首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
An analytical representation and observational verification of a new harmonic scheme for the local system are presented. In it massive shell structures (spurs) play a dominant role, in combination with belts of stars, gas and dust. The geometry of the triaxial local system is closely coupled to the ecliptic coordinate system. Each axis has its own equator and its own discrete, periodic system of meridians. The largest axis, z, is normal to the S plane passing through the cores of four spurs (I-IV). Six meridians intersect along this axis, including the Gould belt (GB), the Vaucouleurs-Dolidze (V-D) belt, and the G plane, which is perpendicular to the ecliptic E at the solstice points. Four meridians, including E and S, intersect along the middle axis x, which coincides with the equinoctial line. The z axis is inclined by H"45° to E and by H"21° to the galactic plane. The overall number of nonrepeating principal planes in the local system is nine. Counts of stars brighter than V=9m confirms that they are concentrated along all the principal planes. As a symmetry plane, the meridian perpendicular to the Gould belt ( GB) divides the system of spurs into two groups: (I, IV, Dor) and (II, III, Eri). Each encompasses a grid of 5 halves of the z meridians and isolates a group and the spurs within the group. At the same time, as bridges the x meridians and their equator G couple the cores of some of the spurs with the shells of others both within their own and in opposite groups. The convergence of the meridians (belts) to the X, Y, and Z poles couples all the details with the local system as a whole. The symmetry of the local system with its discrete elements resembles a crystal.  相似文献   

2.
The model of a Local Hot Bubble has been widely accepted as providing a framework that can explain the ubiquitous presence of the soft X-ray background diffuse emission. We summarize the current knowledge on this local interstellar region, paying particular reference to observations that sample emission from the presumed local million degree K hot plasma. However, we have listed numerous observations that are seemingly in conflict with the concept of a hot Local Bubble. In particular, the discovery of solar wind charge exchange that can generate an appreciable soft X-ray background signal within the heliosphere, has led to a re-assessment of the generally accepted model that requires a hot local plasma. In order to explain the majority of observations of the local plasma, we forward two new speculative models that describe the physical state of the local interstellar gas. One possible scenario is similar to the present widely accepted model of the Local Hot Bubble, except that it accounts for only 50% of the soft X-ray emission currently detected in the galactic plane, has a lower thermal pressure than previously thought, and its hot plasma is not as hot as previously believed. Although such a model can solve several difficulties with the traditional hot Local Bubble model, a heating mechanism for the dimmer and cooler gas remains to be found. The second possible explanation is that of the ‘Hot Top’ model, in which the Local Cavity is an old supernova remnant in which no (or very little) million degree local plasma is presently required. Instead, the cavity is now thought to be filled with partially ionized cloudlets of temperature ∼7000 K that are surrounded by lower density envelopes of photo-ionized gas of temperature ∼20,000 K. Although this new scenario provides a natural explanation for many of the observations that were in conflict with the Local Hot Bubble model, we cannot (as yet) provide a satisfactory explanation or the emission levels observed in the B and Be ultra-soft X-ray bands.  相似文献   

3.
We present results from a large scale R-band survey of the nearby Leo I group to measure the luminosity function down to dwarf spheroidal luminosities and surface brightnesses. This program has utilized>7 square degrees of imaging with the Mosaic camera at the KPNO 0.9mand extensive, on-going spectroscopic follow-up. We estimate our completeness from simulations to be 90% at μR(0) ≃ 24.5, M R ≃ –11.Leo I is a nearby, low-density group for which a steep faint-end slope has been suggested (Ferguson and Sandage, 1991).We find the luminosity function to be more similar to that of the Local Group at the faint-end (flat).We also find an unusual gap in the luminosity function at intermediate luminosities, –19.5 < M R < –16. This gap cannot be explained by pure Poisson fluctuations around a typical Schechter function, nor is it likely to result from photometric incompleteness. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We performed a photometric multicolour survey of the core of the Canis Major overdensity at     , reaching   V ∼ 22  and covering  0.3 × 1.0  arcmin2. The main aim is to unravel the complex mixture of stellar populations toward this Galactic direction, where in the recent past important signatures of an accretion event have been claimed to be detected. While our previous investigations were based on disjointed pointings aimed at revealing the large-scale structure of the third Galactic Quadrant, we now focus on a complete coverage of a smaller field centred on the Canis Major overdensity. A large wavelength baseline, in the UBVRI bands, allows us to build up a suite of colour–colour and colour–magnitude diagrams, providing a much better diagnostic tool to disentangle the stellar populations of the region. In fact, the simple use of one colour–magnitude diagram, widely employed in all the previous studies defending the existence of the Canis Major galaxy, does not allow one to separate the effects of the different parameters (reddening, age, metallicity and distance) involved in the interpretation of data, forcing to rely on heavy modelling. In agreement with our previous studies, in the same general region of the Milky Way, we recognize a young stellar population compatible with the expected structure and extension of the Local (Orion) and Outer (Norma–Cygnus) spiral arms in the Third Galactic Quadrant. Moreover, we interpret the conspicuous intermediate-age metal-poor population as belonging to the Galactic thick disc, distorted by the effect of strong disc warping at this latitude, and to the Galactic halo.  相似文献   

