首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
On the occurrence of blue asymmetry in chromospheric flare spectra   总被引:1,自引:0,他引:1  
We present observations of optical spectra of a flare in which blue line asymmetry was seen for more than 4 min close to the flare onset. The maximum blue asymmetry coincided with the maximum of a hard X-ray and microwave burst. We discuss possible interpretations of the blue asymmetry and conclude that the most plausible one is electron-beam heating with return current. Although this process predicts downflows in the lower transition region and upper chromosphere, its ultimate effect on the line profiles can be blue asymmetry: the upper layers moving away from us absorb the radiation of the red peak thus lowering its intensity in comparison to the blue one.  相似文献   

3.
We investigate the thermodynamical and magnetic properties of a “dark‐cored” fibril seen in the chromospheric Ca II IR line at 854.2 nm to determine the physical process behind its appearance. We analyse a time series of spectropolarimetric observations obtained in the Ca II IR line at 854.2 nm and the photospheric Fe I line at 630.25 nm. We simultaneously invert the spectra in both wavelength ranges with the SIR code to obtain the temperature and velocity stratification with height in the solar atmosphere and the magnetic field properties in the photosphere. The structure can be clearly traced in the line‐of‐sight (LOS) velocity and the temperature maps. It connects from a small pore with kG fields to a region with lower field strength. The flow velocity and the temperature indicate that the height of the structure increases with increasing distance from the inner footpoint. The Stokes V signal of 854.2 nm shows a Doppler‐shifted polarization signal with the same displacement as in the intensity profile, indicating that the supersonic flow seen in the LOS velocity is located within magnetized plasma. We conclude that the chromospheric dark‐cored fibril traces a siphon flow along magnetic field lines, driven by the gas pressure difference caused by the higher magnetic field strength at the inner footpoint. We suggest that fast flows guided by the magnetic field lead to the appearance of “dark‐cored” fibrils in intensity images. Although the observations included the determination of the polarization signal in the chromospheric Ca II IR line, the signal could not be analysed quantitatively due to the low S/N. Chromospheric polarimetry will thus require telescopes of larger aperture able to collect a sufficient number of photons for a reliable determination of polarization in deep and only weakly polarized spectral lines (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The intensity variation at the sun's limb has been studied in order to derive the gradient of the temperature in the low chromosphere. Eclipse observations show that in the continuum the height gradients of the total intensity vary systematically with wavelength; the observed gradient in the red is found to be steeper than in the blue. This wavelength dependence of the gradients is explained by the temperature increase in the low chromosphere.  相似文献   

5.
Quantitative measures are presented for the intensity of emission features in the spectra of 32 southern red variables.  相似文献   

6.
Time sequences of simultaneous spectra of limb spicules, obtained using the Sacramento Peak Observatory's tower telescope and echelle spectrograph are analyzed. Intensity determinations of H and K, H, 8498 and 8542 of calcium are tabulated for three observing heights. Electron densities averaged over the entire visible lifetimes of spicules are -6 × 1010 cm–3 at observing heights of 6000km, while maximum and minimum values were -1.1 × 1011 cm–3 at 6000km and - 2 × 1010 cm–3 at 10000km. Electron temperatures range between 12 000 K and 16 000 K. Profile halfwidths indicate turbulent velocities of 12 to 22 km s–1, and spectral tilts are interpreted as caused by differential velocity fields of -3 km s–1 per 1000 km. No large scale spicule expansions or contractions are observed, although possible expulsions or accretions of material are observed. Spicules may be wider in the calcium K and H lines than in H.Now at School of Science and Engineering, The University of Alabama in Huntsville, Huntsville, Alabama.  相似文献   

