首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The location and the stability in the linear sense of the libration points in the restricted problem have been studied when there are perturbations in the potentials between the bodies. It is seen that if the perturbing functions satisfy certain conditions, there are five libration points, two triangular and three collinear. It is further observed that the collinear points are unstable and for the triangular points, the range of stability increases or decreases depending upon whetherP> or <0 wherep depends upon the perturbing functions. The theory is verified in the following four cases:
  1. There are no perturbations in the potentials (classical problem).
  2. Only the bigger primary is an oblate spheroid whose axis of symmetry is perpendicular to the plane of relative motion (circular) of the primaries.
  3. Both the primaries are oblate spheroids whose axes of symmetry are perpendicular to the plane of relative motion (circular) of the primaries.
  4. The primaries are spherical in shape and the bigger is a source of radiation.
  相似文献   

2.
The problem of stability of the Lagrangian pointL 4 in the circular restricted problem of three bodies is investigated close to the 1 : 2 commensurability of the long and short period libration. By stability we define boundedness of the solution for a given initial finite displacement from the equilibrium point as function of the mass parameter close to the commensurability. A rigorous treatment close to the resonance condition is possible using a transformation that diagonalizes the matrix related to the linear part of the equations of motion. The so obtained equations are further transformed to action angle type variables. Then using an isolated resonance approach, only the slowly varying terms are kept in the equations and two independent isolating first integrals can be found. These integrals finally enable us to solve the stability problem in an exact way. The so obtained results are compared to numeric integration of the equations of motion and are found to be in perfect agreement.  相似文献   

3.
The stability of the triangular libration points in the case when the first and the second order resonances appear was investigated. It was proved that the first order resonances do not cause instability. The second order resonances may lead to instability. Domains of the instability in the two-dimensional parameter space were determined.  相似文献   

4.
Nonlinear stability of the triangular libration point in the photogravitational restricted three body problem was investigated in the whole range of the parameters. Some results obtained earlier are corrected. The method for proper determination of cases when stability cannot be determined by four order terms of the hamiltonian was proposed.  相似文献   

5.
The problem of stability of the Lagrangian equilibrium point of the circular restricted problem of three bodies is investigated in the light of Nekhoroshev-like theory. Looking for stability over a time interval of the order of the estimated age of the universe, we find a physically relevant stability region. An application of the method to the Sun-Jupiter and the Earth-Moon systems is made. Moreover, we try to compare the size of our stability region with that of the region where the Trojan asteroids are actually found; the result in such case is negative, thus leaving open the problem of the stability of these asteroids.  相似文献   

6.
The non-linear stability of the triangular libration points of the restricted three-body problem is studied under the presence of third and fourth order resonance's, when the more massive primary is an oblate spheroid. In this study Markeev's theorem are utilised with the help of KAM theorem. It is found that the stability of the triangular libration points are unstable in the third order resonance case and stable in the fourth order resonance case, for all the values of oblateness factor A1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The effect of small perturbation in the Coriolis and centrifugal forces on the location of libration point in the ‘Robe (1977) restricted problem of three bodies’ has been studied. In this problem one body,m 1, is a rigid spherical shell filled with an homogeneous incompressible fluid of densityϱ 1. The second one,m 2, is a mass point outside the shell andm 3 is a small solid sphere of densityϱ 3 supposed to be moving inside the shell subject to the attraction ofm 2 and buoyancy force due to fluidϱ 1. Here we assumem 3 to be an infinitesimal mass and the orbit of the massm 2 to be circular, and we also suppose the densitiesϱ 1, andϱ 3 to be equal. Then there exists an equilibrium point (−μ + (ɛ′μ)/(1 + 2μ), 0, 0).  相似文献   

8.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

9.
The effect of small perturbations ε and ε in the Coriolis and the centrifugal forces, respectively on the nonlinear stability of the triangular points in the restricted three-body problem with variable mass has been studied. It is found that, in the nonlinear sense, the triangular points are stable for all mass ratios in the range of linear stability except for three mass ratios, which depend upon ε, ε and β, the constant due to the variation in mass governed by Jeans’ law.  相似文献   

10.
The nonlinear stability of the equilibrium points in the restricted three-body problem with variable mass has been studied. It is found that, in the nonlinear sense, the collinear points are unstable for all mass ratios and the triangular points are stable in the range of linear stability except for three mass ratios, which depend upon β, the constant due to the variation in mass governed by Jeans’ law.  相似文献   

