首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In an effort to understand the nature of almost periodic orbits in the n-body problem (for all time t) we look first to the more basic question of the oscillatory nature of solutions of this problem (on a half-line, usually taken as R +). Intimately related to this is the notion of a conjugate point(due to A. Wintner) of a solution. Specifically, by rewriting the mass unrestricted general problem of n-bodies in a symmetric form we prove that in the gravitational Newtonian n-body problem with collisionless motions there exists arbitrarily large conjugate points in the case of arbitrary (positive) masses whenever the cube of the reciprocal of at least one of the mutual distances is not integrable at infinity. The implication of this result is that there are possibly many Wintner oscillatorysolutions in these cases (some of which may or may not be almost periodic). As a consequence, we obtain sufficient conditions for all continuable solutions (to infinity) to be either unbounded or to allow for near misses (at infinity). The results also apply to potentials other than Newtonian ones. Our techniques are drawn from results in systems oscillation theory and are applicable to more general situations. Dedicated to the memory of Robert M. (Bob) Kauffman, formerly Professor of the University of Alabama in Birmingham  相似文献   

2.
In this paper several monoparametric families of periodic orbits of the 3-dimensional general 3-body problem are presented. These families are found by numerical continuation with respect to the small massm 3, of some periodic orbits which belong to a family of 3-dimensional periodic orbits of the restricted elliptic problem.  相似文献   

3.
Letn2 mass points with arbitrary masses move circularly on a rotating straight-line central-configuration; i.e. on a particular solution of relative equilibrium of then-body problem. Replacing one of the mass points by a close pair of mass points (with mass conservation) we show that the resultingN-body problem (N=n+1) has solutions, which are periodic in a rotating coordinate system and describe precessing nearlyelliptic motion of the binary and nearlycircular collinear motion of its center of mass and the other bodies; assuming that also the mass ratio of the binary is small.  相似文献   

4.
Computation and a wealth of new observational techniques have reinvigorated dynamical studies of galaxies and star clusters. These objects are examples of the gravitationaln-body problem withn in the range from a few hundred to 1011. Relaxation effects dominate at the low end and are completely negligible at the high end. The gravitationaln-body problem is chaotic, and the principal challenge in doing physics where that problem is involved (whether computationally or with analytic theory) is to ensure that chaos has not vitiated the results. Enforcing a Liouville theorem accomplishes this with collision-free large-n problems, but equivalent recipes are not in common use for smallern. We describe some important insights and discoveries that have come from computation in stellar dynamics, discuss chaos briefly, and indicate the way the physics that comes up in different astronomical contexts is addressed in numerical methods currently in use. Graphics is a vital part of any computational approach. The long range prospects are very promising for continued high scientific productivity in stellar dynamics.  相似文献   

5.
For the n-centre problem of one particle moving in the potential of attracting centres of small mass fixed in an arbitrary smooth potential and magnetic field, we prove the existence of periodic and chaotic trajectories shadowing sequences of collision orbits. In particular, we obtain large subshifts of solutions of this type for the circular restricted 3-body problem of celestial mechanics. Poincaré had conjectured existence of the periodic ones and given them the name ‘second species solutions’. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In the present paper, in the rectilinear three-body problem, we qualitatively follow the positions of non-Schubart periodic orbits as the mass parameter changes. This is done by constructing their characteristic curves. In order to construct characteristic curves, we assume a set of properties on the shape of areas corresponding to symbol sequences. These properties are assured by our preceding numerical calculations. The main result is that characteristic curves always start at triple collision and end at triple collision. This may give us some insight into the nature of periodic orbits in the N-body problem.  相似文献   

7.
New stacked central configurations for the planar 5-body problem   总被引:1,自引:0,他引:1  
A stacked central configuration in the n-body problem is one that has a proper subset of the n-bodies forming a central configuration. In this paper we study the case where three bodies with masses m 1, m 2, m 3 (bodies 1, 2, 3) form an equilateral central configuration, and the other two with masses m 4, m 5 are symmetric with respect to the mediatrix of the segment joining 1 and 2, and they are above the triangle generated by {1, 2, 3}. We show the existence and non-existence of this kind of stacked central configurations for the planar 5-body problem.  相似文献   

