首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accretionary orogens throughout space and time represent extremely fertile settings for the formation and preservation of a wide variety of mineral deposit types. These range from those within active magmatic arcs, either in continental margin or intra-oceanic settings, to those that develop in a variety of arc-flanking environments, such as fore-arcs and back-arcs during deformation and exhumation of the continental margin. Deposit types also include those that form in more distal, far back-arc and foreland basin settings. The metallogenic signature and endowment of individual accretionary orogens are, at a fundamental level, controlled by the nature, composition and age of the sub-continental lithosphere, and a complex interplay between formational processes and preservational forces in an evolving Earth. Some deposit types, such as orogenic gold and volcanic massive sulfide (VMS) deposits, have temporal patterns that mimic the major accretionary and crustal growth events in Earth history, whereas others, such as porphyry Cu–Au–Mo and epithermal Au–Ag deposits, have largely preservational patterns. The presence at c. 3.4 Ga of (rare) orogenic gold deposits, whose formation necessitates some form of subduction–accretion, provides strong evidence that accretionary processes operated then at the margins of continental nuclei, while the widespread distribution of orogenic gold and VMS deposits at c. 2.7–2.6 Ga reflects the global distribution of accretionary orogens by this time.  相似文献   

2.
Coastal strandplain deposits near Umiujaq, eastern Hudson Bay, Canada, were formed under falling relative sea level conditions resulting from postglacial isostatic uplift. Ground-probing radar profiles across the strandplain reveal a lower progradational unit (LPU) discordantly overlain by an upper progradational unit (UPU), which were correlated with stratigraphic sections exposed in incised valley walls. The discordance is a wave erosion surface (WES) that separates fine shoreface sands of the LPU from coarse-sand and gravel of the UPU. Major basal downlap surfaces can be traced updip into marine terraces and define downstepping wedges. The downstepping is interpreted as representing ‘autocyclic’ morphological reconfiguration rather than a response to changes in the rate of sea level fall. The internal architecture is strongly dependent on the accommodation and thus on antecedent topography. A conceptual model for strandplain deposition under falling sea level incorporates a bipartite shallowing-upward sandy succession when sufficient accommodation is available. Where accommodation space is limited, a sharp-based bar-and-beach sandbody directly overlies muddy deeper water deposits and the WES resembles a regressive surface of erosion.  相似文献   

3.
《Sedimentology》2018,65(4):1043-1066
Outcrop analogues of the Late Jurassic lower Arab‐D reservoir zone in Saudi Arabia expose a succession of fining‐upward cycles deposited on a distal middle‐ramp to outer‐ramp setting. These cycles are interrupted by erosional scours that incise up to 1·8 m into underlying deposits and are infilled with intraclasts up to boulder size (1 m diameter). Scours of similar size and infill are not commonly observed on low‐angle carbonate ramps. Outcrops have been used to characterize and quantify facies‐body geometries and spatial relationships. The coarse grain size of scour‐fills indicates scouring and boulder transport by debris or hyperconcentrated density flows strengthened by offshore‐directed currents. Longitudinal and lateral flow transformation is invoked to produce the ‘pit and wing’ geometry of the scours. Scour pits and wings erode up to 1·8 m and 0·7 m deep, respectively, and are on average 50 m wide between wing tips. The flat bases of the scours and their lack of consistent aspect ratio indicate that erosion depth was limited by the presence of cemented firmgrounds in underlying cycles. Scours define slightly sinuous channels that are consistently oriented north–south, sub‐parallel to the inferred regional depositional strike of the ramp, suggesting that local palaeobathymetry was more complex than commonly assumed. Weak lateral clustering of some scours indicates that they were underfilled and reoccupied by later scour incision and infill. Rudstone scour‐fills required reworking of material from inner ramp by high‐energy, offshore‐directed flows, associated with storm action and the hydraulic gradient produced by coastal storm setup, to generate erosion and sustain transport of clasts that are generally associated with steeper slopes. Quantitative analysis indicates that these coarse‐grained units have limited potential for correlation between wells as laterally continuous, highly permeable reservoir flow units, but their erosional and locally clustered character may increase effective vertical permeability of the Arab‐D reservoir zone as a whole.  相似文献   