5.
We have studied the radial distribution of the early (E/S0) and late (S/Irr) types of satellites around bright host galaxies. We made a volume-limited sample of 4986 satellites brighter than   M r=−18.0  associated with 2254 hosts brighter than   M r=−19.0  from the Sloan Digital Sky Survey Data Release 5 sample. The morphology of satellites is determined by an automated morphology classifier, but the host galaxies are visually classified. We found segregation of satellite morphology as a function of the projected distance from the host galaxy. The amplitude and shape of the early-type satellite fraction profile are found to depend on the host luminosity. This is the morphology–radius/density relation at the galactic scale. There is a strong tendency for morphology conformity between the host galaxy and its satellites. The early-type fraction of satellites hosted by early-type galaxies is systematically larger than that of late-type hosts, and is a strong function of the distance from the host galaxies. Fainter satellites are more vulnerable to the morphology transformation effects of hosts. Dependence of satellite morphology on the large-scale background density was detected. The fraction of early-type satellites increases in high-density regions for both early- and late-type hosts. It is argued that the conformity in morphology of galactic satellite system is mainly originated by the hydrodynamical and radiative effects of hosts on satellites.  相似文献   

6.
As stars close to the galactic centre have short orbital periods it has been possible to trace large fractions of their orbits in the recent years. Previously the data of the orbit of the star S2 have been fitted with Keplerian orbits corresponding to a massive black hole (MBH) with a mass of MBH = 3–4 × 106M implying an insignificant cusp mass. However, it has also been shown that the central black hole resides in a ∼1″ diameter stellar cluster of a priori unknown mass. In a spherical potential which is neither Keplerian nor harmonic, orbits will precess resulting in inclined rosetta shaped trajectories on the sky. In this case, the assumption of non‐Keplerian orbits is a more physical approach. It is also the only approach through which cusp mass information can be obtained via stellar dynamics of the cusp members. This paper presents the first exemplary modelling efforts in this direction. Using positional and radial data of star S2, we find that there could exist an unobserved extended mass component of several 105M forming a so‐called ‘cusp’ centered on the black hole position. Considering only the fraction of the cusp mass Mequation/tex2gif-inf-4.gif within the apo‐center of the S2 orbit we find as an upper limit that Mequation/tex2gif-inf-6.gif/(MBH + Mequation/tex2gif-inf-9.gif) ≤ 0.05. A large extended cusp mass, if present, is unlikely to be composed of sub‐solar mass constituents, but could be explained rather well by a cluster of high M/L stellar remnants, which we find to form a stable configuration. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Taking advantage of recent Hubble Space Telescope ( HST ) data for field stars in the region of the Galactic globular cluster NGC 6397, we tested the predictions of several Galactic models with star counts reaching a largely unexplored range of magnitudes, down to V ∼26.5. After updating the input stellar ( V − I ) colours, we found that the two-component Bahcall–Soneira (B&S) model can be put into satisfactory agreement with observations for suitable choices of disc/spheroid luminosity functions (LFs). However, if one assumes the disc LF of Gould, Bahcall and Flynn together with the spheroid LF of Gould, Flynn and Bahcall, there is no way to reconcile the predicted and observed V -magnitude distribution. We also analysed the agreement between observed and predicted magnitude and colour distributions for two selected models with a thick disc component. Even in this case there are suitable combinations of model parameters and faint-magnitude LFs that can give a reasonable agreement with observational star counts in both magnitude and colour. However, the above-quoted combination of Gould et al. LFs again gives predictions in clear disagreement with observations.  相似文献   