8.
How the Method of Minimization of Action Avoids Singularities   总被引:4,自引:0,他引:4  
The method of minimization of action is a powerful technique of proving the existence of particular and interesting solutions of the n-body problem, but it suffers from the possible interference of singularities. The minimization of action is an optimization and, after a short presentation of a few optimization theories, our analysis of interference of singularities will show that:(A) An n-body solution minimizing the action between given boundary conditions has no discontinuity: all n-bodies have a continuous and bounded motion and thus all eventual singularities are collisions;(B) A beautiful extension of Lambert's theorem shows that, for these minimizing solutions, no double collision can occur at an intermediate time;(C) The proof can be extended to triple and to multiple collisions. Thus, the method of minimization of action leads to pure n-body motions without singularity at any intermediate time, even if one or several collisions are imposed at initial and/or final times.This method is suitable for non-infinitesimal masses only. Fortunately, a similar method, with the same general property with respect to the singularities, can be extended to n-body problems including infinitesimal masses.  相似文献   

9.
In this paper novel Earth–Mars transfers are presented. These transfers exploit the natural dynamics of n-body models as well as the high specific impulse typical of low-thrust systems. The Moon-perturbed version of the Sun–Earth problem is introduced to design ballistic escape orbits performing lunar gravity assists. The ballistic capture is designed in the Sun–Mars system where special attainable sets are defined and used to handle the low-thrust control. The complete trajectory is optimized in the full n-body problem which takes into account planets’ orbital inclinations and eccentricities. Accurate, efficient solutions with reasonable flight times are presented and compared with known results.  相似文献   

10.
In this paper we prove, for all p ≥ 2, the existence of central configurations of the pn-body problem where the masses are located at the vertices of p nested regular polyhedra having the same number of vertices n and a common center. In such configurations all the masses on the same polyhedron are equal, but masses on different polyhedra could be different.  相似文献   

11.
In this paper, we consider the elliptic collinear solutions of the classical n-body problem, where the n bodies always stay on a straight line, and each of them moves on its own elliptic orbit with the same eccentricity. Such a motion is called an elliptic Euler–Moulton collinear solution. Here we prove that the corresponding linearized Hamiltonian system at such an elliptic Euler–Moulton collinear solution of n-bodies splits into \((n-1)\) independent linear Hamiltonian systems, the first one is the linearized Hamiltonian system of the Kepler 2-body problem at Kepler elliptic orbit, and each of the other \((n-2)\) systems is the essential part of the linearized Hamiltonian system at an elliptic Euler collinear solution of a 3-body problem whose mass parameter is modified. Then the linear stability of such a solution in the n-body problem is reduced to those of the corresponding elliptic Euler collinear solutions of the 3-body problems, which for example then can be further understood using numerical results of Martínez et al. on 3-body Euler solutions in 2004–2006. As an example, we carry out the detailed derivation of the linear stability for an elliptic Euler–Moulton solution of the 4-body problem with two small masses in the middle.  相似文献   

12.
The problem of finding a global solution for systems in celestial mechanics was proposed by Weierstrass during the last century. More precisely, the goal is to find a solution of the n-body problem in series expansion which is valid for all time. Sundman solved this problem for the case of n = 3 with non-zero angular momentum a long time ago. Unfortunately, it is impossible to directly generalize this beautiful theory to the case of n > 3 or to n = 3 with zero-angular momentum.A new blowing up transformation, which is a modification of McGehee's transformation, is introduced in this paper. By means of this transformation, a complete answer is given for the global solution problem in the case of n > 3 and n = 3 with zero angular momentum.The main result in this paper has appeared in Chinese in Acta Astro. Sinica. 26 (4), 313–322. In this version some mistakes have been rectified and the problems we solved are now expressed in a much clearer fashion.  相似文献   

13.
Central configurations are critical points of the potential function of the n-body problem restricted to the topological sphere where the moment of inertia is equal to constant. For a given set of positive masses m 1,..., m n we denote by N(m 1, ..., m n, k) the number of central configurations' of the n-body problem in k modulus dilatations and rotations. If m n 1,..., m n, k) is finite, then we give a bound of N(m 1,..., m n, k) which only depends of n and k.  相似文献   

14.
In this paper we show that in the n-body problem with harmonic potential one can find a continuum of central configurations for n= 3. Moreover we show a counterexample to an interpretation of Jerry Marsden Generalized Saari's conjecture. This will help to refine our understanding and formulation of the Generalized Saari's conjecture, and in turn it might provide insight in how to solve the classical Saari's conjecture for n≥ 4. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We present a new set of variables for the reduction of the planetary n-body problem, associated to the angular momentum integral, which can be of any use for perturbation theory. The construction of these variables is performed in two steps. A first reduction, called partial is based only on the fixed direction of the angular momentum. The reduction can then be completed using the norm of the angular momentum. In fact, the partial reduction presents many advantages. In particular, we keep some symmetries in the equations of motion (d'Alembert relations). Moreover, in the reduced secular system, we can construct a Birkhoff normal form at any order. Finally, the topology of this problem remains the same as for the non-reduced system, contrarily to Jacobi's reduction where a singularity is present for zero inclinations. For three bodies, these reductions can be done in a very simple way in Poincaré's rectangular variables. In the general n-body case, the reduction can be performed up to a fixed degree in eccentricities and inclinations, using computer algebra expansions. As an example, we provide the truncated expressions for the change of variable in the 4-body case, obtained using the computer algebra system TRIP.  相似文献   