4.
Open‐coast tidal flats are hybrid depositional systems resulting from the interaction of waves and tides. Modern examples have been recognized, but few cases have been described in ancient rock successions. An example of an ancient open‐coast tidal flat, the depositional architecture of the Lagarto and Palmares formations (Cambrian–Ordovician of the Sergipano Belt, north‐eastern Brazil) is presented here. Detailed field analyses of outcrops allowed the development of a conceptual architectural model for a coastal depositional environment that is substantially different from classical wave‐dominated or tide‐dominated coastal models. This architectural model is dominated by storm wave, low orbital velocity wave and tidal current beds, which vary in their characteristics and distribution. In a landward direction, the storm deposits decrease in abundance, dimension (thickness and spacing) and grain size, and vary from accretionary through scour and drape to anisotropic hummocky cross‐stratification beds. Low orbital wave deposits are more common in the medium and upper portion of the tidal flat. Tidal deposits, which are characterized by mudstone interbedded with sandstone strata, are dominant in the landward portion of the tidal flat. Hummocky cross‐stratification beds in the rock record are believed, in general, to represent storm deposits in palaeoenvironments below the fair‐weather wave base. However, in this model of an open‐coast tidal flat, hummocky cross‐stratification beds were found in very shallow waters above the fair‐weather wave base. Indeed, this depositional environment was characterized by: (i) fair‐weather waves and tides that lacked sufficient energy to rework the storm deposits; (ii) an absence of biological communities that could disrupt the storm deposits; and (iii) high aggradation rates linked to an active foreland basin, which contributed definitively to the rapid burial and preservation of these hummocky cross‐stratification deposits.  相似文献   

5.
The dominance of isotropic hummocky cross‐stratification, recording deposition solely by oscillatory flows, in many ancient storm‐dominated shoreface–shelf successions is enigmatic. Based on conventional sedimentological investigations, this study shows that storm deposits in three different and stratigraphically separated siliciclastic sediment wedges within the Lower Cretaceous succession in Svalbard record various depositional processes and principally contrasting sequence stratigraphic architectures. The lower wedge is characterized by low, but comparatively steeper, depositional dips than the middle and upper wedges, and records a change from storm‐dominated offshore transition – lower shoreface to storm‐dominated prodelta – distal delta front deposits. The occurrence of anisotropic hummocky cross‐stratification sandstone beds, scour‐and‐fill features of possible hyperpycnal‐flow origin, and wave‐modified turbidites within this part of the wedge suggests that the proximity to a fluvio‐deltaic system influenced the observed storm‐bed variability. The mudstone‐dominated part of the lower wedge records offshore shelf deposition below storm‐wave base. In the middle wedge, scours, gutter casts and anisotropic hummocky cross‐stratified storm beds occur in inferred distal settings in association with bathymetric steps situated across the platform break of retrogradationally stacked parasequences. These steps gave rise to localized, steeper‐gradient depositional dips which promoted the generation of basinward‐directed flows that occasionally scoured into the underlying seafloor. Storm‐wave and tidal current interaction promoted the development and migration of large‐scale, compound bedforms and smaller‐scale hummocky bedforms preserved as anisotropic hummocky cross‐stratification. The upper wedge consists of thick, seaward‐stepping successions of isotropic hummocky cross‐stratification‐bearing sandstone beds attributed to progradation across a shallow, gently dipping ramp‐type shelf. The associated distal facies are characterized by abundant lenticular, wave ripple cross‐laminated sandstone, suggesting that the basin floor was predominantly positioned above, but near, storm‐wave base. Consequently, shelf morphology and physiography, and the nature of the feeder system (for example, proximity to deltaic systems) are inferred to exert some control on storm‐bed variability and the resulting stratigraphic architecture.  相似文献   