8.
The effects of the tidal interactions between two coaxial, homogeneous spheroids, one (the “Brigt Component”: B) completely embedded in the other (the “Dark Halo”: D), along a quasi-static contraction, are considered. The aim is to look how the dynamical properties and the final morphology of the B subsystem may be affected by the presence of the D component. Three initial configurations are considered: the quasi-spherical “Dark Halo” D coincides with the “Visible Component” B (case C); D is flatter than B but the two spheroids have the same semiminor axis (case N); no D component is assumed; the “visible” spheroid is single (case S). The application to an evolutionary disk-galaxy model is considered under some simple assumptions: i) in cases C and N the spheroidal halo is massive (mass ratio “dark”/“bright” about ten) and dissipationless. For a mass ratio like this, the tidal interaction of the B component over D turns to be negligible in the course of the contraction; adding to that the lack of dissipation, it appears plausible to take the D component as frozen along the evolution; ii) the degree of anisotropy and the angular momentum of B, JB, are conserved. The conservation of JB provides us the time-independent relationship among the key physical quantities and gives the possibility to draw the evolutionary tracks on the plane (axis ratio σB, semimajor axis aB) without any explicit time-scale; iii) the global “star formation rate” is parametrized according to a simple “Schmidt power law” proportional to the square of gas density. At every step of the quasi-static contraction, the structure is determined by the tensor virial theorem extended to a double configuration. The model is very idealized, particularly because there are no available tidal gravitational terms other than for the case of two homogeneous. Nevertheless, the method based on the tensor virial appears powerful to gain insight into the correlations among the physical quantities involved and into their trend along the evolution. One of the main result is a clear indication of a leading role played by the axis ratio of the “Dark-Halo” component which might be, to the extent that this simple picture can be compared with a real galactic system, a possible new physical parameter to be added to mass and angular momentum for separating spirals from S0 galaxies.  相似文献   

9.
We use the very large Millennium Simulation of the concordance Λ cold dark matter cosmogony to calibrate the bias and error distribution of Timing Argument estimators of the masses of the Local Group and of the Milky Way. From a large number of isolated spiral–spiral pairs similar to the Milky Way/Andromeda system, we find the interquartile range of the ratio of timing mass to true mass to be a factor of 1.8, while the 5 and 95 per cent points of the distribution of this ratio are separated by a factor of 5.7. Here, we define true mass as the sum of the 'virial' masses, M 200, of the two dominant galaxies. For present best values of the distance and approach velocity of Andromeda, this leads to a median likelihood estimate of the true mass of the Local Group of  5.27 × 1012 M  or  log  M LG/M= 12.72  , with an interquartile range of [12.58, 12.83] and a 5–95 per cent range of [12.26, 13.01]. Thus, a 95 per cent lower confidence limit on the true mass of the Local Group is  1.81 × 1012 M  . A timing estimate of the Milky Way's mass based on the large recession velocity observed for the distant satellite Leo I works equally well, although with larger systematic uncertainties. It gives an estimated virial mass for the Milky Way of  2.43 × 1012 M  with a 95 per cent lower confidence limit of  0.80 × 1012 M  .  相似文献   

10.
We use an N -body/hydrodynamic simulation to forecast the future encounter between the Milky Way and the Andromeda galaxies, given present observational constraints on their relative distance, relative velocity, and masses. Allowing for a comparable amount of diffuse mass to fill the volume of the Local Group, we find that the two galaxies are likely to collide in a few billion years – within the Sun's lifetime. During the interaction, there is a chance that the Sun will be pulled away from its present orbital radius and reside in an extended tidal tail. The likelihood for this outcome increases as the merger progresses, and there is a remote possibility that our Sun will be more tightly bound to Andromeda than to the Milky Way before the final merger. Eventually, after the merger has completed, the Sun is most likely to be scattered to the outer halo and reside at much larger radii (>30 kpc). The density profiles of the stars, gas and dark matter in the merger product resemble those of elliptical galaxies. Our Local Group model therefore provides a prototype progenitor of late-forming elliptical galaxies.  相似文献   

11.
This paper presents an analysis of the first 2MASS (The Two Micron All Sky Survey) sampler data as observed at lower Galactic latitude in our Galaxy. These new near-infrared data provide insight into the structure of the thin disk of our Galaxy, The interpretation of star counts and color distributions of stars in the near-infrared with the synthetic stellar population model, gives strong evidence that the Galactic thin disk density scale length,h R , is rather short (2.7 ± 0.1 kpc).  相似文献   