11.
The location and the stability of the libration points in the restricted problem have been studied when small perturbation and are given to the Coriolis and the centrifugal forces respectively. It is seen that the pointsL 4 andL 5 form nearly equilateral triangles with the primaries and the pointsL 1,L 2,L 3 remain collinear. It is further observed that for the pointsL 4 andL 5, the range of stability increases or decreases depending upon whether the point (, ) lies in one or the other of the two parts in which the (, ) plane is divided by the line 36-19=0 and the stability of the collinear points is not influenced by the perturbations and they remain unstable.  相似文献   

12.
The restricted problem of 2 + 2 homogenous axisymmetric ellipsoids such that their equatorial planes coincide with the orbital plane of the centers of mass is considered. The equilibrium solutions of this problem are shown to exist. Six of these solutions are located about the collinear points of the restricted problem of three axisymmetric ellipsoids. A special case of this problem is studied and sixteen solutions are found in the neighborhood of the triangular Lagrangian points.  相似文献   

13.
The nonlinear stability of triangular equilibrium points has been discussed in the generalised photogravitational restricted three body problem with Poynting-Robertson drag. The problem is generalised in the sense that smaller primary is supposed to be an oblate spheroid. The bigger primary is considered as radiating. We have performed first and second order normalization of the Hamiltonian of the problem. We have applied KAM theorem to examine the condition of non-linear stability. We have found three critical mass ratios. Finally we conclude that triangular points are stable in the nonlinear sense except three critical mass ratios at which KAM theorem fails.  相似文献   

14.
The stability of triangular libration points, when the bigger primary is a source of radiation and the smaller primary is an oblate spheroid. has been investigated in the resonance cases 1 = 22 and 1 = 32. The motion is unstable for all the values of parameters q and A when 1 = 22 and the motion is unstable and stable depending upon the values of the parameters q and A when 1 = 32. Here q is the radiation parameter and A is the oblateness parameter.  相似文献   

15.
A number of criteria for linear stability of libration points in the perturbed restricted three-body problem are presented. The criteria involve only the coefficients of the characteristic equation of the tangent map of the libration points and can be easily applied. With these criteria the effect of drag on the linear stability of the triangular libration points in the classical restricted three-body problem is investigated. Some of Murray et al.'s results are improved.  相似文献   

16.
This paper considers the restricted circular three-body problem with respect to the radiation repulsion force acting upon a particle on the part of one of the main bodies (the Sun). The characteristic of the family of stationary particular solutions of the problem (libration points) representing the relative equilibrium positions in a rotating Cartesian system is given. On the basis of the KAM theory with the help of a computer a nonlinear analysis of the triangular libration points stability for the planar case is carried out. These libration points are proved to be strictly stable by Liapunov practically in the whole area of fulfilling the necessary stability conditions. Instability is discovered at the resonant curve of the third order and at the greater part of the resonant curve of the fourth order. The plotted results of the investigation allowed us to draw a conclusion about the Liapunov stability of the triangular libration points in a problem with respect to the radiation pressure for all the planets of the Solar system.  相似文献   

17.
This paper examines the effect of a constant κ of a particular integral of the Gylden-Meshcherskii problem on the stability of the triangular points in the restricted three-body problem under the influence of small perturbations in the Coriolis and centrifugal forces, together with the effects of radiation pressure of the bigger primary, when the masses of the primaries vary in accordance with the unified Meshcherskii law. The triangular points of the autonomized system are found to be conditionally stable due to κ. We observed further that the stabilizing or destabilizing tendency of the Coriolis and centrifugal forces is controlled by κ, while the destabilizing effects of the radiation pressure remain unchanged but can be made strong or weak due to κ. The condition that the region of stability is increasing, decreasing or does not exist depend on this constant. The motion around the triangular points L 4,5 varying with time is studied using the Lyapunov Characteristic Numbers, and are found to be generally unstable.  相似文献   

18.
We study the fourth-order stability of the triangular libration points in the absence of resonance for the three-body problem when the infinitesimal mass is affected not only by gravitation but also by light pressure from both primaries. A comprehensive summary of previous results is given, with some inaccuracies being corrected. The Lie triangle method is used to obtain the fourth-order Birkhoff normal form of the Hamiltonian, and the corresponding complex transformation to pre-normal form is given explicitly. We obtain an explicit expression for the determinant required by the Arnold-Moser theorem, and show that it is a rational function of the parameters, whose numerator is a fifth-order polynomial in the mass parameter. Particular cases where this polynomial reduces to a quartic are described. Our results reduce correctly to the purely gravitational case in the appropriate limits, and extend numerical work by previous authors.  相似文献   

19.
In the present paper we have studied the stability of the triangular libration points for the doubly photogravitational elliptic restricted problem of three bodies under the presence of resonances as well as under their absence. Here we have found the conditions for stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号