6.
The Makran accretionary prism in southeastern Iran contains extensive Mesozoic zones of melange and large intact ophiolites, representing remnants of the Tethys oceanic crust that was subducted beneath Eurasia. To the north of the Makran accretionary prism lies the Jaz Murian depression which is a subduction-related back-arc basin. The Band-e-Zeyarat/Dar Anar ophiolite is one of the ophiolite complexes; it is located on the west side of the Makran accretionary prism and Jaz Murian depression, and is bounded by two major fault systems. The principal rock units of this complex are a gabbro sequence which includes low- and high-level gabbros, an extensive sheeted diabase dike sequence, late intrusive rocks which consist largely of trondhjemites and diorites, and volcanic rocks which are largely pillow basalts interbedded with pelagic sedimentary rocks, including radiolarian chert. Chondrite- and primitive-mantle-normalized incompatible trace element data and age-corrected Nd, Pb, and Sr isotopic data indicate that the Band-e-Zeyarat/Dar Anar ophiolite was derived from a midocean ridge basalt-like mantle source. The isotopic data also reveal that the source for basalts was Indian-Ocean-type mantle. Based on the rare earth element (REE) data and small isotopic range, all the rocks from the Band-e-Zeyarat/Dar Anar ophiolite are cogenetic and were derived by fractionation from melts with a composition similar to average E-MORB; fractionation was controlled by the removal of clinopyroxene, hornblende and plagioclase. Three 40Ar–39Ar plateau ages of 140.7±2.2, 142.9±3.5 and 141.7±1.0 Ma, and five previously published K–Ar ages ranging from 121±4 to 146±5 Ma for the hornblende gabbros suggest that rocks from this ophiolite were formed during the Late Jurassic–Early Cretaceous. Plate reconstructions suggest that the rocks of this complex appear to be approximately contemporaneous with the Masirah ophiolite which has crystallization age of (150 Ma). Like Masirah, the rocks from the Band-e-Zeyarat/Dar Anar ophiolite complex represent southern Tethyan ocean crust that was formed distinctly earlier than crust preserved in the 90–100 Ma Bitlis-Zagros ophiolites (including the Samail ophiolite).  相似文献   

7.
This study investigates the morphology and Late Quaternary sediment distribution of the Makran turbidite system (Makran subduction zone, north‐west Indian Ocean) from a nearly complete subsurface mapping of the Oman basin, two‐dimensional seismic and a large set of coring data in order to characterize turbidite system architecture across an active (fold and thrust belt) margin. The Makran turbidite system is composed of a dense network of canyons, which cut into high relief accreted ridges and intra‐slope piggyback basins, forming at some locations connected and variably tortuous paths down complex slopes. Turbidite activity and trench filling rates are high even during the Holocene sea‐level highstand conditions. In particular, basin‐wide, sheet‐like thick mud turbidites, probably related to major mass wasting events of low recurrence time, drape the flat and unchannellized Oman abyssal plain. Longitudinal depth profiles show that the Makran canyons are highly disrupted by numerous thrust‐related large‐scale knickpoints (with gradients up to 20° and walls up to 500 m high). At the deformation front, the strong break of slope can lead to the formation of canyon‐mouth ‘plunge pools’ of variable shapes and sizes. The plunge pools observed in the western Makran are considerably larger than those previously described in sub‐surface successions; the first insights into their internal architecture and sedimentary processes are presented here. Large plunge pools in the western Makran are associated with large scoured areas at the slope break and enhanced sediment deposition downstream: high‐amplitude reflectors are observed inside the plunge pools, while their flanks are composed of thin‐bedded, fine‐grained turbidites deposited by the uppermost part of the turbidity flows. Thus, these architectural elements are associated with strong sediment segregation leading to specific trench‐fill mechanisms, as only the finer‐grained component of the flows is transferred to the abyssal plain. However, the Makran accretionary prism is characterized by strong along‐strike variability in tectonics and fluvial input distribution that might directly influence the turbidite system architecture (i.e. canyon entrenchment, plunge pool formation or channel development at canyon mouths), the sedimentary dynamics and the resulting sediment distribution. Channel formation in the abyssal plain and trench‐fill characteristics depend on the theoretical ‘equilibrium’ conditions of the feeder system, which is related closely to the balance between erosion rates and tectonic regime. Thus, the Makran turbidite system constitutes an excellent modern analogue for deep‐water sedimentary systems with structurally complex depocentres, in convergent margin settings.  相似文献   

