首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Frome near Stroud is an unusual example of a Cotswold stream that flows west, against regional topographic and geological dips. As a result, a deeply incised and irregularly indented valley has been carved through a succession of Jurassic strata of varying competencies and permeabilities. The landscape has been modified by intense, locally variable periglacial erosion during Devensian times, resulting in a number of characteristic landforms including landslip, valley bulging, and limestone cambering. This study assesses the importance of spring and river discharge upon the sculpting of such a unique landscape. An extensive discharge survey of 67 hillside springs has revealed two well defined springlines that form at stratigraphical interfaces. Groundwater issues in greater abundance from the lower, Inferior Oolite, aquifer; discharge here is more regular throughout the year. Groundwater flow is a function of the regional SE strata dip, and of the heavily fissured character of the limestone, which provides rapid preferential flow pathways. Discharge of the River Frome was measured at four localities and cannot be explained by a simple model using upstream drainage area, as the channel can run completely dry over limestone in summer. The position of the springs has influenced the development of a line of settlements along the valley sides, as well as the proliferation of industry in the valley floor, with mills sited at points of high stream power. Geology affects valley shape, width, and orientation; the structure of the jointed limestone aquifer guides spring discharge and the orientation of many dry valleys.  相似文献   

2.
以现代岩溶理论为指导,应用"印模与残厚组合法"恢复岩溶古地貌,在4种二级地貌类型(岩溶高地、岩溶陡坡地、岩溶缓坡地和岩溶盆地)划分的基础上,将塔里木盆地轮古东地区前石炭纪古岩溶地貌进一步划分为峰丛洼地、丘峰谷地、溶丘洼地、峰丛垄脊沟谷、峰丘洼地、丘丛垄脊沟谷、岩溶谷地、溶丘平原等8种三级地貌类型。并在垂向岩溶分带研究的基础上,明确了不同古岩溶地貌条件下的岩溶发育特征及充填机制。研究认为:岩溶高地为区域补给区,发育溶蚀裂缝和溶洞系统;岩溶陡坡地为补给-径流区,以高角度溶蚀裂缝为主;岩溶缓坡地为地下水径流区,发育暗河管道系统;岩溶盆地为排泄区,岩溶缝洞充填程度高。  相似文献   

3.
In a confined alluvial aquifer located between two rivers, discrete zones of anomalously high concentrations of redox species such as iron, are thought to be a result of groundwater flow dynamics rather than a chemical evolution along continuous flow paths. This new hypothesis was confirmed at a study site located between Nan and Yom rivers in Phitsanulok, Thailand, by analyzing concentrations of redox species in comparison with dynamic groundwater flow patterns. River incision into the confined alluvial aquifer and seasonally varying river stages result in truncated flow paths. The groundwater flow dynamics between two rivers has four phases that are cyclic, including: aquifer discharge into both rivers, direct flow from one river toward another, aquifer recharge from both rivers, and reverse of river-to-river flow. The resulting groundwater flow direction has a zigzag pattern and its general trend is almost parallel to the river flow. High iron anomaly appears as discrete zones in the transition areas of the confined alluvial aquifer because the lateral recharge from rivers penetrates into the aquifer only by tens of meters. The high iron anomaly, which is nearly constant in space and time, is a result of groundwater/surface-water interactions and related groundwater flow dynamics.  相似文献   

4.
One of the major geological structures across the Brahmaputra valley, which stretches from the Eastern Himalayas up to the Naga Hills, is the Bomdila Fault. Parts of the courses of the rivers – the Brahmaputra, Dhansiri (south-S), Bargang and many others – are aligned along this structure. The influence of this structure on the courses of these rivers has been studied in detail using topographic maps, satellite data and field evidences. The signatures obtained such as: (a) an unusually linear course of the lower part of the Dhansiri (S) river from Golaghat up to Dhansirimukh, (b) the abandonment of the westerly course of the earlier Dhansiri (S) river (flowing through Kaziranga) towards the present NW direction by avulsion, (c) knick bends in the MBT–MCT and Naga Thrust of Belt of Schuppen, (d) a linear 15 m high topographic scarp on the left bank of the Dhansiri (S) near Numaligarh and (e) an anomalous SE–NW trending course of the Brahmaputra from Dhansirimukh up to Hartamuli along with the parts of the rivers Buroi and Bargang on the north in the same trend infers the influence of a fault-type structure. Since all these linear segments of the rivers align along the NW–SE trending Bomdila Fault, it infers the influence of the later on the courses of these rivers. The neotectonic activity along this fault might have caused the linear high scarp and abandonment of earlier river courses.  相似文献   