7.
《New Astronomy》2007,12(5):378-382
Spectral lines are used to determine a broad range of physical properties within HII regions and planetary nebulae (PNe). It is therefore important that we possess accurate intensities for the transitions, and have the means by which observed results may be accurately de-reddened.We point out that there are serious differences between the “standard” extinction curves, and that these may lead to errors in line ratios of as high as ∼80%. It is noted that the variation in Balmer line ratios in planetary nebulae is most consistent with the extinction curves of Whitworth [Whitworth, A.E., 1958. AJ 63, 201] and Ardeberg and Virdefors [Ardeberg, A., Virdefors, B., 1982. A&A 115, 347], and that these are likely to represent the most reliable functions for spectral de-reddening.  相似文献   

8.
Electron impact excitation rates for Fexxi, calculated with theR-matrix code, are used to determine theoretical electron density sensitive emission line ratios involving transitions in the 121–146 wavelength range. The observed ratios for a solar flare, obtained with a grazing spectrometer on board the OSO-5 satellite, imply electron densities which are consistent, with discrepancies that do not exceed 0.3 dex. In addition, the derived values ofN e are similar to those estimated for the high temperature regions of other solar flares. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations.  相似文献   

9.
A large percent of spicules shows a surge-like behavior on the solar limb, supporting a multi-component model with twisted threads. The counterpart of limb spicules foot-points is investigated on the disk, and this re-examination indicates that the interpretation of transverse motion of off-limb spicules could directly be related to rotational motion at the feet of disk spicules. Related bright elements move and vary in brightness on the timescales of chromospheric oscillations. The motions are similar to random displacements of the bright elements along the network boundaries with amplitudes of about 200 to 400 km, with evidence of “spinning” or vortex motion. We find a clear evidence and in several cases for splitting process and suggesting a formation mechanism for doublet (or multi-component) spicules. A general inter chromospheric network velocity pattern with twists existing before the emergence and eruption of spicules seems to be required. In this paper a helical- kink mode propagation consistent with the new evidence of spicule multiple structure is presented and provides an explanation for the origin of the Alfvenic wave propagation along the spicules. The evidence of spinning spicules remains unclear from disk Dopplergram observations, we use a 3D time slice “column” diagrams (2D in x and y and time in z being the 3d dimension) by consecutive partly transparent slices put in perspective to show the rotational behavior at the chromospheric rosettes, and provide a wealth of information on spinning motion, helical wave propagation and splitting.  相似文献   

10.
We study the time evolution of a layer of the middle or lower chromosphere being heated by a stream of energetic particles during a solar flare. The region, which is not in LTE, is allowed to cool by the transfer of Lyman continuum radiation, with collisional as well as radiative processes being considered. The resulting time dependence of the electron density and the effective thickness of the layer are in good agreement with values derived from observations. We assume the supply of energetic particles to be cut off when the central electron density of our model layer reaches the peak value of n e = 4.4 × 1013 cm–3 derived from observations of an importance 3 flare. Depending on the total hydrogen density assumed, the central electron temperature reaches a value ranging from 8000 to 10000 K. These quantities decrease by 20% during the following minute and at a slower rate thereafter.  相似文献   

11.
It is suggested that certain sharp lines in the visible and near ultraviolet spectra of nebule may be due to fluorescence from grains. Evidence is presented that some of these lines could arise from MgO or CaO grains. Some sharp diffuse interstellar bands may also appear in the spectra of nebulae.  相似文献   

12.
13.
14.
We have studied running penumbral waves, umbral oscillations, umbral flashes and their interrelations from H observations of a large isolated sunspot. Using a subtraction image processing technique we removed the sharp intensity gradient between the umbra and the penumbra and enhanced the low contrast, fine features. We observed running penumbral waves which started in umbral elements with a size of a few arcseconds, covered the umbra and subsequently propagated through the penumbra. The period of the waves was 190 s and the mean propagation velocity was about 15 km s–1. We detected intense brightenings, located between umbral elements from where waves started, which had the characteristics of umbral flashes. There are indications that umbral flashes are related to the propagation of the waves through the umbra and their coupling. The subtraction images also show considerable fine structure in the chromospheric umbra, with size between 0.3 and 0.8.  相似文献   