8.
Anisotropy of magnetic susceptibility (AMS) and paleomagnetic methods have been applied on the middle Miocene–Pleistocene sedimentary sequence in the Boso and Miura Peninsulas of central Japan in order to identify the invisible regional deformation sense as well as the intensity of deformation of sediments. The southern sequences of the two peninsulas were subjected to syn-sedimentary deformation of folding and faulting generated in compressional tectonics. A previous result of the AMS experiment on the sequences shows a development of a strong magnetic lineation. Thus, it is conceivable that the lineation had to be generated during the process of deformation, and in a direction perpendicular to the shortening. However, the orientation of the magnetic lineations is inconsistent among the different tectonic domains in the southern sequence. The paleomagnetic declination in each domain reveals a clockwise rotation in various degrees. Reconstructed directions of the magnetic lineations show a consistent pattern in the east–west direction, suggesting that the sedimentary sequence was subjected to a north-southward compression. In contrast, the compressive direction of the sediment cover on the Pliocene–Pleistocene sequence reveals a northwest direction. Our results suggest that the Philippine Sea Plate had been subducting northward during the middle Miocene–Pliocene, and changed its direction during the Pliocene.  相似文献   

9.
The Maesan fan-delta-fed slope system in the Miocene Pohang Basin occurs between two Gilbert-type fan deltas. Detailed analysis of sedimentary facies and bed geometry reveals that the sequence is represented by 13 sedimentary facies. These facies can be organized into three facies associations, representing distinct depositional environments: alluvial fan (facies association I), steep-faced slope (facies association II), and basin plain (facies association III). Subaerial debris flows and dense, inertia-dominated currents were transformed into subaqueous sediment gravity flows in steep-faced slope environments. Further downslope, these flows were channelized and formed lobate conglomerate and sandstone bodies at the terminal edge of the channels (or chutes). Interchannel and interlobe areas were dominated by homogeneous mudstone and muddy sandstone, deposited by suspension settling of fine-grained materials. Part of the steep-faced slope deposits experienced large-scale slides and slumps. The chutes/channels, lobes and splays on the steep-faced slope of the Maesan system are similar to those in modern subaqueous coarse-grained fan-delta systems.  相似文献   

10.
The Upper Oligocene–Lower Miocene succession in eastern Jylland can be subdivided into three sequences (A–C from older to younger) deposited on and around the Ringkøbing-Fyn High. The development of the sequences reflects a complex interaction between eustatic sea-level changes, physiography and variable sediment supply. Superimposed on this, frequent storms promoted longshore sediment transport and the development of spit systems adjacent to structural highs. As a consequence, sequence boundaries and flooding surfaces are not always expressed as portrayed in conventional sequence models; sequence boundaries or flooding surfaces may only be marked by subtle changes in depositional environment that can only be revealed by careful integration of sedimentological observations with palynological data. The influence of the topography resulted in the development of brackish water basins that were sufficiently large to permit the deposition of hummocky cross-stratified sands with muds. These deposits are overlain by clean hummocky and swaley cross-stratified sands that were deposited in a fully marine, high-energy environment. This evolution from mud-rich, storm-influenced sediments to sand-dominated shoreface sediments resulted from a rise in sea level and was not the result of shoreface progradation and downstepping during a sea level fall. In addition to the topographic control on sequence development, sediment supply to the study area changed significantly during the deposition of the three sequences. Initially the basin was sediment-starved, favouring the formation of glaucony-rich sediments. The sediment input gradually increased and the influence of structural highs and lows became less significant with time. Consequently, both sequence boundaries and flooding surfaces are characterized by more conventional features in the younger part of the succession, where a basinward displacement of the shoreline resulted in thick lowstand delta deposits.  相似文献   