5.
The purpose of this study is to evaluate the groundwater-withdrawal potential of the Fraser River watershed, a mountainous drainage system in north-central Colorado. Laboratory tests, field investigations, and numerical modeling are conducted to present a quantitative understanding of the watershed’s groundwater-flow system. Aquifer hydraulic conductivity values obtained from aquifer tests range from 1E?5 to 1E?3 m/s. Groundwater withdrawal is concentrated in channel-fill deposits of the Troublesome Formation within the Fraser basin. A steady state groundwater-flow model of the Fraser River watershed is developed and calibrated using 24 observation wells in the Fraser River valley and estimated baseflow of the Fraser River. Modeling results suggest that surface recharge is the major source of groundwater in the watershed. Groundwater exits the watershed through evapotranspiration and discharge to rivers. Transient groundwater-flow modeling evaluates future withdrawal scenarios using the hydraulic head distribution from the steady state model as the initial condition. Drawdown within Troublesome Formation aquifers from the current pumping schedule approaches 2 m. When the daily pumping rate is doubled, drawdown approaches 4 m. The radius of influence is hundreds of meters to 1 km. Pumping wells withdraw approximately 2 and 15 % of groundwater flowing through the well field for hydraulic conductivity of 1E?3 and 1E?5 m/s, respectively. This study suggests that the groundwater system at the Fraser Valley could sustain current and future withdrawals, given that the current recharge condition is maintained.  相似文献   

6.
The present study aims to explain the spatial and temporal variability in phases of aggradation/incision in response to changes in climate and seismicity during the late Quaternary in the Alaknanda River valley (a major tributary of the river Ganges or Ganga). Geomorphology, stratigraphy and optical dating of the fluvial sediment reveal that the oldest fluvial landforms preserved in the south of the Main Central Thrust are debris flow terraces developed during the early part of pluvial Marine Isotopic Stage 3. Following this, a period of accelerated incision/erosion owing to an increase in uplift rate and more intense rainfall occurred. In the Lesser Himalaya, three phases of valley fill aggradation around 26 ± 3 ka, 18 ± 2 ka and 15 ± 1 ka and 8 ± 1 ka occurred in response to changes in monsoon intensity and sediment flux. The last phase was regionally extensive and corresponds to a strengthening of the early Holocene Indian Summer Monsoon. A gradual decline in the monsoon strength after 8 ± 1 ka resulted in reduced fluvial discharge and lower sediment transport capacity of the Alaknanda River, leading to valley fill incision and the development of terraces. The study suggests that fluvial dynamics in the Alaknanda valley were modulated by monsoon variability and the role of tectonics was subordinate, limited to providing accommodation space and post‐deposition modification of the fluvial landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Late Cenozoic environmental changes which affected European rivers are reviewed, focusing especially on those of mid-Pleistocene times (c.1.2–0.8 Ma or around MIS 22) and thereafter. These involved dominating but fluctuating cold-climate (periglacial) conditions, shorter but major episodes of glaciation, and brief interglacials. There were also related sea-level and tectonic responses. The known history of European rivers in this period is individually varied, but is predominantly marked by multiple stages of episodic incision the form of which changed in style at around the ‘mid-Pleistocene transition’. It is suggested that the nature of climatic oscillations, the dating of incision episodes and the processes that achieve this incision are as yet insufficiently understood.Fluvial process studies suggest that the onset of incision may broadly relate to changes in slope, discharge, sediment load and calibre, and bedrock erodibility, and these may all have been transformed as the direct or indirect result of mid-Pleistocene climatic changes. Common properties of basal sediments on strath terraces suggest that it was during the extended but variable cold-stage episodes that both valley deepening and lateral widening occurred, and that climatic change was the principal driver of episodic deep valley incision.  相似文献   

8.
The longitudinal profiles of the main N–S aligned rivers and the crests of the interfluve mountain ranges of Bhutan have been plotted against latitude. The river profiles are highly variable, even between branches of the same system. The main rivers in Eastern Bhutan are antecedent and rise in Tibet. They have irregular concave bed profiles in deep steeply sided valleys. The rivers further west rise on the southern slopes of the High Himalaya. They have stepped profiles with steep concave sections in gorges through the southern mountains and one or more concave sections upstream, separated by knickpoints. All of the N–S interfluve ranges rise steeply from the piedmont. Some then dip to major passes before again rising irregularly northwards to the High Himalaya, whilst others continue to climb northwards as irregular monoclines. The combination of various types of river and interfluve profiles creates a range of valley forms. The heterogeneity means that it is not possible to generalise about a typical Bhutanese river, interfluve or valley relief profile. There is no indication that the rivers of Bhutan have more knickpoints than those of the Central and Western Himalayas. Rainfall and runoff data, soils and natural vegetation have been examined for indications of significantly drier conditions in eastern Bhutan. The rainfall data show an eastwards decrease in the southern foothills, probably due to the rainshadow cast by the Meghalaya Plateau to the south, but mean annual totals are about or above three metres throughout, and the whole of this zone has a wet climate. There is no marked E–W climatic trend in the drier interior of Bhutan. We attribute the general topographic structure of Bhutan, and the variability of river and interfluve profiles and valley forms more to tectonic factors than to climatic variation.  相似文献   