15.
The intensity of the sun was measured in the Lyman- emission line with 2.5 arc-seconds of resolution. The experiment was flown in an Aerobee-150 rocket on April 28, 1966. It contained a Cassegrain telescope with a pinhole aperture placed at the focus followed by a gas-gain ionization chamber whose spectral response was 1050 Å to 1350 Å.An isophote map 1.5 by 3 arc-minutes in size made from a composite of 90 linear scans shows an enhanced region and adjacent to it a prominent dark lane 20 arc-seconds wide. The measured intensity ratio of these two regions is nine. Bright features between 6 and 20 arc-seconds in size showed typical peak intensities of 20% greater than the surrounding chromosphere. The smallest features observed were 2.5 arc-seconds in size. A direct measurement of the absolute intensity at 1216 Å gave a value of 5.9 × 104 erg cm–2 s–1 sterad–1 in the quiet chromosphere.Based on observations made by the author at the E. O. Hulburt Center for Space Research (supported jointly by the Office of Naval Research and the National Science Foundation) at the Naval Research Laboratory.  相似文献   

16.
The light curve and spectra of Nova Centauri 1995 (V888 Cen) are analysed. The spectra were obtained a few days post-maximum. The nova is found to be a very fast nova, declining by 2 mag within about 5±2 d of maximum. The light curve shows strong oscillations in the transition region, of peak-to-peak amplitude about 1.5 mag and period 12–15 d. The light curve of Nova Centauri resembles closely that of Nova Aquilae 1918 (V603 Aql).
The early blue and red spectra obtained at Mt John show broad emission lines, many with P Cygni profiles. The absorption lines are found in two velocity systems at about −1765 and −3010 km s−1, in respectively the principal and diffuse-enhanced stages of spectral development, as defined by McLaughlin. Nova Centauri has many Fe  ii lines in emission, indicating that it is a member of the Williams Fe  ii class of classical novae.  相似文献   

17.
E. Haugen 《Solar physics》1969,9(1):88-101
The wavelength shifts of approximately 8000 absorption elements in the H-line from spectra of 66 different sunspot regions have been measured.The average velocity field in the chromosphere close to sunspots is determined. Inside 15000 km from the spot's penumbral rim the average velocity vector is directed towards the spot and downwards in the chromosphere; the angle with the horizontal direction is on the average equal to 20°. The magnitude of the average velocity vector shows a maximum of 6.8 ± 1.2 km/sec just outside the penumbral rim and decreases quickly with increasing distance from the spot. Outside 15000 km from the penumbral rim the average velocity vector is small (-0.7 km/sec) and directed nearly vertically outwards from the sun. No significant tangential component of the average velocity field is found.The deviations of the individual elements from the average velocity field are on the average larger than the value of the average velocity. The total rms deviation in the line of sight velocity is equal to 6.8 km/sec. Thus, a large number of elements, as used in this investigation, is required to give significant values of the average velocity vector.We have also observed velocities in the penumbra. The average velocity vector is here probably small and its direction uncertain. The rms deviation in the line of sight velocities observed in the penumbra is equal to 7.5 km/sec.  相似文献   

18.
19.
L. E. Cram 《Solar physics》1972,22(2):375-386
Recent high resolution observations of the Ca ii fine structure are discussed. An analytic method is applied to examine the effects of velocity fields on multi-component model atmospheres in which the central reversal in the bright components is due to self-absorption. It is shown that the inclusion of quite reasonable velocity fields permits the reproduction of not only the high resolution profiles of the small scale emission features but also the qualitative centre-limb behaviour of the spatially averaged profiles. The method is also used to examine models suggested by Pasachoff and others in which the double reversal is a statistical effect of singly peaked velocity shifted profiles. These models are shown to encounter severe difficulties near the limb.  相似文献   

20.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号