12.
We study the gravitational lensing effects of spiral galaxies by taking a model of the Milky Way and computing its lensing properties. The model is composed of a spherical Hernquist bulge, a Miyamoto–Nagai disc and an isothermal halo. As a strong lens, a spiral galaxy like the Milky Way can give rise to four different imaging geometries. They are (i) three images on one side of the galaxy centre ('disc triplets'), (ii) three images with one close to the centre ('core triplets'), (iii) five images and (iv) seven images. Neglecting magnification bias, we show that the core triplets, disc triplets and fivefold imaging are roughly equally likely. Even though our models contain edge-on discs, their image multiplicities are not dominated by disc triplets. The halo is included for completeness, but it has a small effect on the caustic structure, the time delays and brightnesses of the images.
The Milky Way model has a maximum disc (i.e. the halo is not dynamically important in the inner parts). Strong lensing by nearly edge-on disc galaxies breaks the degeneracy between the relative contributions of the disc and halo to the overall rotation curve. If a spiral galaxy has a submaximum disc, then the astroid caustic shrinks dramatically in size, whilst the radial caustic shrinks more modestly. This causes changes in the relative likelihood of the image geometries, specifically (i) core triplets are now ∼9/2 times more likely than disc triplets, (ii) the cross-section for threefold imaging is reduced by a factor of ∼2/3, whilst (iii) the cross-section for fivefold imaging is reduced by ∼1/2. Although multiple imaging is less likely (the cross-sections are smaller), the average total magnification is greater. The time delays are smaller, as the total projected lensing mass is reduced.  相似文献   

13.
14.
王涛 《天文学进展》2007,25(4):384-391
针对昆明VLBI观测站终端设备(S3数据采集系统)的特殊性,设计在标准的终端控制计算机(Field System)上能够控制相应硬件设备的软件.S3数据采集系统包括SX接收机、中频分配器、视频转换器、时延计数器、噪声控制开关和气象数据自动采集仪.设计过程中,考虑到软件的可读性和可维护性,各种设备分别用相应的子函数来完成具体功能,各子函数由主程序调用.在完成程序安装后,经测试能与S3数据采集系统进行良好的通讯,达到控制各硬件设备的目的及满足实际测控工作的需要.  相似文献   

15.
The classical assumption that most globular clusters (hereafter GC) formed in situ in galactic halos is examined in an approximate, empirical way. Although this viewpoint is not rejected per se, an alternative possibility is investigated: the presence of multiple resonances in the galactic disk, together with the concurrent action of a resonant internal bar or distortion, may stir these resonances. This may lead to chaotic motion which breaks the action of the third integral for moderately eccentric orbits. These circumstances may consequently allow the formation of some GC’s in the disk with moderate to highly eccentric orbits, with the action of the resonant bar subsequently gradually driving them (as well as other stars with similar orbits) to spend most of their time in the Galaxy’s halo. The size of the resonant region and the probable effectiveness of the various agents in the associated phase space in the axisymmetric model are listed. An n-body simulation would be required to establish this proposal in a fully self-consistent way. Paper presented at the Division of Dynamical Astronomy Meetings in Halifax, N.S., Canada, June 2006.  相似文献   

16.
17.
The halo structure at high Galactic latitudes near both the north and south poles is studied using Sloan Digital Sky Survey (SDSS) and SuperCOSMOS data. For the south cap halo, the archive of the SuperCOSMOS photographic photometry sky survey is used. The coincident source rate between SuperCOSMOS data in B J band from 16.5 to 20.5 mag and SDSS data is about 92 per cent, in a common sky area in the south. While that in the R F band is about 85 per cent from 16.5 to 19.5 mag. Transformed to the SuperCOSMOS system and downgraded to the limiting magnitudes of SuperCOSMOS, the star counts in the North Galactic Cap from SDSS show up to an  16.9 ± 6.3  per cent  asymmetric ratio (defined as relative fluctuations over the rotational symmetry structure) in the B J band, and up to  13.5 ± 6.7  per cent  asymmetric ratio in the R F band. From SuperCOSMOS B J and R F bands, the structure of the Southern Galactic hemisphere does not show the same obvious asymmetric structures as the northern sky does in both the original and downgraded SDSS star counts. An axisymmetric halo model with n = 2.8 and q = 0.7 can fit the projected number density from SuperCOSMOS fairly well, with an average error of about 9.17 per cent. By careful analysis of the difference of star counts between the downgraded SDSS northern halo data and SuperCOSMOS southern halo data, it is shown that no asymmetry can be detected in the South Galactic Cap at the accuracy of SuperCOSMOS, and the Virgo overdensity is likely a foreign component in the Galactic halo.  相似文献   