9.
在对白鹤滩水电站坝址区河谷地质条件、地应力分布及左岸边坡深部破裂发育特征详细分析的基础上,采用离散元数值软件UDEC以剥蚀法模拟河谷演化发育过程,分析白鹤滩水电站左岸边坡深部破裂的形成原因。模拟结果反映河谷应力场分布呈现出了典型深切河谷所具有的应力松弛、升高及原始三区以及谷底存在高地应力包的规律。同时对河谷边坡不同部位、不同阶段的应力变化规律进行了深入分析并结合现今河谷地质特征,认为该深部破裂是在河谷地层顺倾、区域高地应力、不对称V型河谷、下蚀迅速等特定条件下,在河谷演化过程中局部应力集中使岩体发生剪切屈服,并发育剪切破坏,河谷剥蚀卸荷后顺倾向错动带的出露使剪切破坏进一步发育成张性破坏的结果。  相似文献   

10.
河流下切作用是深切河谷区地貌演化的重要地质营力。它常常通过对河道的下切和侧蚀过程等影响着河谷两侧斜坡的稳定性状态和斜坡演化。目前,在河流下切作用下斜坡岩体质量的空间分布特征及两者的定量化关系等方面研究较少。这在一定程度上制约着深切河谷区斜坡岩体稳定性预测及地质灾害易发性评价的发展。基于上述背景,本文依托青藏高原深切河谷区(澜沧江—金沙江)和G214左贡—虎跳峡段,基于岩体质量评价BQ系统和河流水力侵蚀模型,利用现场调查、统计和Matlab、Topotoolbox、ArcGIS、Origin等工具手段,研究了研究区河流陡峭指数(ksn)和岩体质量指标的空间分布特征、相关关系和内在机制。结果表明:在研究区,岩体质量与断裂密度、ksn、工程岩组的皮尔逊相关性系数分别为:0.52、0.67、-0.11,即岩体质量与ksn的相关性程度最高。基于横剖面形态提取和河谷边坡应力特征区分析发现:本文所研究岩体质量的特征分布区主要为对河流下切作用作出实时敏感响应的斜坡段,即河流下切作用的强烈影响段。基于研究结果,本文提出在深切河谷区,k  相似文献   

11.
Temporal and spatial changes of the hydrological cycle are the consequences of climate variations. In addition to changes in surface runoff with possible floods and droughts, climate variations may affect groundwater through alteration of groundwater recharge with consequences for future water management. This study investigates the impact of climate change, according to the Special Report on Emission Scenarios (SRES) A1B, A2 and B1, on groundwater recharge in the catchment area of a fissured aquifer in the Black Forest, Germany, which has sparse groundwater data. The study uses a water-balance model considering a conceptual approach for groundwater-surface water exchange. River discharge data are used for model calibration and validation. The results show temporal and spatial changes in groundwater recharge. Groundwater recharge is progressively reduced for summer during the twenty-first century. The annual sum of groundwater recharge is affected negatively for scenarios A1B and A2. On average, groundwater recharge during the twenty-first century is reduced mainly for the lower parts of the valley and increased for the upper parts of the valley and the crests. The reduced storage of water as snow during winter due to projected higher air temperatures causes an important relative increase in rainfall and, therefore, higher groundwater recharge and river discharge.  相似文献   

12.
以陕西山阳滑坡为例,分析了陡倾层状斜向岩层岩质滑坡的视向滑动特征、滑移-溃屈破坏模式与机制。基于梁板理论、层状板裂结构岩体弯曲-溃屈破坏的力学模型在考虑自重、地下水静水压力作用及斜倾层状山体视向滑动侧向摩阻力作用的影响下,采用岩体结构力学分析的方法建立了相应的力学模型;经过力学分析,推导出基于斜坡自重、地下水静水压力与侧向摩阻力作用下的陡倾层状斜向岩层斜坡溃屈段长度条件方程。为验证条件方程的正确性,以山阳滑坡为例进行了验算,最后得出与实际调查较一致的结果,为防御陡倾层状斜向岩层斜坡产生视向溃屈破坏提供依据。   相似文献   