11.
In the narrow offshore border zone between Germany and Denmark, 550 km of high‐density 3·5‐kHz subbottom seismic reflection profiles were recorded within a 70‐km2 area in order to reconstruct the seismic stratigraphy of late Pleistocene to early Holocene lacustrine and fluvial environments. Using detailed line drawings, seismic facies analyses and a hierarchy of bounding surfaces, a depositional unit was recognized and subdivided into subunits 4a (oblique‐parallel), 4b (mound, oblique‐tangential), 4c (sigmoid, oblique), 4d and 4e (shingled and parallel). The base of this seismic facies association defines a wide U‐shaped valley with well‐defined scours and, in the valley sides, ‘steps’ are located above deep steep‐dipping reflections. Stratigraphic control was available from 32 coring sites (5‐ to 12‐m‐deep vibrocores). Subunit 4b represents coarsening‐up silt and sand, and samples from subunit 4d show fining‐up fine sand, silt and clay. The seismic facies association is proposed to have formed by a fluvial event of short duration some time in the period between 10·3 14C ka BP and 9·0 14C ka BP. Subunits 4a to 4e represent gradually decreasing flow power. A peak flow initiated the fluvial event, after which water discharge and level fell rapidly. Subsequently, the normal background discharge from the Baltic Sea area dominated the flow style. Reflections beneath the ‘step’‐like valley side with high dip angles are interpreted as faults. This tectonic activity resulted in subsidence in the analysed area and could possibly have influenced the fluvio‐dynamic development. The seismic stratigraphic succession reveals a high‐resolution record of sediments in this area. In particular, the stepwise uncovering of the morphology of the subunits, preserved in high‐resolution seismic facies associations, is proposed as a useful tool in modelling the dynamic development of the near sea‐floor environment.  相似文献   

12.
This work presents the stratigraphy and facies analysis of an interval of about 2500 m in the Langhian and Serravallian stratigraphic succession of the foredeep turbidites of the Marnoso‐arenacea Formation. A high‐resolution stratigraphic analysis was performed by measuring seven stratigraphic logs between the Sillaro and Marecchia lines (60 km apart) for a total thickness of about 6700 m. The data suggest that the stratigraphy and depositional setting of the studied interval was influenced by syndepositional structural deformations. The studied stratigraphic succession has been subdivided into five informal stratigraphic units on the basis of how structurally controlled topographic highs and depocentres, a consequence of thrust propagation, change over time. These physiographic changes of the foredeep basin have also been reconstructed through the progressive appearance and disappearance of thrust‐related mass‐transport complexes and of five bed types interpreted as being related to structurally controlled basin morphology. Apart from Bouma‐like Type‐4 beds, Type‐1 tripartite beds, characterized by an internal slurry unit, tend to increase especially in structurally controlled stratigraphic units where intrabasinal topographic highs and depocentres with slope changes favour both mud erosion and decelerations. Type‐2 beds, with an internal slump‐type chaotic unit, characterize the basal boundary of structurally controlled stratigraphic units and are interpreted as indicating tectonic uplift. Type‐3 beds are contained‐reflected beds that indicate different degrees of basin confinement, while Type‐5 are thin and fine‐grained beds deposited by dilute reflected turbulent flows able to rise up the topographic highs. The vertical and lateral distribution of these beds has been used to understand the synsedimentary structural control of the studied stratigraphic succession, represented in the Marnoso‐arenacea Formation by subtle topographic highs and depocentres created by thrust‐propagation folds and emplacements of large mass‐transport complexes.  相似文献   