18.
We analyse a sample of 507 evolved (OH/IR) stars in the region (10°>ℓ>−45°), (| b |<3°). We derive average ages for subsets of this sample, and use those sets as beacons for the evolution of the Galaxy. In the bulge, the oldest OH/IR stars in the plane are 7.5 Gyr (1.3 M), and in the disc 2.7 Gyr (2.3 M). The vertical distribution of almost all AGB stars in the disc is found to be nearly exponential, with scaleheight increasing from 100 pc for stars ≲1 Gyr old to 500 pc for stars ≳5 Gyr old. There may be a small, disjunct population of OH/IR stars. The radial distribution of AGB stars is dictated by the metallicity gradient. Unequivocal morphological evidence is presented for the existence of a central bar, but parameters can be constrained only for a given spatial-density model. Using a variety of indicators, we identify the radii of the inner ultraharmonic (2.5 kpc) and corotation resonance (3.5 kpc). We show that the 3-kpc arm is likely to be an inner ring, as observed in other barred galaxies, by identifying a group of evolved stars that is connected to the 3-kpc H  i filament. Also, using several observed features, we argue that an inner-Lindblad resonance exists, at ∼1–1.5 kpc. The compositions of OH/IR populations within 1 kpc of the Galactic Centre give insight into the bar-driven evolution of the inner regions. We suggest that the bar is ∼8 Gyr old, relatively weak (SAB), and may be in a final stage of its existence.  相似文献   

19.
We present high-resolution Utrecht Echelle Spectrograph spectra of the quasar PHL 957, obtained in order to study the foreground damped Lyα (DLA) galaxy at z =2.309. Measurements of absorption lines lead to accurate abundance determinations of Fe, S and N which complement measurements of Zn, Cr and Ni already available for this system. We find [Fe/H]=−2.0±0.1, [S/H]=−1.54±0.06 and [N/H]=−2.76±0.07. The ratio [Fe/Zn]=−0.44 provides evidence that ≈74 per cent of iron and ≈28 per cent of zinc are locked into dust grains with a dust-to-gas ratio of ≈3 per cent of the Galactic one. The total iron content in both gas and dust in the DLA system is [Fe/H]=−1.4. This confirms a rather low metallicity in the galaxy, which is in the early stages of its chemical evolution. The detection of S ii allows us to measure the S ii /Zn ii ratio, which is a unique diagnostic tool for tracing back its chemical history, since it is not affected by the presence of dust. Surprisingly, the resulting relative abundance is [S/Zn]=0.0±0.1, at variance with the overabundance found in the Galactic halo stars with similar metallicity. We emphasize that the [S/Zn] ratio is solar in all the three DLA absorbers with extant data. Upper limits are also found for Mn, Mg, O and P and, once the dust depletion is accounted for, we obtain [Mg/Fe]c<+0.2, [O/Fe]c<+0.4, [Mn/Fe]c<+0.0 and [P/Fe]c<−0.7. The [α/Fe] values do not support Galactic halo-like abundances, implying that the chemical evolution of this young galaxy is not reproducing the evolution of our own Galaxy.  相似文献   

20.
A study of four open clusters in the direction of the Galactic anticentre (l = 186°, b = +2°) is presented. In a field of 8.32 square degrees proper motions and B magnitudes for about 79 000 stars down to 19.5 were determined on Tautenburg Schmidt plates. For more than 15 500 of them U magnitudes down to 17.3 could be obtained. Additionally, OCA Schmidt plates were used to determine V, R magnitudes in a larger field of 24.45 square degrees for 271 000 stars down to V = 18.2. For stars brighter than V = 15.5 an accuracy of about 1.5 mas/yr has been estimated for proper motions. The rms errors of stellar magnitudes and colour indices are 0.09 – 0.12 mag. Several open clusters have been already known in this direction of the sky, e.g. NGC 2168 or M 35 (C 0605+243), NGC 2158 (C 0604+241) and IC 2157 (C 0601+240). Inspecting the plates and analysing the colour-magnitude diagrams and published data, we could identify an additional anonymous cluster C 0605+242 with a projection on the sky near the centre of M 35 but at a larger distance from the Sun. The cluster membership determination was carried out using information on spatial and proper motion distributions of stars in the field. The colour-magnitude diagrams were derived down to the limiting stellar magnitude. For each cluster the interstellar extinction Av, the diameters of the core and corona, the ages and spatial velocity components (V,W) relative to the LSR in the Y,Z – Galactic directions were determined. The distances to the clusters of 960 pc, 2 600 pc, 2 520 pc and 3 700 pc were obtained for M 35, IC 2157, C 0605+242 and NGC 2158. They show the loci of the clusters in the Local and Perseus spiral arms and at external border of Perseus arm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号