13.
Resistivity Image Profiling (RIP) surveys was used to develop a lithological and hydrogeological model of the subsurface in the southeastern part of Lishan landslide area of central Taiwan. The bedrock consists of slate in the study area. Based on RIP and rock samples collected from boreholes results, three electrical strata are recognized: colluvium, the shear zone composed of shear gouges and shattered slate, and the undisturbed slate formation. The steep shear zone with resistivity ranging between 100 ~ 260 Ω-m, plays a crucial role in the local hydrogeological environment, because it forms a natural barrier which blocks and retains groundwater flowing down the slope. Groundwater will brim over the barrier when the water level is high. Thus the inclined groundwater table remains stable from long-term monitoring. It strongly indicates that the groundwater recharge is greater than that of discharge. Therefore, the shear zone can provide information about the optimum locations for draining the excess groundwater in-situ for slope stability consideration.

The curved basal surface of the colluvium and the weathered slate can also be discerned from the resistivity variations and boreholes data. A series of circular patterns may associate with the main slope failure which migrated upwards from the lower slope.  相似文献   


14.
希夏邦马峰北麓佩枯错湖堰塞成因的解释   总被引:2,自引:0,他引:2  
邓晓峰 《冰川冻土》1998,20(1):85-87
根据对希夏邦马峰北麓佩枯错湖区古湖岸的升降变化、门曲谷地河流阶地和冰水阶地等的实地考察,以及地形图、卫片、航片判读所取得的资料,并结合本区第四纪以来不同时期的上升幅度、古地理变迁、冰期与间冰期更替、动植物演进等方面的研究成果,发现希夏邦马峰北坡第四纪不同时期的冰水相沉积物,曾对门曲谷地有过不同程度的堰塞作用,故而提出佩枯错湖为堰塞成因的解释,其从初始形成、兴盛发育到衰退的演变过程与区内冰川类型从山谷冰川、山麓冰川到山谷冰川的演替过程是一致的.  相似文献   

15.
研究平推式滑坡中承压水的作用范围,有利于准确评价斜坡稳定性,对平推式滑坡的成灾机理研究和灾害防治具有较好的指导意义。平推式滑坡中岩层倾角α较小,在承压水作用范围分析时通常忽略了岩层倾角的影响。基于地下水向河渠运动相关理论,考虑岩层倾角,建立平推式滑坡地下水渗流分析模型,推导出承压水作用范围L1新的计算公式,详细计算分析了不同透水层参数下L1对α的敏感性,并提出了敏感倾角的概念。计算结果表明,α对L1影响显著,这种影响程度与透水层厚度、渗流量、以及渗透系数密切相关,透水层厚度越大,α对L1的影响越显著;同时敏感倾角受透水层厚度、渗流量、渗透系数等参数影响。最后应用新模型分析滑坡实例,验证了新模型的合理性。  相似文献   

16.
We explore the controls of the litho‐tectonic architecture on the erosional flux in the 370‐km2 Glogn basin (European Alps). In this basin, the bedding and schistosity of the bedrock dip parallel to the topographic slope on the NW valley flank, leading to a non‐dip slope situation on the opposite SE valley side. While the dip slope condition has promoted the occurrence of landslides (e.g. the c. 30‐km2 deep‐seated Lumnezia landslide), the opposite non‐dip slope side of the valley hosts >100‐m‐deeply incised tributary streams. 10Be concentrations of stream sediments yield catchment‐averaged denudation rates that vary between 0.27 ± 0.03 and 2.19 ± 0.37 mm a?1, while the spatially averaged denudation rate of the entire basin is 1.99 ± 0.34 mm a?1. Our 10Be‐based approach reveals that the Lumnezia landslide front contributes c. 30–65% of the entire sediment budget, although it covers <5% of the Glogn basin. This suggests a primary control of the bedrock bedding on erosion rates and processes.  相似文献   