13.
To understand tectono‐metamorphic processes within or close to the brittle–ductile transition of quartz‐rich crustal rocks in an accretionary wedge, an integrated field, petrological, geochronological and Raman spectroscopic study was conducted on the Mikabu‐Northern Chichibu belt in SW Japan. Field mapping in central Shikoku reveals that the Northern Chichibu belt is comprised of a pile of four tectono‐stratigraphic units, referred to as A, B, C and D units. The A unit (dominated by pelagic sedimentary rocks) represents the structurally lowest and youngest accretionary complex that forms a composite unit with the Mikabu ophiolitic suite. The B unit (consisting of chert‐clastic rock sequences) overlies the A unit and is overlain by the C and D units (mudstone‐matrix mélange units). Raman spectroscopy of carbonaceous material constrains the peak temperature of each unit to be ~290°C for the A unit, 270–290°C for the B unit, 230–250°C for the C unit and ~220°C for the D unit. Ductile deformation and pervasive metamorphism are limited to rocks in the Mikabu, A and B units. Alkali pyroxene and sodic amphibole occur in metabasite from the Mikabu, A and B units, and the widespread occurrence of prograde veins containing lawsonite+quartz pseudomorphs after laumontite was newly recognized from the C unit. Phase petrological data constrain the peak pressure of each unit to be ~0.65 GPa for the Mikabu‐A unit (aragonite stable), ~0.45–0.6 GPa for the B unit (jadeite+albite stable in the structurally lower part), and ~0.35 GPa for the C unit (prehnite+lawsonite stable). The peak metamorphic pressure increases towards structurally lower and younger accretionary complexes, but the thickness of the preserved strata is insufficient to account for the inferred pressure range. The structural–metamorphic relations imply thickening of the accretionary wedge by underplating was followed by a significant phase of thinning by both ductile and brittle processes.  相似文献   

14.
Marginal marine deposits of the John Henry Member, Upper Cretaceous Straight Cliffs Formation, were deposited within a moderately high accommodation and high sediment supply setting that facilitated preservation of both transgressive and regressive marginal marine deposits. Complete transgressive–regressive cycles, comprising barrier island lagoonal transgressive deposits interfingered with regressive shoreface facies, are distinguished based on their internal facies architecture and bounding surfaces. Two main types of boundaries occur between the transgressive and regressive portions of each cycle: (i) surfaces that record the maximum regression and onset of transgression (bounding surface A); and (ii) surfaces that place deeper facies on top of shallower facies (bounding surface B). The base of a transgressive facies (bounding surface A) is defined by a process change from wave‐dominated to tide‐dominated facies, or a coaly/shelly interval indicating a shift from a regressive to a transgressive regime. The surface recording such a process change can be erosional or non‐erosive and conformable. A shift to deeper facies occurs at the base of regressive shoreface deposits along both flooding surfaces and wave ravinement surfaces (bounding surface B). These two main bounding surfaces and their subtypes generate three distinct transgressive – regressive cycle architectures: (i) tabular, shoaling‐upward marine parasequences that are bounded by flooding surfaces; (ii) transgressive and regressive unit wedges that thin basinward and landward, respectively; and (iii) tabular, transgressive lagoonal shales with intervening regressive coaly intervals. The preservation of transgressive facies under moderately high accommodation and sediment supply conditions greatly affects stratigraphic architecture of transgressive–regressive cycles. Acknowledging variation in transgressive–regressive cycles, and recognizing transgressive successions that correlate to flooding surfaces basinward, are both critical to achieving an accurate sequence stratigraphic interpretation of high‐frequency cycles.  相似文献   

