperviousness or catchment size. Rainfall depth and duration, time since antecedent rainfall and event and cumulative discharge controlled runoff hydrochemistry and resulted in five specific solute response patterns: (i) strong event and seasonal solute mobilization (solute flush), (ii) event chemostasis and strong seasonal flush, (iii) event chemostasis and weak seasonal flush, (iv) event and seasonal chemostasis and (v) late seasonal flush. Our results indicate that hydrologic responses of semiarid catchments are controlled by rainfall partitioning at the event scale, whereas wetting magnitude, frequency and timing alter solute stores readily available for transport and control temporal runoff quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Polycyclic aromatic hydrocarbons are ubiquitous pollutants in the environment, and most high molecular weight PAHs cause mutagenic, teratogenic and potentially carcinogenic effects. While several strains have been identified that degrade PAHs, the present study is focused on the degradation of PAHs in a marine environment by a moderately halophilic bacterial consortium. The bacterial consortium was isolated from a mixture of marine water samples collected from seven different sites in Chennai, India. The low molecular weight (LMW) PAHs phenanthrene and fluorine, and the high molecular weight (HMW) PAHs pyrene and benzo(e)pyrene were selected for the degradation study. The consortium metabolized both LMW and HMW PAHs. The consortium was also able to degrade PAHs present in crude oil-contaminated saline wastewater. The bacterial consortium was able to degrade 80% of HMW PAHs and 100% of LMW PAHs in the saline wastewater. The strains present in the consortium were identified as Ochrobactrum sp., Enterobacter cloacae and Stenotrophomonas maltophilia. This study reveals that these bacteria have the potential to degrade different PAHs in saline wastewater.  相似文献   

14.
利用干湿沉降采样器、大流量采样器和半渗透膜装置对广州麓湖大气干湿沉降、大气中气态和颗粒态多环芳烃以及水体中溶解态多环芳烃进行了连续一年的采样监测,并在此数据基础上依据多环芳烃在大气和水体间的作用规律,计算了广州麓湖水-气界面上多环芳烃的交换通量.结果显示,每年大气将向麓湖中输送约1300g的多环芳烃,主要以菲为主,占总量的60%以上.而湖水向大气挥发约220g的多环芳烃,主要以萘为主,占总挥发的95%.不同化合物在气水交换中的主要作用方式是不同的,2-3环的化合物主要以气水界面交换为主,5-6环的化合物以颗粒物沉降为主.而4环的化合物则以三种方式并存.不同季节,除了4环的化合物的各种作用方式所占地比重有所变化外,其它化合物变化不大.  相似文献   

15.
The concentrations of 16 US EPA priority pollutant polycyclic aromatic hydrocarbons (PAHs) were analyzed in four size fractions (< 62, 62-125, 125-250, and > 250 microm) in three contaminated Boston Harbor sediments. Total PAH concentrations ranged from 7.3 to 358 microg/g dry wt. and varied largely among the different size fractions in these sediments. For all three sites, the highest PAH concentrations were associated with the large size (> 250 microm) fractions while the fine silt and clay fractions (< 62 microm) contained relatively low PAHs. Despite the great concentration differences, the composition of PAHs in the four size fractions of these sediments showed similar patterns dominated by PAHs with three or more rings. By examining the distribution patterns of selected alkyl homologs to parent compounds, the results indicate that the major PAHs contributing to the high contamination in the inner harbor sediments were from pyrogenic sources. A positive correlation between PAHs and sedimentary organic carbon exists for all size fractions in the sediments. Calculated organic carbon normalized partition coefficients (log K(oc)) for selected major PAHs indicate near-equilibrium partitioning of PAHs among the different size fractions despite their large concentration variations. Sedimentary organic matter associated with different size fractions was the controlling factor for the observed distribution differences of PAHs among the size fractions. Our results also suggest that sedimentary organic matter with different origins and maturities may have somewhat different PAH sorption characteristics. Particulate organic matter of charcoal, plant detritus and Capitella fecal pellets in the sediments appear to sorb PAHs more strongly than organic matter associated with clay minerals. The strong association of PAHs with these organic particles in sediments will have a great influence not only on their distribution but also on long-term environmental impact.  相似文献   

16.
Sorption coefficients measured for PAHs on dissolved humic substances by SPME and FQT were found to be inevitably different and method‐dependent – SPME provides activity‐based and FQT concentration‐based sorption coefficients. Poly(acrylic acid) esters as well‐defined model polymers were used in sorption experiments, leading to the conclusion that short aliphatic chains are more effective in binding PAHs than aromatic moieties. FQT was inappropriate to measure sorption coefficients for the interaction of pyrene with poly(acrylic acid) esters but the experiments revealed a characteristic shift in the fluorescence spectrum. Using pyrene as a probe for the molecular environment in the sorbed state, the observed spectral shift indicated a highly hydrophobic microenvironment. The empirical relationships between lg KDOC and lg KOW were generalized on the basis of a modified Flory‐Huggins concept. Introducing only one sorbent‐specific parameter, the solubility parameter δDOM, the calculation of sorption coefficients became possible for a wide range of HOCs using fundamental data readily available from the literature. Long‐term experiments showed that reactive PAHs (such as acenaphthylene and 9‐methylanthracene) are able to react with HAs under strictly abiotic and anoxic conditions, whereas less reactive PAHs (such as naphthalene and dihydroanthracene) do not form bound residues. The HA reveals two functions in the interaction, behaving as a reaction partner and as a protecting ligand.  相似文献   