17.
Dryland rivers, dominated by short-lived, localised and highly variable flow due to discrete precipitation events, have characteristic preservation potential, which serves as suitable archives towards understanding the climate–tectonic coupling. In the present study, we have investigated the fluvial records of a major, southerly-draining river – the Rukmawati River in the dryland terrain of southern Kachchh, in western India. The sediment records along the bedrock rivers of Kachchh register imprints of the Indian summer monsoon (ISM), which is the major source of moisture to the fluvial system in western India. The Rukmawati River originates from the Katrol Hill Range in the north and flows towards the south, into the Gulf of Kachchh. The field stratigraphy, sedimentology, along with the optical chronology suggests that a braided-meandering system existed during 37 ka period due to an overall strengthened monsoon. A gradual decline in the monsoon strength with fluctuation facilitated the development of a braided channel system between 20 and 15 ka. A renewed phase of strengthened monsoon with seasonality after around 15 ka which persisted until around 11 ka, is implicated in the development of floodplain sequences. Two zones of relatively high bedrock uplift are identified based on the geomorphometry and morphology of the fluvial landform. These zones are located in the vicinity of the North Katrol Hill Fault (NKHF) and South Katrol Hill Fault (SKHF). Geomorphic expression of high bedrock uplift is manifested by the development of beveled bedrock prior to or around 20 ka during weak monsoon. The study suggests that the terrain in the vicinity of NKHF and SKHF is uplifting at around 0.8 and >0.3 mm/a, respectively. Simultaneously, the incision in the Rukmawati River basin, post 11 ka, is ascribed to have occurred due to lowered sea level during the LGM and early Holocene period.  相似文献   

18.
Source, type, and quantity of various components of groundwater, as well as their spatial and temporal variations were determined by different hydrochemical methods in the alluvial aquifer of the upper Rhone River valley, Bois de Finges, Wallis Canton, Switzerland. The methods used are hydrochemical modeling, stable-isotope analysis, and chemical analysis of surface water and groundwater. Sampling during high- and low-water periods determined the spatial distribution of the water chemistry, whereas monthly sampling over three years provided a basis for understanding seasonal variability. The physico-chemical parameters of the groundwater have spatial and seasonal variations. The groundwater chemical composition of the Rhone alluvial aquifer indicates a mixing of weakly mineralized Rhone River water and SO4-rich water entering from the south side of the valley. Temporal changes in groundwater chemistry and in groundwater levels reflect the seasonal variations of the different contributors to groundwater recharge. The Rhone River recharges the alluvial aquifer only during the summer high-water period. Electronic Publication  相似文献   

19.
陕西山阳滑坡为典型的陡倾层状斜向岩质斜坡,其破坏模式不同于常见的顺倾层状岩质斜坡溃屈破坏模式,也不同于斜倾层状山体的视向滑移-剪切破坏模式,更不同于陡倾顺层岩质斜坡的倾倒、倾倒-滑移破坏模式,属于视向滑移-溃屈破坏模式。在实地调查的基础上,从斜坡结构特征、结构面组合特征以及剪出口特征分析了滑坡的破坏模式,进而分析了山阳滑坡的视向滑移-溃屈破坏机制;以梁板理论、层状板裂结构岩体弯曲-溃屈破坏的力学模型为基础,结合斜倾层状岩质滑坡的视向滑动机制研究,建立了基于斜坡自重、地下水静水压力、侧向摩阻力以及斜坡岩体厚度变化作用下的陡倾层状斜向岩质斜坡视向滑移-溃屈破坏力学模型,进行力学分析,推导了溃屈段长度条件方程,并以山阳滑坡为例验证了长度条件方程的正确性。  相似文献   

20.
In the late Wisconsinan, the South Thompson River valley, British Columbia, was occupied by an ice-dammed lake. After the lake drained, the exposed lacustrine silt became the source material for a Holocene loess. The purpose of this paper is to establish the stratigraphic, depositional and geomorphic framework of loess occurring along the South Thompson River valley immediately east of Kamloops, British Columbia. This montane environment of loess deposition was characterised by active slope and fluvial processes depositing sediments contemporaneously with the accumulation of loess. The loess reaches an average of 4 m in thickness in the central part of the valley and thins towards the valley sides. Two tephras—Mount St Helens Y (3.4 ka) and Mount Mazama (6.8 ka)— occur in the loess and are invaluable stratigraphic markers. Most of the loess was probably deposited between 8.2 ka and 3.4 ka, a period coinciding with mid-Holocene increased summer temperatures and decreased precipitation in south-central British Columbia. Debris flows and small streams, originating on the valley sides, flowed out on to the loess depositing sand and gravel beds. These deposits form a definite proximal—distal relation across valley with the slope-derived sediments decreasing and the loess increasing in thickness towards the centre of the valley. The lactustrine silt particles were mobilised by diurnal mountain and valley, gravity, and canalised winds flowing within the South Thompson valley. An analysis of contemporary wind-flow data was undertaken to provide a possible analogue for valley wind flows in the mid-Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号