15.
The main sediment depocenter along the Oman margin is the Al Batha turbidite system that develops in the Gulf of Oman basin. It is directly connected to the wadi Al Batha, and forms a typical sand and mud rich point source system that acts as regional sediment conduit and feeds a ~ 1000 km2 sandy lobe.The Al Batha lobe depositional architecture has been investigated in detail using very high-resolution seismic, multibeam echosounder data and sediment cores. Several scales of depositional architecture can be observed. The Al Batha lobe is composed of several depositional units, made of stacked elementary sediment bodies (thinner than 5 m) that are each related to a single flow event. The lobe is connected to the feeder system through a channel-lobe transition zone (CLTZ) that extends on more than 25 km. The lobe can be divided into proximal, middle and distal lobe areas. The proximal lobe is an area of erosion and by-pass with small axial feeder channels that rapidly splay into several small distributaries. They disappear in the mid-lobe area where deposits consist of vertically stacked tabular to lens-shaped sediment bodies, with a lateral continuity that can exceed 10 km. The distal lobe fringe shows a classical facies transition towards thin-bedded basin plain deposits.Sub-surface deposits consist of sandy turbidites and hyperpycnites, interbedded with fine-grained deposits (thin turbidites, hyperpycnites, or hemipelagites). Although these distal deposits are mainly related to flow transformations and concentration evolution, they highlight the importance of flooding of the wadi Al Batha on the sediment transfer to the deep basin. The thick sandy hyperpycnites recovered in such a distal area are also possibly related to the initial properties of gravity flows, in relation to the flooding characteristics of mountainous desert streams.Finally, the Al Batha lobe depositional architecture is typical of sand-rich lobes found within “small”, sand and mud rich turbidite systems fed by mountainous “dirty” rivers. Turbidite sedimentation in the Al Batha system appears to be primarily controlled by the strong climatic and geomorphic forcing parameters (i.e. semi-arid environment with ephemeral, mountainous rivers subjected to flash-flooding).  相似文献   

16.
The nature of Phanerozoic carbonate factories is strongly controlled by the composition of carbonate‐producing faunas. During the Permian–Triassic mass extinction interval there was a major change in tropical shallow platform facies: Upper Permian bioclastic limestones are characterized by benthic communities with significant richness, for example, calcareous algae, fusulinids, brachiopods, corals, molluscs and sponges, while lowermost Triassic carbonates shift to dolomicrite‐dominated and bacteria‐dominated microbialites in the immediate aftermath of the Permian–Triassic mass extinction. However, the spatial–temporal pattern of carbonates distribution in high latitude regions in response to the Permian–Triassic mass extinction has received little attention. Facies and evolutionary patterns of a carbonate factory from the northern margin of peri‐Gondwana (palaeolatitude ca 40°S) are presented here based on four Permian–Triassic boundary sections that span proximal, inner to distal, and outer ramp settings from South Tibet. The results show that a cool‐water bryozoan‐dominated and echinoderm‐dominated carbonate ramp developed in the Late Permian in South Tibet. This was replaced abruptly, immediately after the Permian–Triassic mass extinction, by a benthic automicrite factory with minor amounts of calcifying metazoans developed in an inner/middle ramp setting, accompanied by transient subaerial exposure. Subsequently, an extensive homoclinal carbonate ramp developed in South Tibet in the Early Triassic, which mainly consists of homogenous dolomitic lime mudstone/wackestone that lacks evidence of metazoan frame‐builders. The sudden transition from a cool‐water, heterozoan dominated carbonate ramp to a warm‐water, metazoan‐free, homoclinal carbonate ramp following the Permian–Triassic mass extinction was the result of the combination of the loss of metazoan reef/mound builders, rapid sea‐level changes across Permian–Triassic mass extinction and profound global warming during the Early Triassic.  相似文献   