16.
17.
It is proved that monoparametric families of periodic orbits of theN-body problem in the plane, for fixed values of all masses, exist in a rotating frame of reference whosex axis contains always two of the bodiesP 1 andP 2. A periodic motion of theN-body problem is obtained as a continuation ofN–2 symmetric periodic orbits of the circular restricted three-body problem whose periods are in integer dependence, by increasing the masses of the originallyN–2 massless bodiesP 3, ...,P k. The analytic continuation, for sufficiently small values of theN–2 bodiesP 3 ...P k and finite values for the masses ofP 1 andP 2 has been proved by the continuation method and the solution itself has been found explicitly to a linear approximation in the small masses. Also, the possible application of the above periodic orbits to the study of the Solar system and of stellar systems is mentioned.  相似文献   

18.
It is proved that the vertical critical orbits of the planar circular restricted three-body problem can be used as starting points for finding periodic orbits of the three-dimensional generalN-body problem. A numerical example is given.  相似文献   

19.
E. Bois  N. Rambaux   《Icarus》2007,192(2):308-317
Mercury's capture into the 3:2 spin–orbit resonance can be explained as a result of its chaotic orbital dynamics. One major objective of MESSENGER and BepiColombo spatial missions is to accurately measure Mercury's rotation and its obliquity in order to obtain constraints on internal structure of the planet. Analytical approaches at the first-order level using the Cassini state assumptions give the obliquity constant or quasi-constant. Which is the obliquity's dynamical behavior deriving from a complete spin–orbit motion of Mercury simultaneously integrated with planetary interactions? We have used our SONYR model (acronym of Spin–Orbit N-bodY Relativistic model) integrating the spin–orbit N-body problem applied to the Solar System (Sun and planets). For lack of current accurate observations or ephemerides of Mercury's rotation, and therefore for lack of valid initial conditions for a numerical integration, we have built an original method for finding the libration center of the spin–orbit system and, as a consequence, for avoiding arbitrary amplitudes in librations of the spin–orbit motion as well as in Mercury's obliquity. The method has been carried out in two cases: (1) the spin–orbit motion of Mercury in the 2-body problem case (Sun–Mercury) where an uniform precession of the Keplerian orbital plane is kinematically added at a fixed inclination (S2K case), (2) the spin–orbit motion of Mercury in the N-body problem case (Sun and planets) (Sn case). We find that the remaining amplitude of the oscillations in the Sn case is one order of magnitude larger than in the S2K case, namely 4 versus 0.4 arcseconds (peak-to-peak). The mean obliquity is also larger, namely 1.98 versus 1.80 arcminutes, for a difference of 10.8 arcseconds. These theoretical results are in a good agreement with recent radar observations but it is not excluded that it should be possible to push farther the convergence process by drawing nearer still more precisely to the libration center. We note that the dynamically driven spin precession, which occurs when the planetary interactions are included, is more complex than the purely kinematic case. Nevertheless, in such a N-body problem, we find that the 3:2 spin–orbit resonance is really combined to a synchronism where the spin and orbit poles on average precess at the same rate while the orbit inclination and the spin axis orientation on average decrease at the same rate. As a consequence and whether it would turn out that there exists an irreducible minimum of the oscillation amplitude, quasi-periodic oscillations found in Mercury's obliquity should be to geometrically understood as librations related to these synchronisms that both follow a Cassini state. Whatever the open question on the minimal amplitude in the obliquity's oscillations and in spite of the planetary interactions indirectly acting by the solar torque on Mercury's rotation, Mercury remains therefore in a stable equilibrium state that proceeds from a 2-body Cassini state.  相似文献   

20.
We consider a class of Hamiltonian systems with two degrees of freedom with singularities. This class includes several symmetric subproblems of the $n$ -body problem where the singularities are due to collisions involving two or more bodies. “Schubart-like” periodic orbits having two collisions in one period, are present in most of these subproblems. The purpose of this paper is to study the existence of families of such a periodic orbits in a general setting. The blow up techniques of total collision and infinity are applied to our class of Hamiltonian system. This allows us to derive sufficient conditions to ensure the existence of families of double symmetric “Schubart-like” periodic orbits having many singularities. The orbits in the family can be parametrized by the number of singularities in one period. The results are applied to some subproblems of the gravitational $n$ -body problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号