17.
The concentrations of dissolved and particulate polycyclic aromatic hydrocarbons (PAHs) were monitored in waters of the Rhône River (France) every fortnight for a full calendar year, from June 1994 to May 1995. All flood events occurring over the course of the experiment were sampled at higher frequency to better quantify the impact of these extreme hydrological episodes on the annual export of PAHs to the Mediterranean Sea. This time-series indicates that more than 90% of the annual load of particulate PAHs is transported during flood episodes, with 77% discharged during the course of only one extreme flood event occurring in November 1994. During these intense events, riverine particles are depleted in PAHs while at low river discharge particles are PAH-enriched. Dissolved PAHs were less variable and less abundant than adsorbed PAHs, consistently with the low solubility of these compounds.  相似文献   

18.
Twentyfive years of research on the effects of acid rain on rivers and lakes has, to a very small extent, documented changes in the nature and properties of natural organic matter (NOM). In Western Norway, a "whole-watershed-artificial-acidification-experiment" took place in the period 1988–1996. The goals of this long-term experiment were to study the role of NOM in acidification of surface water and the effects of acid precipitation on the quality and properties of NOM. In the HUMEX project (Humic Lake Acidification Experiment) one half of a lake and the corresponding catchment was artificially acidified with H2SO4 and NH4NO3 over a period of 5 years. The other half of the lake and catchment served as a control. In addition to monitoring of the general chemical composition of the water from the two lake halves, a number of other chemical and biological characteristics were studied. Here, we report the results related to changes in the nature and chemical properties of NOM. During the first few years of acidification, a significantly lower concentration of NOM was recorded in the acidified half of the catchment, compared with the control. However, statistical analyses of all data (covering a 2-years pre-treatment period and 5 years of treatment) related to the concentration of NOM (TOC, colour, and UV absorbance) did not suggest any significant effect on the quantity of NOM. This apparent discrepancy between the initial decrease in the concentration of NOM and no effect when the whole 5-years period is considered, may be due to the results of two different simultaneous processes. The results suggest that there first was a reduction of TOC and colour, as a consequence of the acidification, followed by an increase, perhaps owing to increased fertilisation (nitrogen) and in addition to a general temperature increase during the period. In addition, short-term studies of the aquatic surface microlayers, lipophilicity of the NOM, content of organic sulfur, and molecular size indicate differences in the quality of the NOM between the two lake halves, which could affect light absorption.  相似文献   

19.
《Marine pollution bulletin》2009,58(6-12):529-537
Aliphatic hydrocarbons and PAHs in the whole soft tissues of Bathymodiolus azoricus from three Mid-Atlantic Ridge hydrothermal vents (Menez-Gwen, Lucky Strike and Rainbow), and Mytilus galloprovincialis from three contaminated coastal sites in South Portugal were analysed, and its effects on the digestive gland microsomes mixed-function oxygenase system (MFO) were assessed.Aliphatic hydrocarbons levels were present in the same magnitude in both coastal and hydrothermal environments, while the UCM (unresolved complex mixture) for coastal mussels were higher than in vent mussels. In general, significantly higher PAHs concentrations were found in coastal mussels, compared to B. azoricus where low molecular weight PAHs (2–3 rings) represented the majority of PAHs contrarily to what was observed in M. galloprovincialis. The MFO components were present in both mussel species, and were detected in vent mussels for the first time. However this system seems to have different roles in species from these contrasting environments. In coastal mussels MFO responded to hydrocarbon contamination while response in hydrothermal organisms appeared to be related mainly to endogenous factors.  相似文献   

20.
The distribution of polycyclic aromatic hydrocarbons (PAHs) between various phases is fundamental in the control of their movement and impact in the marine environment. In this study samples of water and sediments were regularly collected from Brighton marina, UK, to quantify the intensity, spatial and temporal variations of PAH contamination. The results show clearly that PAH behaviour in marine systems is highly complex, and controlled by the interplay of PAH sources, compound physicochemical properties, water and sediment movement, and field conditions. Levels of total PAHs (16 compounds) in the dissolved phase were found to vary between <2 and 11,400 ng/l, with higher values observed in the winter months. Total PAH concentration in sediment samples varied between 24 and 4710 ng/g dry weight. PAHs in water were dominated by low molecular mass compounds (2-ring), while PAHs in sediments were mainly derived from 2-4 ring compounds. In addition, dissolved concentrations were increased during sediment dredging and after a period of severe rainfall. PAHs in Brighton marina are likely to be from both pyrolytic and petrogenic sources; as a result, field-derived distribution coefficients for individual PAHs between sediment and water tend to follow the equilibrium partition models, although slight exceedance is apparent. The extended partition model incorporating soot carbon has achieved limited success in better predicting PAH behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号