17.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   

18.
The Salvan‐Dorénaz Basin formed during the Late Palaeozoic within the Aiguilles‐Rouges crystalline basement (Western Alps) as an asymmetric, intramontane graben elongated in a NE–SW direction and bounded by active faults. At least 1700 m of fluvial, alluvial fan and volcanic deposits provide evidence for a strong tectonic influence on deposition with long‐term, average subsidence rates of > 0·2 mm yr?1. The early basin fill was associated with coarse‐grained alluvial fans that were dominated by braided channels (unit I). These issued from the south‐western margin of the basin. The fans then retreated to a marginal position and were overlain by muddy floodplain deposits of an anastomosed fluvial system (unit II) that drained towards the NE. Deposition of thick muds resulted from a reduction in the axial fluvial gradient caused by accelerated tectonic subsidence. Overlying sand‐rich meandering river deposits (unit III) document a reversal in the drainage direction from the NE to the SW caused by synsedimentary tectonism, reflecting large‐scale topographic reorganization in this part of the Variscides with subsidence now preferentially in the W and SW and uplift in the E and NE. Coarse‐grained alluvial fan deposits (unit IV) repeatedly prograded into, and retreated from, the basin as documented by coarsening‐upward cycles tens of metres thick reflecting smaller scale tectonic cycles. Volcanism was active throughout the evolution of the basin, and U/Pb isotopic dating of the volcanic deposits restricts the time of basin development to the Late Carboniferous (308–295 Ma). 40Ar/39Ar ages of detrital white mica indicate rapid tectonic movements and exhumation of the nearby basement. In unit I, youngest ages are close to that of the host sediment, but the age spectrum is wide. In unit II, high subsidence and/or sedimentation rates coincide with very narrow age spectra, indicating small, homogeneous catchment areas. In unit III, age spectra became wider again and indicate growing catchment areas.  相似文献   

19.
The Hirnantian and Llandovery sedimentary succession of the Barrandian area has been assigned to middle and outer clastic‐shelf depositional settings, respectively. Deposition was influenced by the remote Gondwanan glaciation and subsequent, long‐persisting, post‐glacial anoxia triggered by a current‐driven upwelling system. High‐resolution graptolite stratigraphy, based upon 19 formally defined biozones—largely interval zones—and five subzones, enabled a detailed correlation between 42 surface sections and boreholes, and enabled linking of the sedimentary record, graptoloid fauna dynamics, organic‐content fluctuations and spectral gamma‐ray curves. The Hirnantian and Llandovery succession has been subdivided into four biostratigraphically dated third‐order sequences (units 1–4). Time–spatial facies distribution recorded early and late Hirnantian glacio‐eustatic sea‐level lowstands separated by a remarkable mid‐Hirnantian rise in sea‐level. A major part of the post‐glacial sea‐level rise took place within the late Hirnantian. The highstand of Unit 2 is apparently at the base of the Silurian succession. Short‐term relative sea‐level drawdown and a third‐order sequence boundary followed in the early Rhuddanian upper acuminatus Zone. Early Aeronian and late Telychian sea‐level highstands and late Aeronian drawdown of likely eustatic origin belong to units 3 and 4. Sea‐level rise culminated in the late Telychian, which may also be considered as a highstand episode of a second‐order Hirnantian–early Silurian cycle. Facies and sequence‐stratigraphic analysis supports recent interpretations on nappe structures in the core part of the Ordovician–Middle Devonian Prague Synform of the Barrandian. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Sea floor and shallow seismic data sets of terminal submarine fan lobes can provide excellent planform timeslices of distributive deep‐water systems but commonly only limited information on cross‐sectional architecture. Extensive outcrops in the Tanqua depocentre, south‐west Karoo Basin, provide these three‐dimensional constraints on lithofacies distributions, stacking patterns, depositional geometries and the stratigraphic evolution of submarine lobe deposits at a scale comparable with modern lobe systems. Detailed study (bed‐scale) of a single‐lobe complex (Fan 3) over a 15 km by 8 km area has helped to define a four‐fold hierarchy of depositional elements from bed through to lobe element, lobe and lobe complex. The Fan 3 lobe complex comprises six distinct fine‐grained sandstone packages, interpreted as lobes, which display compensational stacking patterns on a 5 km scale. Between successive lobes are thin‐bedded, very fine‐grained sandstones and siltstones that do not change lithofacies over several kilometres and therefore are identified as a different architectural element. Each lobe is built by many lobe elements, which also display compensational stacking patterns over a kilometre scale. Thickness variations of lobe elements can be extremely abrupt without erosion, particularly in distal areas where isopach maps reveal a finger‐like distal fringe to lobes. Lobe deposits, therefore, are not simple radial sheet‐dominated systems as commonly envisaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号